CHEMISTRY

Program Code: UCH

2021- Onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS)

Re-accredited with "A" Grade by NAAC

PASUMALAI, MADURAI – 625 004

Eligibility for Admission

should have passed the Higher Secondary Examination conducted by the Candidate Board of Higher Secondary Education, Government of Tamil Nadu, CBSE Board with Science as one of the subjects in Higher Secondary Education.

Subjects of Study

Part I : Tamil / Company Secretarial Practice and Modern Office Management

Part II : English

Part III

1. Core Subjects

2. Allied Subjects

3. Electives

Part IV

1. Non Major Electives (II Year)

2. Skill Based Subjects

3. Environmental Studies - Mandatory Subject

4. Value Education - Mandatory Subject

Part V

Extension Activities

Pattern of the question paper for the Continuous Internal Assessment

Note: Duration – 1 hour

(For Part I, Part II & Part III)

The components for continuous internal assessment are:

Part -A

Four multiple choice questions (answer all) $4 \times 01 = 04 \text{ Marks}$

Part -B

Three short answers questions (answer all) 3 x02= 06 Marks

Part -C

Two questions ('either or 'type) 2 x 05=10 Marks

Part -D

Two questions out of three $1 \times 10 = 10 \text{ Marks}$

Total 30 Marks

The scheme of Examination for Part-I, II & III

The components for continuous internal assessment are:

(60 Marks of two continuous internal assessments will be converted to 15 marks)

Two tests and their average --15 marks
Seminar /Group discussion --5 marks
Assignment --5 marks

Total 25 Marks

Pattern of the question paper for the Summative Examinations:

Note: Duration- 3 hours

Part -A

Ten multiple choice questions

10 x01 = 10 Marks

No Unit shall be omitted: not more than two questions from each unit.)

Part -B

Short answer questions (one question from each unit) $5 \times 02 = 10 \text{ Marks}$

Part -C

Five Paragraph questions ('either or 'type) $5 \times 05 = 25 \text{ Marks}$

(One question from each Unit)

Part -D

Three Essay questions out of five 3 x 10 = 30 Marks

(One question from each Unit)

Total 75 Marks

Part-IV- Skill Based Papers / NME:

The Scheme of Examination for Skill Based Papers: (Except Practical Lab Subjects) Pattern of the questions paper for the continuous Internal Assessment

45 MCQs will be asked for each internal assessment tests $(45 \times 1=45 \text{ Marks})$ and converted for 15 marks

The components for continuous internal assessment are:

Two tests and their average --15 marks
Seminar /Group discussion --5 marks
Assignment --5 marks

05.16.1

Total 25 Marks

Summative Examination Pattern

Pattern of the Question Paper for Skill Based Papers (External)

75 Multiple choice questions will be asked from five units (75 x 1=75 Marks)

(15MCQ's from each unit)

Part-IV- Environmental Studies and Value Education

The Scheme of Examination (Environmental Studies and Value Education)

Two tests and their average --15 marks

Project Report --10 marks*

Total --25 marks

Question Paper Pattern

(Internal Assessment)

Pattern of the Question Paper for Environmental Studies & Value Education only) (Internal)

45 MCQs will be asked for each internal assessment tests $(45 \times 1=45 \text{ Marks})$ and converted for 15 marks

Two tests and their average -- 15 marks
Project -- 10 marks

Total 25 Marks

Summative Examination Pattern

Pattern of the Question Paper for Environmental Studies & Value Education only) (External)

75 Multiple choice questions will be asked from five units (75 x 1=75 Marks)

(15MCQ's from each unit)

^{*} The students as Individual or Group must visit a local area to document environmental assets – river / forest / grassland / hill / mountain – visit a local polluted site – urban / rural / industrial / agricultural – study of common plants, insects, birds – study of simple ecosystem – pond, river, hill slopes, etc.

Part V Extension Activities: (Maximum Marks: 100)

- 1. NCC
- 2. NSS
- 3. Physical Education
- 4. YRC
- 5. RRC
- 6. Health & Fitness Club
- 7. Eco Club
- 8. Human Rights Club

Pattern of the Question Paper for (Internal Examination & Summative Examination)

Internal Examinations -- 40 Marks

Summative Examinations -- 60 Marks

100

Minimum Marks for a Pass

40% of the aggregate (Internal +Summative Examinations). No separate pass minimum for the Internal Examinations. 27 marks out of 75 is the pass minimum for the Summative Examinations.

VISION

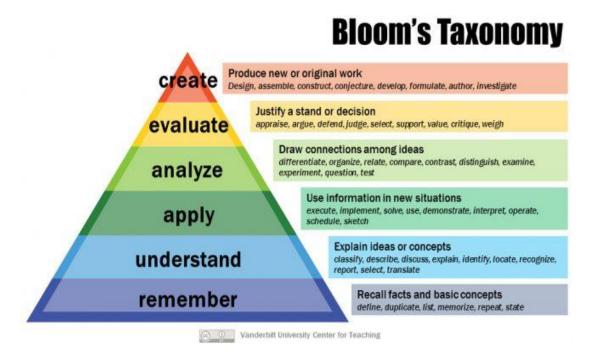
Department of Chemistry undertakes to aspires young adult to excel in Chemical Education, Research and Services to contribute to a chemically literate society through teaching, scholarship and service.

MISSION

To produce employable graduates in various areas and demonstrate science as a human endeavor and as a way to understand the natural world

The 12 Graduate Attributes*:

- 1. (KB) A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
- 2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions
- 3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.
- 4. (Des.) Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
- 5. (Tools) Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
- 6. (Team) Individual and teamwork: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
- 7. (Comm.) Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.
- 8. (Prof.) Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
- 9. (Impacts) Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such

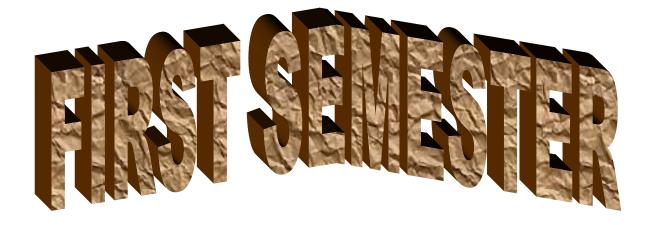

- interactions; and the concepts of sustainable design and development and environmental stewardship.
- 10. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.
- 11. (Econ.) Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
- 12. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

WA	Graduate Attributes	Caption as
1	A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.	Disciplinary Knowledge
2	An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions.	Problem Analysis
3	An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.	Investigation
7	An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.	Communication skills
6,10	An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting. An ability to apply professional ethics, accountability, and equity.	Individual and Team Work & Ethics
5,12	An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations. An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge	Use of Engineering Tools & Life- Long Learning

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)				
	On completion of the Programme, the Student will be able to				
PEO1:	Enhance the students to nurture the requirements of industries/laboratories related to				
I LOI.	chemistry including pharmaceutical/analytical chemistry.				
PEO2:	Enable the students to demonstrate information literacy skills for acquiring				
FEO2.	knowledge of chemistry, as a chemist/researcher and also as a life-long learner.				
	Develop the students to communicate effectively the scientific and research				
PEO3:	information in both written and oral formats, to both professional scientists and to				
	the public.				
PEO4:	Collaborate with Industry and Alumni to explore the new avenues in respective				
1 EO4.	domains and raise the employability ratio.				
PEO5:	Adhere towards the ethical and environmental sustainability to create morally				
TEOS.	upright and empowered citizens to face industry/ institution.				
PEO6:	Nurture environmental awareness and develop communal harmony in respective of				
TEO0:	national integration.				

PO NO	PROGRAMME OUTCOMES (POs)	
At the end	l of the programme, the students will be able to	
PO – 1	Demonstrate the knowledge and understanding of Science concepts and its relevant fields.	Disciplinary Knowledge
PO – 2	Identify, formulate, analyse complex problems and reach valid conclusions using the methodologies of Science.	Problem Solving
PO – 3	Employ critical and analytical thinking in understanding the concepts and apply them in various problems appearing in different branches of Science.	Analytical Reasoning & Critical Thinking
PO - 4	Communicate the known concepts effectively within the profession and with any forum	Communication Skills
PO - 5	Function successfully as a member/leader in any team and to apply ethics, accountability and equity in their life.	Team Work and Moral/Ethical Awareness
PO - 6	Use ICT tools in various learning situations, related information sources, suitable software to analyze data and furthermore participating in learning activities throughout life to meet the demands of work place through knowledge /up-skilling / re-skilling	Digital Literacy & Life-long Learning

S.No.	Graduate Attributes	PROGRAM SPECIFIC OUTCOME (PSOs)
PSO1:	Knowledge Base	Learn various concepts of organic, inorganic, physical chemistry, their biological aspects and their application in day-to-day life.
PSO2:	Problem Analysis & Investigation	Design towards executing experiments and confident handling of equipment's in Chemistry for industries.
PSO3:	Communication Skills & Design	Execute new ideas in the field of research and development using principles and techniques of science learned through activities such as expert lecturers, workshops, seminars and field projects.
PSO4:	Professionalism, Ethics and Equity	Aspire the knowledge of green environment learned through green chemistry and pollution free scenario
PSO5:	Individual & Team Work	Work effectively with a set of teams using modern technical skills and innovative research ideas in Chemistry areas
PSO6 :	Lifelong learning	Develop employability and entrepreneurship skills learned through industry-based curriculum


MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI B.Sc., CHEMISTRY., CURRICULUM

(For the student admitted during the academic year 2021-2022 onwards)

Course Code	Title of the Course	Hrs	Credits	Maximum Marks		
				Int	Ext	Total
	FIRST SEMESTI	ER				
Part – I	Tamil / Alternative Course					
21UTAG11	இக்காலக் கவிதையும் நாடகமும்	6	3	25	75	100
Part – II	English					
21UENG11	Communicative English - I	6	3	25	75	100
Part - III	Core Courses					
21UCHC11	Inorganic Chemistry -I	4	4	25	75	100
	Major Chemistry Practical – I					
21UCHCP1	(Inorganic Semi Micro-Qualitative	2	-	-	-	
	analysis)					
Part III	Allied Course					
	Allied Physics – I					
21UPHA11	(Mechanics, Properties of Matter,	4	4	25	75	100
	Heat and Sound)					
21UPHAP1	Allied Physics Practical – I	2	-	_	-	-
Part IV	Skill Based Course					
21UCHS11	Cosmetic Chemistry	2	2	25	75	100
21UCHS12	Green Chemistry	2	2	25	75	100
Part IV	Mandatory Course					
21UEVG11	Environmental Studies	2	2	25	75	100
	Total	30	20	175	525	700
	SECOND SEMEST	ER				
Part – I	Tamil / Alternative Course					
21UTAG21	இடைக்கால இலக்கியமும் சிறுகதையும்	6	3	25	75	100
Part – II	English					
21UENG21	Communicative English -II	6	3	25	75	100
Part - III	Core Courses					
21UCHC21	Organic Chemistry -I	4	4	25	75	100
	Major Chemistry Practical – I					
21UCHCP1	(Inorganic Semi Micro-Qualitative	2	2	40	60	100
	analysis)					
Part III	Allied Course					
	Allied Physics – II					
21UPHA21	(Electricity, Electronics, Optics and	4	3	25	75	100
	Modern Physics)					100
21UPHAP1	Allied Physics Practical – I	2	1	40	60	100
Part IV	Skill Based Course					
21UCHS21	Dairy Chemistry	2	2	25	75	100
21UCHS22	Dye Chemistry	2	2	25	75	100
Part IV	Mandatory Course					
21UVLG21	Value Education	2	2	25	75	100
	Total	30	22	255	645	900

THIRD SEMESTER									
Part – I	Tamil / Alternative Course								
21UTAG31	காப்பிய இலக்கியமும்	6	3	25	75	100			
	உரைநடையும்			23	7.5	100			
Part – II	English								
21UENG31	Communicative English-III	6	3	25	75	100			
Part - III	Core Courses								
21UCHC31	Physical Chemistry – I	4	4	25	75	100			
21UCHC32	Inorganic Chemistry – II	4	4	25	75	100			
21UCHCP2	Major Chemistry Practical – II	2							
(Volumetric Analysis)			-	_	-	-			
Part III	Allied Course								
21UMCA32 /	Allied Mathematics – I /		4	25	7.5	100			
21UMBA32	Allied Microbiology – I:	6	4	25	75				
Fundamentals of Microbiology									
Part IV	Non-Major Elective Course								
21UCHN31					75	100			
	Total	30	2 20	25 150	450	600			
	FOURTH SEMEST	ER							
Part – I	Tamil / Alternative Course								
21UTAG41	பண்டைய இலக்கியமும் புதினமும்	6	3	25	75	100			
Part – II	English								
21UENG41	Communicative English -IV	6	3	25	75	100			
Part - III	Core Courses								
21UCHC41	Organic Chemistry – II	4	4	25	75	100			
21UCHC42	Physical Chemistry – II	4	4	25	75	100			
21UCHCP2	Major Chemistry Practical – II	2	2	40	60	100			
210CHCF2	(Volumetric Analysis)				00	100			
Part III	Allied Course								
21UMCA43 /	Allied Mathematics – II /			25	75	100			
21UMBA42	Allied Microbiology - II: Applied	6	4						
	Microbiology								
Part IV									
21UCHN41	u		2	25	75	100			
Part V	Extension Activities								
21UELAG40-	NSS, NCC, YRC		1	40	<i>c</i> 0	100			
21UELAG49		-	1	40	60	100			
	Total	30	23	230	570	800			

	FIFTH SEMEST	ER				
Part - III	Core Courses					
21UCHC51	Organic Chemistry – III	6	6	25	75	100
21UCHCP3	Major Chemistry Practical – III (Physical Chemistry experiments)	6	5	40	60	100
21UCHCP4	Major Chemistry Practical – IV (Gravimetric Analysis and Organic Preparation)	3	-	-	-	-
21UCHCP5	Major Chemistry Practical – V (Organic Analysis and Estimation)	3	-	-	-	_
Part III	Core Elective					
21UCHE51	Analytical Chemistry					
21UCHE52	Nuclear, Industrial Chemistry & Metallic State	5	5	25	75	100
21UCHE53	Supramolecular Chemistry)	3	23	13	100
21UCHE54	Bioinorganic Chemistry					
21UCHE55	Chemistry in crime investigation	5	5	25	75	100
21UCHE56	Food Processing Chemistry					
Part IV	Skill Based Course					
21UCHS51	Drug Chemistry	2	2	25	75	100
	Total	30	23	140	360	500
	SIXTH SEMEST	ER			•	
Part - III	Core Courses					
21UCHC61	Physical Chemistry – III	6	6	25	75	100
21UCHCP4	Major Chemistry Practical – IV (Gravimetric Analysis and Organic Preparation)	3	5	40	60	100
21UCHCP5	Major Chemistry Practical – V (Organic Analysis and Estimation)	3	5	40	60	100
21UCHPR1	Project and viva voce	6	4	40	60	100
Part III	Core Elective Courses					
21UCHE61	Applied Chemistry					
21UCHE62	Soil and Agriculture Chemistry	5	5	25	75	100
21UCHE63	Fuel Chemistry))	25	75	100
21UCHE64	Nano Chemistry					
21UCHE65 Clinical and Medicinal Chemistry		5	_	25	75	100
21UCHE66	Applied Electrochemistry)	5	25	75	100
Part IV	Skill Based Course					
21UCHS61	Polymer Chemistry	2	2	25	75	100
	Total	30	32	220	480	700
	Grand Total	180	140	1170	3030	4200

(For those who joined in 2021-2022 and after)

Course Name	INORGANIC CHEMISTRY – I								
Course Code	21UCHC11 L P C								
Category	Core	4	-	4					
Nature of cours	Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ENTREPRENEU			HIP	✓				
Course Objectives:									

- To Recall the structure of atom and also know the various model of an atom for the structure of the atoms.
- To Remember the basics of periodic table and atomic properties to relate their principles
- To Compare the types of bonds to relate their relations between them.
- To Perform the chemical bonding and VSEPR theory and their applications to find the geometry of molecules.
- To Determine the various concepts on Acids and Bases and also know the positions of hydrogen and its properties.

Unit: I STRUCTURE OF ATOM

12

An outline of constituents of atom (elementary idea) – Rutherford model of an atom - Mosley's determination of atomic number – mass number. Quantum theory: Black body radiation – photo electric effect – Compton effect – Bohr model of atom: postulate and hydrogen spectrum – de Broglie's equations – Heisenberg's uncertainty principle – Quantum numbers – Pauli's exclusion principle – Aufbau principle – Hund's rule – electronic configuration of atoms.

Unit: II PERIODIC TABLE AND ATOMIC PROPERTIES

12

The long form of periodic table- periodic law and electronic configuration of elements- Horizontal and vertical relationship. Atomic properties- Size of atom- Atomic Volumes - Ionisation energy-electron affinity- Electronegativity- Different scales- Diagonal relationship- Classification of elements on the basis of their electronic configuration- (further extension of periodic table).

Unit: III | CHEMICAL BONDING

12

Cause of chemical bonding – octet rule – ionic bond – covalent bond – valence bond approach- its limitations – Fajan's rule – VSEPR theory and its limitations – application of VSEPR theory to find geometry of molecules (NH₃ and H₂O) – hybridization – sp, sp², sp³, sp³d² and (BeF₂, BCl₃, CH₄, SF₆, H₂O) –Molecular Orbital theory – LCAO method – MO diagram for homo nuclear and hetero nuclear diatomic molecules – H₂, He₂, Li₂, Be₂, C₂, N₂, O₂, F₂, CO and HF – determination of magnetic property and bond order

Unit: IV | ACIDS AND BASES

12

Arrhenius concept-Lowry Bronsted –Lewis concepts-Lux Flood solvent system concepts - Usonowich concept. Factors influencing the acidic and basis properties (steric effect, +I and –I effect, resonance effect and electronegativity effect). Oxo acids and strength of oxo acids.

Unit: V HYDROGEN, OZONE AND HYDROGEN PEROXIDE

12

Hydrogen: Position of hydrogen in periodic table – resemblance of hydrogen with alkali metals – resemblance with halogens – special position of hydrogen – resemblance with carbon – preparation – manufacture – pure hydrogen – ortho and para hydrogen – occluded hydrogen – uses – Isotopes of hydrogen – Isotopic effect – hydrides – classification – examples. **Ozone**: Commercial preparation, properties, uses, structure. **Hydrogen peroxide**: Manufacture – properties – structure and uses – estimation by permanganometric and iodimetric method – strength of hydrogen peroxide.

Total Lecture Hours | 60 Hrs

Books for Study:

1. B.R. Puri, L.R.Sharma & K.C. Kalia, **Principles of Inorganic Chemistry** Milestone Publisher 31st edition, New Delhi 2013

Books for References:

- 1. Puri, Sharma & Kalia, **Principles of Inorganic Chemistry** Milestone publisher & distributor, New Delhi 2009.
- 2. R. D Madan S.Chand, **Modern Inorganic Chemistry** band Co.Ltd, New Delhi 2012.
- 3. J D.Lee, Wiley India, Concise Inorganic Chemistry 5th Edition, New Delhi 2009.

Web Resources:

- 1. https://bit.ly/3tu7P32
- 2. https://bit.ly/2Qev0Ac
- 3. https://bit.ly/3bRnjs6
- 4. https://bit.ly/30R8dww

Course	e Outcomes	K Level
On th	e completion of the course the student will be able to	
CO1:	Recall the general characteristics of sub atomic particles of an atom and periodicity	[Up to K2]
CO2:	Discuss the long form periodic table, types of chemical bonds and concept of Acids and Bases.	[Up to K3]
CO3 :	Prepare the hydrogen, ozone and hydrogen peroxide and compute the properties with alkali metals	[Up to K3]
CO4:	Examine the Quantum model of an atom and VSEPR theory to find the geometry of molecules	[Up to K4]
CO5 :	Apply various types of bonds and quantum model of atom for the geometry of molecules	[Up to K4]

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	1	3	2	3	2	1	
Weightage	10	10	10	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	STRUCTURE OF ATOM An outline of constituents of atom (elementary idea) – Rutherford model of an atom – Mosley's determination of atomic number – mass number. Quantum theory: Black body radiation – photo electric effect – Compton effect – Bohr model of atom: postulate and hydrogen spectrum – de Broglie's equations – Heizenberg's uncertainty principle – Quantum numbers – Pauli's exclusion principle – Aufbau principle – Hund's rule – electronic configuration of atoms.	12	Chalk, Talk & Power point
II	PERIODIC TABLE AND ATOMIC PROPERTIES The long form of periodic table- periodic law and electronic configuration of elements- Horizontal and vertical relationship. Atomic properties- Size of atom- Atomic Volumes - Ionisation energy- electron affinity- Electronegativity- Different scales- Diagonal relationship-Classification of elements on the basis of their electronic configuration - (further extension of periodic table).	12	Chalk, Talk & Power point
III	CHEMICAL BONDING Cause of chemical bonding – octet rule – ionic bond – covalent bond – valence bond approach- its limitations – Fajan's rule – VSEPR theory and its limitations – application of VSEPR theory to find geometry of molecules (NH ₃ and H ₂ O) – hybridization – sp, sp², sp³, sp³d² and (BeF ₂ , BCl ₃ , CH ₄ , SF ₆ , H ₂ O)- Molecular Orbital theory – LCAO method – MO diagram for homo nuclear and hetero nuclear diatomic molecules – H ₂ , He ₂ , Li ₂ , Be ₂ , C ₂ , N ₂ , O ₂ , F ₂ , CO and HF – determination of magnetic property and bond order	12	Chalk, Talk & Power point
IV	ACIDS AND BASES Arrhenius concept-Lowry Bronsted –Lewis concepts-Lux Flood solvent system concepts -Usonowich concept. Factors influencing the acidic and basis properties (steric effect, +I and –I effect, resonance effect and electronegativity effect). Oxo acids and strength of oxo acids.	12	Chalk, Talk & Power point
V	HYDROGEN, OZONE AND HYDROGEN PEROXIDE Hydrogen: Position of hydrogen in periodic table – resemblance of hydrogen with alkali metals – resemblance with halogens – special position of hydrogen – resemblance with carbon – preparation – manufacture – pure hydrogen – ortho and para hydrogen – occluded hydrogen – uses – Isotopes of hydrogen – Isotopic effect – hydrides – classification – examples. Ozone: Commercial preparation, properties, uses, structure. Hydrogen peroxide: Manufacture – properties – structure and uses – estimation by permanganometric and iodimetric method – strength of hydrogen peroxide.	12	Chalk, Talk & Power point

Course Designed by: Dr. V. Ramasamy Raja & Dr. J.E. Sangeetha

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

		K Level	Section A		Section B			Section D	
Inte			MCQs		Short Answers		Section C		
rnal	Cos		No. of. Questions	K – Level	No. of. Questio ns	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AI	CO2	Up to K3	2	K1 & K2	2	K2	2 (K3&K3)	2(K2 & K3)	
CI	CO3	Up to K2	2	K1 & K2	1	K2	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)	
		No. of Questions to be asked	4		3		4	3	
_	estion etern	No. of Questions to be answered	4		3		2	2	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	20	

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %		
	K1	2	2	-	-	4	6.67			
	K2	2	4	10	20	36	60	67		
CIA	К3	-	-	10	10	20	33.33	33		
I	K4	-	-	-	-	•	-	-		
_	Marks	4	6	20	30	60	100	100		
	K1	2	2	-	-	4	6.67			
	K2	2	4	10	10	26	43.33	50		
CIA	К3	-	-	10	10	20	33.33	33		
II	K4	-	-	-	10	10	16.67	17		
	Marks	4	6	20	30	60	100	100		

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
			MC		Short An	swers	Section C	C4: D		
S.No	Cos	K - Level	No. of Question	K – Level	No. of Question	K – Level	(Either / or Choice)	Section D (Open Choice)		
1	CO1	Up to K 2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)		
2	CO2	Upto K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)		
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)		
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)		
5	CO5	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)		
No. of Questions to be Asked			10		5		10	5		
No.of Questions to be answered			10		5		5	3		
Marks for each question			1		2		5	10		
T-4-1	Maulea for	anal anation	10		10		25	20		

Total Marks for each section 10 10 25 3

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level									
K Level	Section A (Multiple (Short Choice Answer Questions) Questions		Section C (Either/ or Choice) Section D (Open Choice)		Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	33			
K2	5	6	10	10	31	25.83	33			
К3	-	-	40	20	60	50	50			
K4	-	-	-	20	20	16.67	17			
Marks	10	10	50	50	120	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

			ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	·
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
	_	en Choice	
	CO	Three ques K Level	tions (3x10=30 marks) Questions
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO ₂	K3	
24	CO3	K3 K4	
25	CO ₄	K4	
43	CO3	11/4	

(For those who joined in 2021-2022 and after)

Course Name	MAJAOR CHEMISTRY PRACTICAL – I (Inorganic Semi Micro – Qualitative Analysis)						
Course Code	21UCHCP1	L	P	C			
Category	Core	-	2	-			
Notive of course EMDLOVADILITY / CKILL ODIENTED / ENTDEDDENIELDSIL				_/			

Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENEURSHIP ✓

Course Objectives:

- To Recall the basic properties of salt mixtures.
- To Reminiscence the anionic and cationic species in the salt mixtures.
- To Apply the concept of anionic and cationic species in semi micro qualitative analysis.
- To Execute the confirmation test for the anions and cations present in the salt mixtures.
- To Construct four radicals with correct procedure during analysis of the salt mixtures.

Duration of examination: 3hrs

Analysis of a mixture containing two anions of which one is an interfering in semimicro method two cations

Anions:

Carbonate, sulphate, nitrate, fluoride, chloride, bromide, iodide, oxalate, Borate, phosphate and chromate.

Cations: Lead, bismuth, copper, cadmium, antimony, iron (II and III), aluminium, Chromium, zinc, manganese, cobalt, nickel, barium, calcium,

Magnesium and ammonium.

Distribution of marks
Max marks: 100

Internal : 40 marks External : 60 marks

Laboratory : 30 marks Vivo voce : 10 marks

Performance

Observation note book : 10 marks Record note book : 10 marks

Four radicals with : 40 marks

correct procedure

Total : 40 marks Total : 60 marks

Total Lecture Hours | 30 Hrs

Books for Study:

1. Dr. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis, National Publishing Company, 3rd edition, Chennai, 1974.

Books for References:

1. Vogel, Text book of Qualitative Analysis including Semi Micro Methods, Longman Sc & Tech, 2008.

30

Web Resources:

- 1. https://www.youtube.com/watch?v=cEOvj6jkdDw
- 2. https://www.youtube.com/watch?v=T3hi_xEpaDg
- 3. https://www.youtube.com/watch?v=BK7rf4XE4f8
- 4. https://www.youtube.com/watch?v=QQo1e-BUZWs

Cours	Course Outcomes:						
On th	On the completion of the course the student will be able to						
CO1:	Identify the basic radical and its group in the given salt mixture.	[Up to K2]					
CO2:	Understand the qualitative analysis skill of any given inorganic salt mixture.	[Up to K3]					
CO3:	Develop the acid radicals present in the given inorganic salt mixture.	[Up to K3]					
CO4:	Analyze the basic radical systematically.	[Up to K4]					
CO5:	Apply the four radicals with correct procedure during analysis of the salt	[Up to K4]					
CO3:	mixtures	[Op to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	2	3	1	3	2	1	
Weightage	11	10	9	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	INORGANIC SEMI MICRO – QUALITATIVE ANALYSIS	Hrs	Mode
I	Duration of examination: 3hrs Analysis of a mixture containing two anions of which one is an interfering in semi-micro method two cations Anions: Carbonate, sulphate, nitrate, fluoride, chloride, bromide, iodide, oxalate, Borate, phosphate and chromate. Cations: Lead, bismuth, copper, cadmium, antimony, iron (II and III), aluminium, Chromium, zinc, manganese, cobalt, nickel, barium, calcium, Magnesium and ammonium.	30	Practical

Course Designed by: Dr. V. Ramasamy Raja & Dr. R. Satheesh

(For those who joined in 2021-2022 and after)

Course Name	ALLIED PHYSICS-I: (Mechanics, Properties of Matter, Heat an	nd So	und))
Course Code	21UPHA11	L	P	C
Category	Allied	4	-	4
Nature of cours	e: EMPLOYABILITY SKILL ORIENTED ENTREPRENE	EURS	HIP	
Course Objecti	ves:			
The learners wil				
	lect Newton's law of motion			
	rstand the elasticity property and types of modulus			
	rstand the viscosity and application of Bernoulli's theorem			
	lect Kinetic theory of gases			
	rstand the concepts of S.H.M		140	
	chanics		13	
	lar momentum –Moment of Inertia –Perpendicular and Parallel a			
	of planetary motion - Newton's laws of gravitation–Mass and densi	•	Ear	tn –
	or G-Compound pendulum-Expression for period-Experiment to find	<u>"g</u> "	10	
	sticity		12	
	in - Elasticity-Different moduli of Elasticity-Poisson's ratio-Bendi	_		
	bending moment–Determination of Young's modulus by uniform and			
	n-Expression for couple per unit twist-Work done in twisting		ı orsı	onai
	body - Workdone in twisting—Rigidity modulus by torsion pendulum	-	11	
	cosity iscosity -Derivation of Poiseuille's formula - coefficient of viscosity	of o		
	thod – Equation of continuity-Bernoulli's theorem-derivation-A		-	-
	rem (Venturimeter and Pitot tube).	ppnc	ation	8 01
Unit: IV Hea			12)
	f gases – Mean free path – Transport phenomena – Expression for the	ooof		
	osity and thermal conductivity – Degrees of freedom – Boltzi			
	energy – calculation of Υ for mono atomic and diatomic gases - The			
	ond laws of thermodynamics (statement only) – Entropy – change			
	Change of entropy in conversion of ice into stream	01 01	шор	y 111
Unit: V Sou			12)
	ic motion – Composition of two S.H.M's of equal time periods at	rioht		
•	es – Properties of stationary waves – Melde's experiment for the	_	_	
•	ntained tuning fork (Transverse and Longitudinal modes) - Ultrasonic	-		
	nethod – Detection – Kundt's tube and Piezoelectric - Properties – App			
	Total Lecture Hou		60 H	rs
Books for Stud			00 11	
	an, Mechanics, Properties of Matter and Sound, Madurai, first			
_	2016.[B.Sc.AncillaryPhysics			
•	Jnit–I: 1.1, 2.1–2.7, 2.13-2.15, 3.1-3.5			
* (Jnit–II: 4.1-4.5, 4.7,4.8,4.10-4.13			

- * Unit-III: 5.2-5.7 -
- * Unit-V: 6.1, 6.3, 6.4, 6.7-6.9, 6.12
- 2. R..Murugeshan, Thermal Physics, Madurai, First edition July, 2016. (B.Sc., Ancillary Physics)
 - * Unit-IV: 6.1, 6.3-6.7, 6.9-6.11, 7.4-7.7

Books for References:

- 1. S.L.Kakani, C.Hemarajani, S.Kakani, Mechanics, IIIedition, VivaBooks Ltd, NewDelhi, 2011.
- 2. HalidayResnic,JearlWalker,**PrinciplesofPhysics**,9thEdition,WileyIndia Pvt.Ltd, New Delhi, 2012.
- 3. D.S.Mathur, Mechanics, S.Chandand Co., New Delhi, 2008
- 4. Brijlaland N.Subramanyam, **Propertiesofmatter**, S.Chandand Co., New Delhi, 2004
- 5. BrijlalandN.Subramanyam, HeatandThermodynamics, S.Chandand Co, New Delhi, 2004.

Web Resources:

- 1. https://latestcontents.com/bsc-physics-mechanics-notes/
- 2. www.khanacademy.org/science/physics/elasticity/surface tension
- 3. https://www.askiitians.com/revision-notes/physics/kinetic-theory-of-gases/
- 4. https://www.askiitians.com/revision-notes/physics/thermodynamics/

Cours	e Outcomes	K Level
After	successful completion of the course, the student is expected to	
CO1:	Understand the concepts of Newton's law of Gravitation, different modulus of elasticity, mean free path, degrees of freedom, laws of thermodynamics and stationary waves	K2
CO2:	Define centripetal and centrifugal force, angular velocity, moment of inertia, elasticity, Poisson's ratio, bending of beams, Bernouli's theorem, Transport Phenomena, mono and diatomic gases, S.H.M, properties of Ultrasonic waves	К3
CO3:	Apply torque, angular momentum, expression for bending moment, couple per unit twist, Bernouli's theorem, Boltzmann's law of equipartition of energy, change of entropy in conversion of ice to steam, applications of Ultrasonic waves	К3
CO4:	Analyze parallel and perpendicular axis theorem, Boy's method for G, determine and analyze uniform and non-uniform bending, Poiseuille's formula to find the coefficient viscosity of liquid	K4
CO5:	Analyze the change of entropy in Carnot's cycle, Kundt's tube and Piezo electric method for the production of Ultrasonic waves, Melde's experiment for the frequency of tuning fork	K 4

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	2	2	2
CO 2	3	2	1	2	2	2
CO 3	3	2	2	2	2	2
CO 4	3	2	2	1	2	2
CO 5	2	2	1	1	2	2

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	ALLIEDPHYSICS–I Mechanics, Properties of Matter, Heat and Sound	Hrs	Pedagogy
I	Mechanics Torque – Angular momentum –Moment of Inertia –Perpendicular and Parallel axes theorem - Kepler'slawsofplanetarymotion-Newton'slawsofgravitation–Massanddensityof Earth–Boy's method for G–Compound pendulum-Expression for period-Experiment to find "g"	13	Lecture method, PPT, Demonstration
п	Elasticity Different moduli of Elasticity-Poisson's ratio—Bending of beams— Expression for bending moment—Determination of Young's modulus by uniform and non uniform bending — Torsion— Expression for couple per unit twist — Workdone in twisting Torsional oscillations of a body - Workdone in twisting—Rigidity modulus by torsion pendulum	12	Lecture method, PPT, Demonstration
III	Viscosity Viscosity - Derivation of Poiseuille's formula - coefficient of viscosity of a liquid by Poiseuille's method - Equation of continuity - Bernoulli's theorem - derivation - Applications of Bernoulli's theorem (Venturimeter and Pitot tube)	11	Lecture method, PPT, Model
IV	Heat Kinetic theory of gases – Mean free path – Transport phenomena – Expression for the coefficient of Diffusion, viscosity and thermal conductivity – Degree of freedom – Boltzman's law of equipartition of energy – calculation of Y for mono atomic and diatomic gases - Thermodynamics – First and second laws of thermodynamics (statement only) – Entropy – change of entropy in Carnot's cycle – Change of entropy in conversion of ice into stream	12	Lecture method, PPT
V	Sound Simple harmonic motion — Composition of two S.H.M's of equal time periods at right angles - Stationary waves — Properties of stationary waves — Melde's experiment for the frequency of electrically maintained tuning fork (Ttransverse and Longitudinal modes) - Ultrasonics — Production — Piezo electric method — Detection — Kundt's tube and Piezo electric - Properties — Applications	12	Lecture method, PPT

Course Designed by: 1. Mrs.A.Lakshmi, 2. Dr.S.S.Jayabalakrishnan

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

Inter		K -		Section A		Secti	on B	(Eith	on C er or oice)		on D Choice)
nal	COs	Le	Unit	MCQs		Short A	nswers	No.		No.	
nai		vel		No. of. Questions	K - Level	No. of. Questio ns	K - Level	of. Quest ions	K - Level	of. Quest ions	K - Level
CI	CO1	K1	I	2	K1 & K2	1	K1	2	K2	1	K2
AI	to CO5	to K4	II	2	K1 & K2	2	K2	2	К3	2	К3
CI	CO1	K1	III	2	K1 & K2	1	K2	2	К3	1	К3
AII	to CO5	to K4	IV	2	K1 & K2	2	K2	2	K4	2	K4
		No. of Questions to be asked No. of Questions to be answered		4		3		4 3		3	
_	stion			4		3		2		2	
Pattern CIA I & II		Marks for each question		1		2		5		10	
		Mai e	otal ks for ach ction	4		6		1	10		0

		Dist	ribution of 1	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2			4	6.7	50
	K2	2	4	10	10	26	43.3	50
CIA	К3			10	20	30	50.0	50
T	K4							-
1	Marks	4	6	20	30	60	100	100
	K1	2	2			4	6.7	16.7
	K2	2	4			6	10.0	10.7
CIA	К3			10	10	20	33.3	33.3
II	K4			10	20	30	50.0	50
	Marks	4	6	20	30	60	100	100

- K1- Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

<u>UNIT-V</u> will be allotted for individual Assignment in <u>CO5 - K4</u> level which carries five marks as part of CIA component.

Summa	ative Ex	aminatio	on – Blu	e Print A	rticulati	on Mapp	ing – K	Level wit	h Course	Outcom	es (COs)
C No	CO	К-	I Init	MOQs		Short A	answers	Section C (Either / or Choice)		Section D (Open Choice)	
S.No.	COs	Level	Unit	No.of Ques tions	K – Level	No.of Quest ions	K – Level	No.of Quest ions	K – Level	No.of Quest ions	K – Level
1	CO1 - CO5	K1 to K4	I	2	K1 & K2	1	K1	2	K2 & K2	1	K2
2	CO1 - CO5	K1 to K4	II	2	K1 & K2	1	K1	2	K3 & K3	1	К3
3	CO1 - CO5	K1 to K4	III	2	K1 & K2	1	K2	2	K3 & K3	1	К3
4	CO1 - CO5	K1 to K4	IV	2	K1 &K2	1	K2	2	K4 & K4	1	K4
5	CO1 - CO5	K1 to K4	v	2	K1 & K2	1	K2	2	K4 & K4	1	K4
No. of	Questio	ns to be	Asked	10		5		1	0		5
		stions to		10		5		4	5	3	
		ach quest		1		2			5	10	
Total 1	Marks fo	or each se	ection	10		10		2	5	30	

		D	istribution of	Marks with	K Level		
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4			9	12	47
K2	5	6	10	10	31	34.66	47
K3			20	20	40	27	27
K4			20	20	40	26.66	26
Marks	10	10	50	50	120	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	oice Questions)
Answe	r All Q	uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
Answe	r All Q	uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section	C (Eit	her/Or Ty	(pe)
	r All Q	uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	К3	
18) b	CO3	K3	
19) a	CO4	K4	
19) b	CO4	K4	
20) a	CO5	K4	
20) b	CO5	K4	
	_	-	formance of the students is to be assessed by attempting higher
level of			
	_	en Choice	
		Three ques	
Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO ₄	K3	
24	CO4	K4	
25	CO5	K4	

(For those who joined in 2021-2022 and after)

Course Name	ALLIED PHYSICS PRACT	ICAL - I						
Course Code	21UPHAP1			L	P	(
Category	Allied			-	2	_		
Nature of cours	se:EMPLOYABILITY SK	ILL ORIENTED 🗸	ENTREPREN	EURS	HIP			
Course Object	ives:		•					
The learners wi	ll be able:							
1. To gain know	vledge about the experiments be	ased on Optics, Electr	icity and Electron	nics				
2. To demonstra	ate modulus of elasticity							
	d the bending of beam, forward		frequency respon	ice				
	d current conduction in electric							
	ut transistor amplifier, oscillato							
LIS	ST OF EXPERIMENTS (Any	Fourteen Experiment	as)					
1 Uniform bending - (Pin & Microscope)								
2. Torsion Pend			of Rigidity modu	ılus ar	nd M.	I		
	ductivity of Bad conductor	- Lee's disc						
4. Sonometer		 Verification of 	flaws					
	f low range Voltmeter	- Potentiometer						
6. Carey Foster	_	- Resistance & resistivity of a wire.						
7. Spectrometer		- Refractive ind						
8Mirror Galva			arrent sensitivene	ess				
9.LCR – Series	resonance	- Determination						
10.Air wedge		- Thickness of a	wire					
	y λ Normal incidence	 Spectrometer 						
	transistor amplifier	- CE mode						
13.Hartley oscil		- Determination of						
	– NAND and NOR	 Using Discrete 						
15.Zener diode		- Forward & Rev		ics				
16.OP AMP		- Adder and Subt	ractor tal Practical Ho					
					30 H	_		

2. Srinivasan.M.N.,Balasubramanian.S.,Ranganathan.R., **A Text Book of Practical Physics,** 2017 Edition Sultan Chand & Sons

Books for References:

- 1. Ouseph.C., Practical Physics and Electronics, 2013. S. Viswanathan. P. Ltd
- **2.** Practical Physics and Electronics, C.C.Ouseph, U.J.Rao, V.Vijayendran, S.Viswanathan Publishers(2007)

Web Resources:

- 1. https://nptel.ac.in/course.html/physics/experimental physics I, II and III
- 2. https://nptel.ac.in/courses/115/105/115105110/
- 3. https://www.youtube.com/playlist?list=PLuiPz6iU5SQ8-rZn LgLofRX7n8z4tHYK

Course	e Outcomes	K Level
On suc	ccessful completion of the course, the learners should be able to	
	Understand and evaluate the Young's modulus and Rigidity modulus of the	
CO1:	given material, the ways to calibrate a low range voltmeter using	K4
	potentiometer	
CO2:	Acquire the knowledge of the characteristics of an operational amplifier	К3
CO3:	Apply the basic principles of optics to determine the thickness of a wire	K4
CO4:	Analyze the electrical parameters like resistance and resistivity using Carrey	K4
CO4:	Foster bridge and characteristics of Zener diode	N 4
CO5:	Construct Amplifier and Oscillator	K4

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	3	3	2
CO 2	2	2	2	2	5	2
CO 3	3	3	3	3	3	3
CO 4	3	3	3	3	3	2
CO 5	3	2	2	3	3	3

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Semester	Allied Physics Practical - I	Hrs	Pedagogy
	1. Uniform bending - Pin & Microscope		
	2. Torsion Pendulum - Determination of Rigidity modulus and		
	M.I		
	3. Thermal conductivity of Bad conductor - Lee's disc		
I	4. Sonometer - Verification of laws	30	Demonstration
	5. Calibration of low range Voltmeter - Potentiometer		
	6. LCR – Series resonance - Determination of L & Q factor		
	7. Logic gates – NAND and NOR - (Discrete Components).		
	8. Zener diode - Forward & Reverse Characteristics		
		ĺ	

Course Designed by: 1. Mrs.A.Lakshmi, 2. Dr.R.Sangeetha

(For those who joined in 2021-2022 and after)

Course Name	COSMETIC CHEMISTRY				
Course Code	21UCHS11		L	P	C
Category	Skill		2	_	2
Nature of cour	se: EMPLOYABILITY SKILL ORIENTED	ENTREPRE	NEUF	RSHIE	• 🗸
Course Object	ives:				
To Recall 1	he basic properties of soap and detergents and also in	gredients on too	th pas	stes.	
	ber the preparations of hair care products.	8	F		
	re the consumer products with their compositions.				
	e the composition and physical properties of milk prod	ducts.			
	ine the adulterants in food materials and first aid and		oned	persor	1S.
	OSMETICS I	united to Fore	01100	-	06
	tions: Tooth pastes- ingredients, their characteristics	s and functions.	Mou		
-	only). Soap and Detergents: Manufacture of Soap and				
-	s of Detergents as waste water in water resources.	\mathcal{E}	•		
	OSMETICS II			(06
Hair care prepa	rations: shampoo; different types and formulations, M	Ioisturizing crea	ıms, p	erfum	es,
Lip sticks, shav	ring creams, after shave preparations. (Composition a	nd applications t	for the	e abov	e).
Unit: III CO	ONSUMER PRODUCTS			(06
Consumer Proc	lucts: Composition and Uses of Safety Matches, Aga	rbattis, Naphtha	lene I	Balls, '	Wax
candles, shoe p	olish, Gum, Ink, Chalk crayons.				
Unit: IV SU	IGAR			()6
Preparation of	bagasse-use of bagasse for the manufacture of pape	r and electricity	- prep	aratio	n of
alcohol from m	olasses-preparation of absolute alcohol-manufacture	of wine, beer, n	nethyl	lated s	piri
power alcoho	l.				
Unit: V FO	OOD ADULTERATION			()6
	tion - Contamination of wheat, rice, dhal, milk, butte				
	nicals (e.g., Kasseri dhal with mentanil yellow).				
	hrotoxins), pesticides (DDT, BHC, Follidol), chemic	al poisons (KCN	N). Fi	rst aid	anc
Antidotes for p	oisoned persons.				
		Total Lecture	Hour	s 30	Hrs
Books for Stud	· ·				
	K., Industrial Chemistry, Meerut: GOEL Publishing				
2. Poucher, V	V.A. Perfumes, Cosmetics and soaps, Vol. III, Modern	n Cosmetics. Sin	nons,	J.V.	

- 2. Poucher, W.A. Perfumes, Cosmetics and soaps, Vol. III, Modern Cosmetics. Simons, J.V. Chemistry and the beauty business, 2018.
- **3.** K.S. Rangappa and K.T Acharya, Indian Dairy products, Asia Publishing House, New Delhi, 1975.
- 4. Chopra H.K, Panesar, P.S, "Food Chemistry" Narosa Publishing House, New Delhi, 2010.

Books for Reference:

- 1. R.V.Shreve, Industrial Chemical Process, Tata McGraw Hill publishing company, 2005, Mumbai.
- 2. Mohan Malhotra, Latest Cottage Industries, 20th Edition Edn, Vishal publishers, 1980, Meerut.
- 3. Robert Jenness and S. Patom, Principles of dairy chemistry, Wiley, New York.

Web R	Resources:	
1. <u>http</u>	os://bit.ly/3rVPCex	
2. <u>httr</u>	os://bit.ly/38OFFI8	
Course	e Outcomes:	K Level
On th	e completion of the course the student will be able to	
CO1:	Relate the characteristics of tooth pastes, hair care products.	[Up to K2]
CO2:	Understand the concepts of manufacture of soaps, detergents, hair care and	[Up to K3]
CO2.	consumer products.	
CO3:	Compare the milk and sugar products on their composition.	[Up to K3]
CO4:	Correlate the consumer products, sugar and food adulteration.	[Up to K4]
CO5:	Construct the characteristics and understand the consumer products	[Up to K4]

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	2	3	1	3	2	1		
Weightage	11	10	9	11	9	11		

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COSMETIC CHEMISTRY	Hrs	Mode
I	COSMETICS I Dental Preparations: Tooth pastes- ingredients, their characteristics and functions. Mouth washes (Composition only). Soap and Detergents: Manufacture of Soap and Detergents. Cleansing action of Soap. Problems of Detergents as waste water in water resources.	06	Chalk & Talk, Power Point
II	COSMETICS II Hair care preparations: shampoo; different types and formulations, Moisturizing creams, perfumes, Lip sticks, shaving creams, after shave preparations. (Composition and applications for the above).	06	Chalk & Talk, Power Point
III	CONSUMER PRODUCTS Consumer Products: Composition and Uses of Safety Matches, Agarbattis, Naphthalene Balls, Wax candles, shoe polish, Gum, Ink, Chalk crayons.	06	Chalk & Talk, Power Point
IV	SUGAR Preparation of bagasse-use of bagasse for the manufacture of paper and electricity- preparation of alcohol from molasses-preparation of absolute alcohol-manufacture of wine, beer, methylated spirit – power alcohol.		Chalk & Talk, Power Point
V	FOOD ADULTERATION Food adulteration - Contamination of wheat, rice, dhal, milk, butter, with clay, sand, stone, water and toxic chemicals (e.g., Kasseri dhal with mentanil yellow). Food poisons: natural poisons (alkaloids, nephrotoxins), pesticides (DDT, BHC, Follidol), chemical poisons (KCN). First aid and Antidotes for poisoned persons.		Chalk & Talk, Power Point

Course Designed by: Dr. J.E. Sangeetha & Dr. R. Satheesh

(For those who joined in 2021-2022 and after)

Course Name	GREEN CHEMISTRY			
Course Code	21UCHS12	L	P	C
Category	Skill	2	-	2
Nature of Course	e: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTRE	PRENEUI	RSHII	
Course Objectiv	ves:			•
 To Recol 	lect the green environment and basic definition for green chemistr	y.		
 To Reme 	ember the twelve principles of green chemistry and examples.			
 To Comp 	pare the concept of yield and its calculation on atom economy.			
 To Execu 	ite the concept of selectivity, types of selectivity and reactions using	ng green s	olven	ts.
• To Deter	mine the basic concepts in designing green synthesis and choice of	starting ı	nateri	als.
Unit: I INT	RODUCTION			6
	reen Chemistry, Need for Green Chemistry- Goals of Green Chem			
	Green chemistry, Progress of Green Chemistry- Twelve principles	of Green	Chen	nistry
and Examples.			ı	
	LD AND ATOM ECONOMY			6
	d and its calculation, Atom economy - Definition, Calculation of	of Atom e	conoi	ny in
	addition, substitution and elimination reactions.			
	LECTIVITY IN GREEN CHEMISTRY			6
	ectivity, Types of selectivity -Chemo-, regio-, enantio- and of			
	Green solvents - Super critical CO ₂ - Cleaner technology with	$1 \text{ CO}_2.\text{Ior}$	nic lic	quids-
	action, halogenation & Diels- Alder reaction. and water.			
	LVENT FREE REACTIONS	1		6
	is in solid state-Thermal reactions, rearrangements &photochemically migrayyaya and ultrasonia Advantages of MW tachniques. Page			
reduction & rear	y-microwave and ultrasonic-Advantages of MW techniques. Reac	tions like	OXIU	auon,
	SIGNING OF GREEN SYNTHESIS			6
	n designing Green synthesis - choice of starting materials, reagen	ts catalvs		
	n chemistry and solvents with suitable examples.	is, catarys	is cai	arytic
проден на дес	Total Lectur	e Hours	30	Hrs
Books for Study		· IIouis		
•	n Introduction to Green Chemistry" Vishal publishing Co. Reprint	Edition 2	010	
	ni, M.M Srivastava "Green Chemistry" Fourth Reprint - 2009			
Books for Refer	• • •			
1. V.K. Ahluw	alia and M.R. Kidwai, New Trends in Green Chemistry, Anamala	ya Publish	ers, 2	005.
2. P.T. Anasta	s, and J.K. Warner: Green Chemistry - Theory and Practical, Oxfo	ord Unive	rsity l	Press,
1998.				
Web Resources				
	voutube.com/watch?v=PUisOKB6sgA			
	youtube.com/watch?v=qNHW-Pi9c9g			
Course Outcom		K Level		
	tion of the course the student will be able to	Т		
CO1: List out	the twelve principles of Green Chemistry.	[]	J p to	K2]

CO2:	Understand the need for green chemistry and goals of Green Chemistry.	[Up to K3]
CO3:	Apply Green Chemistry principles to organic synthesis.	[Up to K3]
CO4:	Analyze the uses of Microwave and ultrasonic radiations to carry our reaction.	[Up to K4]
CO5:	Construct the basic concepts and twelve principles of Green Chemistry in designing green synthesis	[Up to K4]

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	2	1	2	3	3	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	2	3	
CO 4	3	1	2	2	1	2	
CO5	2	3	1	3	2	1	
Weightage	10	10	9	11	10	11	

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	GREEN CHEMISTRY	Hrs	Mode
I	INTRODUCTION Definition for Green Chemistry, Need for Green Chemistry- Goals of Green Chemistry – Obstacles and Advantages of Green chemistry, Progress of Green Chemistry- Twelve principles of Green Chemistry and Examples.	06	Chalk & Talk, Power Point
II	YIELD AND ATOM ECONOMY Concept of Yield and its calculation, Atom economy – Definition, Calculation of Atom economy in rearrangement, addition, substitution and elimination reactions.	06	Chalk & Talk, Power Point
III	SELECTIVITY IN GREEN CHEMISTRY Concept of selectivity, Types of selectivity -Chemo-, regio-, enantio- and diastereoselectivities, Reactions using Green solvents - Super critical CO ₂ - Cleaner technology with CO ₂ .Ionic liquids-Friedel-crafts reaction, halogenation &Diels- Alder reaction. and water.	06	Chalk & Talk, Power Point
IV	SOLVENT FREE REACTIONS Organic synthesis in solid state-Thermal reactions, rearrangements &photochemical reactions. Mode of supplying energy-microwave and ultrasonic-Advantages of MW techniques. Reactions like oxidation, reduction & rearrangements.		Chalk & Talk, Power Point
v	DESIGNING OF GREEN SYNTHESIS Basic concepts in designing Green synthesis - choice of starting materials, reagents, catalysts-catalytic approach in green chemistry and solvents with suitable examples.	06	Chalk & Talk, Power Point

Course Designed by: Dr. Ramasamy Raja & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

Course Name	0	ORGANIC CHEMISTRY – I									
Course Code	2	21UCHC21						P	C		
Category	C	Core						-	4		
Nature of course:		EMPLOYABILITY	✓	SKILL ORIENTED		ENTREPRENEURSHIP			✓		
Course Objectives:											

- To Recall the definition of hydrocarbons and classification of organic compounds.
- To Understand the preparation, properties of hydrocarbons, alcohols, ethers, aldehydes, ketones and carboxylic acids.
- To Classify the isomerism and determine the concept of stereoisomerisms.
- To Execute the concept of geometrical and optical isomerism.
- To Construct the preparation and properties of monosaccharides, disaccharides and polysaccharides.

Unit: I HYDROCARBONS

12

Hydrocarbons – Introduction – Definition and Classifications. **Alkanes** – Nomenclature - General methods of preparation and Chemical properties. **Alkenes** – Nomenclature – General methods of preparation – chemical properties – Electrophilic additions – Addition of hydrogen halide – Markownikov's rule – Antimarkovinkov's addition – Addition of H₂SO₄, H₂O, Halogen – Hydroboration – oxidation – ozonolysis – hydroxylation – polymerization. **Alkynes** – Nomenclature – General methods of preparation – physical and chemical properties – polymerization.

Unit: II | ALCOHOLS, ETHERS, THIOALCOHOLS AND THIOETHERS

12

Alcohols: Preparation by hydroboration; reduction of carbonyl compounds, acids and esters, by using Grignard reagents. Reaction with metals. Mechanism and reactivity towards HX, dehydration – rearrangement. Ascending and descending the alcohol series – estimation of number of hydroxyl groups. **Ethers**: Mechanism of Williamson's synthesis, mechanism of cleavage by HX, estimation of methoxy group by Zeisel method. Application of crown ethers. **Thioalcohols and thioethers**: Preparation and properties of sulphonal and mustard gas.

Unit: III | ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

12

Aldehydes and Ketones: Nomenclature and structure of carbonyl group – Preparation of Aldehydes and Ketones – Physical properties – Chemical reactions and uses of Aldehydes and Ketones. **Carboxylic Acids**: Nomenclature and structure of carboxyl group – Methods of preparation of Carboxylic acids – Physical properties – Chemical reactions and uses of Carboxylic acids.

Unit: IV | STEREO ISOMERISM

12

Geometrical isomerism: Definition – geometrical isomerism of maleic and fumaric acids – aldoximes and ketoximes – determination of configuration of geometric isomers – E, Z notations – stereo chemistry of addition of bromine to double bond. **Optical isomerism**: Optical activity – specific rotation – definition of optical isomerism – elements of symmetry - Optical isomerism of compounds containing asymmetric carbon atom – racemization and resolution of racemic mixtures – Walden inversion – asymmetric synthesis – chirality – specifications of absolute configuration by R and S notations. Optical activity of compounds without asymmetric carbon atoms, allenes, spiranes and bi phenyl compounds.

Unit: V | Carbohydrates:

12

Definition – classification – monosaccharides – properties and uses of glucose and fructose – configuration of glucose and fructose – Haworth structure – conversion of glucose to fructose and vice versa. **Disaccharides**: Preparation, properties, constitution and configuration of sucrose. **Poly saccharides**: A general study of starch and cellulose – uses of cellulose in industries.

Total Lecture Hours | 60 Hrs

Books for Study:

1. B. S Bahl and Arun Bahl S.Chand, Advanced Organic Chemistry Co Ltd, New Delhi, 2012.

Books for References:

- 1. B-Mehta and M.Mehta, Organic Chemistry E.E Edition, New Delhi, 2010.
- **2.** P.L Soni and H.M Chawla, Organic Chemistry, 29th Edition, Sultan Chand and sons, New Delhi, 2007.

Web Resources:

- 1. https://courses.lumenlearning.com/chemistryformajors/chapter/alcohols-and-ethers/
- 2. https://www.youtube.com/watch?v=_vq9T0htW0Y
- **3.** https://courses.lumenlearning.com/chemistryformajors/chapter/aldehydes-ketones-carboxylic-acids-and-esters-2/
- 4. https://www.youtube.com/watch?v=JxK5rZxbyQY

Cours	e Outcomes:	K Level				
On th	On the completion of the course the student will be able to					
CO1:	Identify the basic idea of organic compounds and carbohydrates.	[Up to K2]				
CO2:	Classify the hydrocarbons, alcohols, ethers and carbohydrates.	[Up to K3]				
CO3:	Determine the preparation of hydrocarbons, alcohols, ethers and the given carbonyl compounds.	[Up to K3]				
CO4:	Analyze the physical and chemical properties of hydrocarbons, alcohols, ethers and the given carbonyl compounds.	[Up to K4]				
CO5:	Construct the basic idea of preparation, properties of organic compounds and carbohydrates.	[Up to K4]				

CO & PO Mapping:

Course Outcomes			Programme O	utcomes (PC	Os)	
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	1	2	3	1	2
CO 2	1	3	1	1	2	3
CO 3	2	2	3	2	3	3
CO 4	3	1	2	2	1	2
CO5	2	3	1	3	2	1
Weightage	11	10	9	11	9	11

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	ORGANIC CHEMISTRY – I	Hrs	Mode
I	Hydrocarbons – Introduction – Definition and Classifications. Alkanes – Nomenclature - General methods of preparation and Chemical properties. Alkenes – Nomenclature – General methods of preparation – chemical properties – Electrophilic additions – Addition of hydrogen halide – Markownikov's rule – Antimarkovinkov's addition – Addition of H ₂ SO ₄ , H ₂ O, Halogen – Hydroboration – oxidation – ozonolysis – hydroxylation – polymerization. Alkynes – Nomenclature – General methods of preparation – physical and chemical properties – polymerization.	12	Chalk & Talk, Power Point
II	Alcohols: Preparation by hydroboration; reduction of carbonyl compounds, acids and esters, by using Grignard reagents. Reaction with metals. Mechanism and reactivity towards HX, dehydration – rearrangement. Ascending and descending the alcohol series – estimation of number of hydroxyl groups. Ethers: Mechanism of Williamson's synthesis, mechanism of cleavage by HX, estimation of methoxy group by Zeisel method. Application of crown ethers. Thioalcohols and thioethers: Preparation and properties of sulphonal and mustdard gas.	12	Chalk & Talk, Power Point
Ш	ALDEHYDES, KETONES AND CARBOXYLIC ACIDS Aldehydes and Ketones: Nomenclature and structure of carbonyl group — Preparation of Aldehydes and Ketones — Physical properties — Chemical reactions and uses of Aldehydes and Ketones. Carboxylic Acids: Nomenclature and structure of carboxyl group — Methods of preparation of Carboxylic acids — Physical properties — Chemical reactions and uses of Carboxylic acids.	12	Chalk & Talk, Power Point
IV	Geometrical isomerism: Definition – geometrical isomerism of maleic and fumaric acids – aldoximes and ketoximes – determination of configuration of geometric isomers – E, Z notations – stereo chemistry of addition of bromine to double bond. Optical isomerism: Optical activity – specific rotation – definition of optical isomerism – elements of symmetry – Optical isomerism of compounds containing asymmetric carbon atom – racemization and resolution of racemic mixtures – Walden inversion – asymmetric synthesis – chirality – specifications of absolute configuration by R and S notations. Optical activity of compounds without asymmetric	12	Chalk & Talk, Power Point

	carbon atoms, allenes, spiranes and bi phenyl compounds. Carbohydrates: Definition – classification – monosaccharides –		Chalk
V	properties and uses of glucose and fructose – configuration of glucose and fructose – Haworth structure – conversion of glucose to fructose and vice versa. Disaccharides : Preparation, properties, constitution and configuration of sucrose. Poly saccharides : A general study of starch and cellulose – uses of cellulose in industries.	12	& Talk, Power Point

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

		Learnin	g Outcome Ba	ased Edu	ication & As	sessmen	t (LOBE)				
	Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
			Section	A	Section	В	Section	Section			
Inte	Cos	K Level	MCQs		Short Ans	swers	Section C	Section D			
rnal	Cos	IX LEVEI	No. of.	K –	No. of.	K -	Either or	Open			
			Questions	Level	Questions	Level	Choice	Choice			
CI CO1		Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)			
AI	CO2	Up to K3	2	K1 & K2	2	K2	2 (K3&K3)	2(K2 & K3)			
CI	CO3	Up to K2	2	K1 & K2	1	K2	2 (K2&K2)	1(K2)			
AII	CO4	Up to K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)			
		No. of Questions to be asked	4		3		4	3			
Question Pattern CIA I & II		No. of Questions to be answered	4		3		2	2			
		Marks for each question	1		2		5	10			
		Total Marks for each section	4		6		10	20			

		Dist	ribution of	Marks with	K Level C	IA I & C	CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	6.67	67
	K2	2	4	10	20	36	60	07
CIA	К3	-	•	10	10	20	33.33	33
I	K4	•	•	ı	-	•	•	I
_	Marks	4	6	20	30	60	100	100
	K1	2	2	-	-	4	6.67	50
	K2	2	4	10	10	26	43.33	
CIA	К3	-	-	10	10	20	33.33	33
II	K4	-	-	-	10	10	16.67	17
	Marks	4	6	20	30	60	100	100

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
			MCC		Short An	swers	Section C	G 4' D		
S.No	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	Section D (Open Choice)		
1	CO1	Up to K 2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)		
2	CO2	Upto K 3	2	K1&K 2	1	K1	2 (K3&K3)	1(K3)		
3	CO3	Up to K 3	2	K1&K 2	1	K2	2 (K3&K3)	1(K3)		
4	CO4	Up to K 4	2	K1&K 2	1	K2	2 (K3&K3)	1(K4)		
5	CO5	Up to K 4	2	K1&K 2	1	K2	2 (K3&K3)	1(K4)		
No. of	Questions	s to be Asked	10		5		10	5		
No	o.of Questi answe		10		5		5	3		
Mai	rks for eac	h question	1		2		5	10		
Total	Marks for	each section	10		10		25	30		
	(Figures	in parenthesi	is denotes <mark>, q</mark> ı	iestions s	hould be asl	ked with	the given K	level)		

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K 1	5	4	-	•	9	7.5	22				
K2	5	6	10	10	31	25.83	33				
К3	-	-	40	20	60	50	50				
K4	-	-	-	20	20	16.67	17				
Marks	10	10	50	50	120	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	·
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO ₃	K3	
19) a	CO4	K3 K3	
19) b	CO4	K3	
20) a 20) b	CO5	K3	
			company of the students is to be assessed by attempting higher
level of			formance of the students is to be assessed by attempting higher
		en Choice	1
		Three ques	
Q.No	CO	K Level	Questions
21	CO1	K2	Vacanone
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	
	233		

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMIST (Inorganic Semi Mic		PRACTICAL – I – Qualitative Analysis)						
Course Code	21UCHCP1					L	P		C
Category	Core					-	2		2
Nature of Course:	EMPLOYABILITY	✓	SKILL ORIENTED	✓	ENTREPRE	NEU.	RSHI	P	✓

Course Objectives:

- Recall the basic properties of salt mixtures.
- Reminiscence the anionic and cationic species in the salt mixtures.
- Apply the concept of anionic and cationic species in semi micro qualitative analysis.
- Execute the confirmation test for the anions and cations present in the salt mixtures.
- Construct four radicals with correct procedure during analysis of the salt mixtures.

Duration of examination: 3hrs

Analysis of a mixture containing two anions of which one is an interfering in semimicro method two cations

Anions:

Carbonate, sulphate, nitrate, fluoride, chloride, bromide, iodide, oxalate, Borate, phosphate and chromate.

Cations: Lead, bismuth, copper, cadmium, antimony, iron (II and III), aluminium,

Chromium, zinc, manganese, cobalt, nickel, barium, calcium,

Magnesium and ammonium.

Distribution of marks
Max marks: 100

Internal : 40 marks External : 60 marks

Laboratory : 30 marks Vivo voce : 10 marks

Performance

Observation note book : 10 marks Record note book : 10 marks

Four radicals with : 40 marks

correct procedure

Total : 40 marks Total : 60 marks

Total Lecture Hours

30 Hrs

30

Books for Study:

1. Dr. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis, National Publishing Company, 3rd edition, Chennai, 1974.

Books for References:

1. Vogel, Text book of Qualitative Analysis including Semi Micro Methods, Longman Sc & Tech, 2008.

Web Resources:

- 1. https://www.youtube.com/watch?v=cEOvj6jkdDw
- 2. https://www.youtube.com/watch?v=T3hi_xEpaDg
- 3. https://www.youtube.com/watch?v=BK7rf4XE4f8
- 4. https://www.youtube.com/watch?v=QQo1e-BUZWs

Cours	e Outcomes:	K Level				
On th	On the completion of the course the student will be able to					
CO1:	Identify the basic radical and its group in the given salt mixture.	[Up to K2]				
CO2:	Understand the qualitative analysis skill of any given inorganic salt mixture.	[Up to K3]				
CO3:	Develop the acid radicals present in the given inorganic salt mixture.	[Up to K3]				
CO4:	Analyze the basic radical systematically.	[Up to K4]				
CO5:	Apply the four radicals with correct procedure during analysis of the salt mixtures	[Up to K4]				

CO & PO Mapping:

Course Outcomes			Programme O	utcomes (PC	Os)	
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	1	2	3	1	2
CO 2	1	3	1	1	2	3
CO 3	2	2	3	2	3	3
CO 4	3	1	2	2	1	2
CO5	2	3	1	3	2	1
Weightage	11	10	9	11	9	11

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	INORGANIC SEMI MICRO – QUALITATIVE ANALYSIS	Hrs	Mode
	Duration of examination : 3hrs Analysis of a mixture containing two anions of which one is an interfering in semi-micro method two cations		
I	Anions: Carbonate, sulphate, nitrate, fluoride, chloride, bromide, iodide, oxalate, Borate, phosphate and chromate.	30	Practical
	Cations: Lead, bismuth, copper, cadmium, antimony, iron (II and III), aluminium, Chromium, zinc, manganese, cobalt, nickel, barium, calcium, Magnesium and ammonium.		

Course Designed by: Dr. V. Ramasamy Raja & Dr. R. Satheesh

(For those who joined in 2021-2022 and after)

Course Name	ALLIED PHYSICS-II: (Electricity, Electronics, Optics and	nd Modern	Physi	ics)
Course Code	21UPHA21	L	P	C
Category	Allied	4	-	3
Nature of cours	se: EMPLOYABILITY SKILL ORIENTED ENTRE	PRENEURS	HIP	
Course Objecti				
The learners wil				
	d the laws of electricity			
	different types of diodes and transistors			
	imal and binary number system			
	d the various types of lenses, prism, aberrations, interference an	nd diffraction	n	
	d and apply the basic concepts of laser		1	
	ctricity		12	
	pression for C of a parallel plate capacitor – Energy of a charge	-		
	ng of charges between two capacitors- Kirchoff's laws – Appli			
	tone's network - Carey Foster Bridge - Measurement of resi	stance – Pri	ncipl	e of
Potentiometer –	Calibration of ammeter and voltmeter(low range only)		-	
	ctronics		12	
	orking of n-p-n transistor- Characteristics(CE mode only)			
	fier – Frequency response - Hartley oscillator –Modulation – T			
OPAMP and it	s characteristics - OPAMP as adder and subtractor- Logic	c circuits –	Bool	lean
algebra – De M	organ's theorem – OR, AND, NOR, NOT, NAND gates			
Unit: III Geo	ometrical Optics		12	2
Deviation produ	aced by thin lens – Focal length of two thin lenses in and out of	f contact – R	efrac	tion
through a thin p	orism – Dispersion – Dispersive power – Combination of thin	prisms to pr	oduce	(a)
Deviation without	out dispersion and (b) Dispersion without deviation – Direct v	vision spectr	oscop	pe –
	ration in lenses – Spherical aberration in lenses – Theory of pr	rimary and s	econo	lary
rainbows.				
	ysical Optics		12	
Interference in	thin films - air wedge - Newton's rings (reflected beam only) – Determi	natio	n of
wavelength -]	Diffraction - Theory of plane transmission grating (norma	ıl incidence	only	7) –
Experiment to d	letermine wavelengths - Double refraction - Nicol prism - Con	nstruction, a	ction	and
uses – Quarter	wave plate (QWP) - Half wave plate (HWP) - Optical act	ivity – Biot	's law	vs –
Specific rotator	y power – Laurent's Half shade polarimeter – Determination	of specific	rota	tory
power				
Unit: V Las	sers		12	
Introduction of	Lasers-Spontaneous and stimulated emission-Population Invers	sion-E instei i	ı's A	and
B coefficients-	derivation. Types of lasers-Nd:YAG,CO ₂ ,Semiconductor	lasers-Indus	trial	and
Medical Application	ations.			
	Total Lectu	ire Hours	60 H	rs
Books for Stud	y:			
1. R M	furugesan, Electricity and Electronics, Madurai, First Edition,	July 2016		
I. IX. IV.	in a second processing and freetromes, maderal, this Edition,	July 2010.		

Unit – I : 1.5,1.6, 1.9-1.14, 1.18,1.19,2.1,2.3-2.7

Unit – II: 4.1,4.2,4.4,4.5.4.6,4.10-4.12,4.14-4.18,4.24,4.25, 5.1-5.7,5.9-14,5.16

2. R.Murugeshan, **Optics Spectroscopy and Modern Physics**, Madurai, First Edition, July 2016.

Unit – IIII: 1.1-1.3,1.5-1.11,1.13,1.17,1.23,1.24

Unit – IV: 2.1,2.2,2.4-2.6,2.9,2.10,3.1,3.2,3.4,3.5-3.10

3. P.Mani, A Text book of Engineering Physics, 12th edition, , Dhanam Publications, Chennai

Unit -V: 7.1 - 7.45

Books for References:

- 1. Kakaniand Bhandari Sultan ,**Optics and Spectroscopy**, Chand and Sons,New Delhi,2004.
- 2.Brijlaland Subramanyam., A Text book of Optics, S. Chandand Co, New Delhi, 2004.
- 3. B.K.Sharma, Spectroscopy, GOEL Publishing House, Meerut, 2006.
- 4. NarayanamoorthyandNagarathinam, Electricity and Magnetism, National Publishing Co,

Web Resources:

- 1. https://www.youtube.com/watch?v=ML7HcZo6IaE
- 2. https://www.khanacademy.org/science/physics/light-waves/introduction-to-light-
- 3. waves/v/polarization-of-light-linear-and-circular

Course	e Outcomes	K Level
After s	uccessful completion of the course, the student is expected to	
CO1:	Remember principle of capacitors, Kirchhoff's laws, forward and reverse bias, frequency response, modulation, focal length, dispersive power, cordinal points, double refraction, Biot's law, Principals of Laser.	K2
CO2:	Understand energy of a capacitor, principle of potentiometer, diode characteristics, working of npn transistor, logic circuits, basics of types of laser.	К3
CO3 :	Apply Kirchhoff's laws, Boolean algebra, Refraction through a prism, Einstein's coefficients	К3
CO4:	Calibration of ammeter and voltmeter, OP AMP as an adder and subtractor, logic gates, deviation without dispersion ,dispersion without deviation, Q.W.P, H.W.P, Applications of lacer.	K4
CO5:	Examine parallel plate capacitor, Cary Foster bridge, transistor characteristics CE mode, frequency of Hartley oscillator, Specific rotatory power, Nd:YAG,CO ₂ ,Semiconductor lasers	K4

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	2	2	2
CO 2	3	2	1	2	2	2
CO 3	3	2	2	2	2	2
CO 4	3	2	2	1	2	2
CO 5	2	2	1	1	2	2

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

<u>LESSON PLAN – ALLIED PHYSICS - II</u>

Unit	Electricity, Electronics , Optics and Modern Physics	Hrs	Pedagogy
I	Electricity Capacitors – Expression for C of a parallel plate capacitor – Energy of a charged capacitor – Loss of energy on sharing of charges between two capacitors- Kirchoff's laws – Application of Kirchhoff's laws to Wheatstone's network – Carey Foster Bridge – Measurement of resistance – Principle of Potentiometer – Calibration of ammeter and voltmeter (low range only)	13	Lecture method, PPT, Demonstration
II	Electronics Transistor –Working of n-p-n transistor – Characteristics(CE mode only) –Common - Emitter transistor amplifier – Frequency response - Hartley oscillator –Modulation – Types of Modulation - OPAMP and its characteristics – OPAMP as adder and subtractor—Logic circuits – Boolean algebra – De Morgan's theorem – OR, AND, NOR, NOT, NAND gates	12	Lecture method, PPT, Demonstration
III	Geometrical Optics Deviation produced by thin lens – Focal length of two thin lenses in and out of contact – Refraction through a thin prism – Dispersion – Dispersive power – Combination of thin prisms to produce (a) Deviation without dispersion and (b) Dispersion without deviation – Direct vision spectroscope – Chromatic aberration in lenses – Spherical aberration in lenses – Theory of primary and secondary rainbows.	11	Lecture method, PPT, Model
IV	Physical Optics Interference in thin films – air wedge – Newton's rings (reflected beam only) – Determination of wavelength – Diffraction – Theory of plane transmission grating (normal incidence only) – Experiment to determine wavelengths - Double refraction – Nicol prism – Construction, action and uses – Quarter wave plate (QWP) – Half wave plate (HWP) – Optical activity – Biot's laws – Specific rotatory power – Laurente' Half shade polarimeter – Determination of specific rotatory power	12	Lecture method, PPT
V	Lasers Introduction of Lasers-Spontaneous and stimulated emission-Population Inversion-Einstein's A and B coefficients-derivation. Types of lasers-Nd:YAG,CO ₂ ,Semiconductor lasers-Industrial and Medical Applications.	12	Lecture method, PPT

Course Designed by: 1. Mrs.A.Lakshmi, 2. Dr.R.Sangeetha

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

Inte		K		Sectio	n A	Sectio	n B	(Eith	on C er or oice)	Section D (Open Choice)		
rnal	COs	Le	Unit	MC	Qs	Short Ar	swers	No.		No.		
Thai		vel		No. of. Questions	K - Level	No. of. Question	K - Level	of. Ques tions	K - Level	of. Ques tions	K - Level	
CI	CO1	K1	Ι	2	K1&K2	1	K 1	2	K2	1	K2	
AI	to CO5	to K4	II	2	K1&K2	2	K2	2	К3	2	К3	
CI	CO1	K1	III	2	K1&K2	1	K2	2	K3	1	K3	
AII	to CO5	to K4	IV	2	K1&K2	2	K2	2	K4	2	K4	
		No. of Questions to be asked		4		3		4		3	3	
_	stion tern	No. of Questions to be answered		4		3			2		2	
CIA	CIA I & II		Marks for each 1 question		2		5		10			
		Mar e	otal ks for ach ction	4		6		1	0	20		

		Dist	ribution of	Marks with	K Level C	IA I & (CIA II	
	K (Multiple Choice Questions)		Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2			4	6.7	50
	K2	2	4	10	10	26	43.3	30
CIA	К3			10	20	30	50.0	50
T	K4							-
1	Marks	4	6	20	30	60	100	100
	K1	2	2			4	6.7	16.7
	K2	2	4			6	10.0	10.7
CIA	К3			10	10	20	33.3	33.3
II	K4			10	20	30	50.0	50
	Marks	4	6	20	30	60	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

<u>UNIT-V</u> will be allotted for individual Assignment in <u>CO5 - K4</u> level which carries five marks as part of CIA component.

Sı	ummati	ive Exan	ninatio	n – Blue		rticulati mes (CC	_	ping – I	K Level	with Cou	irse
S.No.	COa	К-	IIn:t	MO		Short Answers		(Eith	on C er / or oice)	Section D (Open Choice)	
5.110.	COs	Level	Unit	No.of Ques tions	K – Level	No.of Ques tions	K – Level	No.of Ques tions	K – Level	No.of Ques tions	K – Level
1	CO1 - CO5	K1 to K4	I	2	K1 & K2	1	K1	2	K2 & K2	1	K2
2	CO1 - CO5	K1 to K4	II	2	K1 & K2	1	K1	2	K3 & K3	1	К3
3	CO1 - CO5	K1 to K4	III	2	K1 & K2	1	K2	2	K3 & K3	1	К3
4	CO1 - CO5	K1 to K4	IV	2	K1 &K2	1	K2	2	K4 & K4	1	K4
5	CO1 - CO5	K1 to K4	V	2	K1 & K2	1	1 1 K7 1 7 1		K4 & K4	1	K4
No. of	Questio	ns to be	Asked	10		5		1	10 5		5
No.	No. of Questions to be answered			10		5		5		3	
Marl	ks for ea	ach ques	tion	1		2		5		10	
Total N	Aarks fo	or each s	ection	10		10		2	5		30

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Iultiple (Short Answer Section C (Either/ or Choice) Choice Choice		Total Marks	% of (Marks without choice)	Consolidated %						
K1	5	4			9	12	47					
K2	5	6	10	10	31	34.66	47					
К3			20	20	40	27	27					
K4			20	20	40	26.66	26					
Marks	10	10	50	50	120	100	100					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	oice Questions)
Answei		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
Answei	r All Q	uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	_
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a			
16) b			
17) a			
17) b			
18) a			
18) b			
19) a			
19) b			
20) a			
20) b		1 6 6	
NB: Hi			formance of the students is to be assessed by attempting higher
		en Choice	<u> </u>
	_	Three ques	
Q.No	CO	K Level	Ouestions (3x10=30 marks)
21		A Level	Questions
22			
23			
24			
25			

(For those who joined in 2021-2022 and after)										
Course Name	A]	LLIED P	HYSICS PI	RA(CTICAL - I					
Course Code	21	UPHAP1	1					L	P	C
Category	Al	lied						-	2	1
Nature of cour	se:	e: EMPLOYABILITY SKILL ORIENTED ENTREPRENI							HIP	
Course Objectives:										
The learners wi	11 t	e able:								
1. To gain know	vle	dge about	the experim	ents	s based on Optics, Elec	tric	ity and Electr	onics		
2. To demonstr	ate	modulus	of elasticity		-		•			
					ard and reverse biasing	g, fr	equency resp	once		
4. To understan										
5. To learn about	ut t	ransistor	amplifier, os	cilla	ator and Operational an	npli	fier			
			ERIMENT	S (A	any Fourteen Experime	nts))			
1. Uniform ben					- (Pin & Micro					
2. Torsion Pend					- Determination	n o	f Rigidity mo	dulus ar	id M.	[
3. Thermal con	duc	ctivity of 1	Bad conduct	or	- Lee's disc					
4. Sonometer					- Verification		aws			
5. Calibration of		-	Voltmeter		- Potentiomete					
6. Carey Foster		ridge			- Resistance &		•	wire.		
7. Spectrometer					- Refractive in					
8Mirror Galva					- Voltage and					
9.LCR – Series	res	sonance			- Determination			r		
10.Air wedge		Normal:	maidamaa		- Thickness of	a w	rire			
11. Grating N by	•				SpectrometerCE mode					
12. Single stage			принег			of	fraguanav			
13. Hartley osci			4 NOD		- Determination					
14.Logic gates 15.Zener diode	— I V	MAND and	u NOK		Using DiscretForward & Re			ictics		
13.Zener diode					- roiwaid & Re	vei	se Characteri	isues		

Books for Study:

16.OP AMP

1. Srinivasan.M.N., Balasubramanian.S., Ranganathan.R., A Text Book of Practical Physics, 2017 Edition Sultan Chand & Sons

- Adder and Subtractor

Books for References:

- 3. Ouseph.C., Practical Physics and Electronics, 2013. S. Viswanathan. P. Ltd
- 4. Practical Physics and Electronics, C.C.Ouseph, U.J.Rao, V.Vijayendran, S.Viswanathan Publishers(2007)

Web Resources:

- 1. https://nptel.ac.in/course.html/physics/experimental physics I, II and III
- 2. https://nptel.ac.in/courses/115/105/115105110/
- 3. https://www.youtube.com/playlist?list=PLuiPz6iU5SQ8-rZn_LgLofRX7n8z4tHYK

Total Practical Hours | 30 Hrs

Course	e Outcomes	K Level				
On suc	On successful completion of the course, the learners should be able to					
	Understand and evaluate the Young's modulus and Rigidity modulus of the					
CO1:	given material, the ways to calibrate a low range voltmeter using	K4				
	potentiometer					
CO2:	Acquire the knowledge of the characteristics of an operational amplifier	К3				
CO3:	Apply the basic principles of optics to determine the thickness of a wire	K4				
CO4:	Analyze the electrical parameters like resistance and resistivity using Carrey	K4				
CO4:	Foster bridge and characteristics of Zener diode	N 4				
CO5:	Construct Amplifier and Oscillator	K 4				

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	1	2	2
CO 2	3	2	2	1	2	2
CO 3	3	2	2	1	2	2
CO 4	3	2	2	1	2	2
CO 5	3	2	2	1	2	2

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level <u>LESSON PLAN</u>

Semester **Allied Physics Practical - I** Hrs Pedagogy 1. Carey Foster Bridge - Resistance & resistivity of a wire. 2. Spectrometer - Refractive index of a Prism 3. Mirror Galvanometer - Voltage and current sensitiveness 4. Air wedge - Thickness of a wire II **30** Demonstration 5. Grating N by λ Normal incidence - Spectrometer 6. Single stage transistor amplifier - CE mode 7. Hartley oscillator - Determination of frequency 8. OP AMP - Adder and Subtractor

Course Designed by: 1. Mrs.A.Lakshmi, 2. Dr.R.Sangeetha

(For those who joined in 2021-2022 and after)

Course Na	me D	AIRY CHEMISTRY							
Course Co	Course Code 21UCHS21 I						L	P	C
Category	Skill 2							-	2
Nature of c	ourse:	EMPLOYABILITY		SKILL ORIENTED	✓	ENTREPRENE	EURS	HIP	✓
Course Ob	jective	s:							•
		ne composition of milk a	-	•					
		the major milk products							
	-	e special milk and ferme		_	ingre	dients			
		types of milk products							
• To Dete		the composition of milk	proc	ducts and their physical	prop	erties.			
		POSITION OF MILK				C '11 1' '1			
Unit: I		- definition – general co						6	
		ns, carbohydrate,vitaming, odour, acidity, specific					_		
		CESSING OF MILK	, gra	ivity, viscosity and con	uucu	vity.			
			ction	of microorganisms	in m	ilk – nhvsico -	_		
Unit: II		ficrobiology milk – destruction of microorganisms in milk – physico – hemical changes taking place in milk due to processing – boiling,							
Cint. II		asteurization – types of pasteurization –Vacuum pasteurization – Ultra High							
		erature Pasteurization.		auton y wowan p wate		1011 011111 11161	-		
		OR MILK PRODUCTS	5						
	Cream	Cream – definition – composition – chemistry of creaming process –							
Unit: III	gravita	ravitational and centrifugal methods of separation cream – estimation of fat in							
	cream	eam. Butter – definition -estimation of acidity and moisture content in butter.							
		Ghee – major constituents – common adulterants added to ghee.							
		IAL MILK							
Unit: IV		Standardised milk – definition – merits – reconstituted milk –definition – flow liagram of manufacture – Homogenised milk – flavoured milk –condensed							
					ured	milk –condensed	1		
		- definition composition IENTED AND OTHE							
					ndiger	neous products	_		
		Fermentation of milk – definition, condition- Indigeneous products— Gulabjamun, chana sweet, Rasogolla. Ice cream – definition – percentage							
Unit: V	composition types – Ingredients – manufacture of ice-cream -milk powder –								
C 11100 V	_	definition – need for making milk powder.							
		to a pasteurization fact		•	ny ai	nd submission o	f		
	a repo	ort.		•					
					Tota	l Lecture Hour	s	30 H	rs
Books for	Study	:							
1. Jaya	Shree C	Ghosh, Fundamental Co	ncep	ots of Applied Chemist	ry. 1s	t Edition. New 1	Delhi	: S.Cl	nand

- 1. Jaya Shree Ghosh, Fundamental Concepts of Applied Chemistry. 1st Edition. New Delhi: S.Chand & Company Ltd, 2013.
- 2. Bagavathi Sundari. K, Applied Chemistry, 1st Edition. Chennai: MJP Publishers, 2006.

Books for References:

1. Wong, N.P. Jenness, R. Keenay, M. & Matrh, E.H., Fundamentals of Dairy Chemistry. 1st Edition. New

Delhi: CBS Publishers & Distributors Pvt.Ltd., 1998.

- 2. Sukumar De. Outlines of Dairy Technology. 1st Edition. New Delhi: Oxford University Press, 2000.
- 3. K.S. Rangappa and K.T Acharya, Indian Dairy products, Asia Publishing House, 1975.

Web Resources:

- 1. https://www.youtube.com/watch?v=Vo8m9QvNeAU
- 2. https://www.youtube.com/watch?v=uYhbekSGMZY
- 3. https://www.youtube.com/watch?v=oHCntgYIJbE
- 4. https://nptel.ac.in/courses/126/105/126105013/

Course Outcomes:						
On the completion of the course the student will be able to						
CO1:	Understand the chemistry of milk products.	[Up to K2]				
CO2:	Outline the techniques of milk processing.	[Up to K3]				
CO3:	Construct the flow chart diagram in the manufacture of special milk	[Up to K3]				
CO4:	Illustrate the manufacture of various dairy products	[Up to K4]				
CO5:	Determine the chemistry of milk products and manufacture of various dairy	[Up to K4]				
CO3:	products.	[Op to K4]				

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	2	3	1	3	2	1		
Weightage	11	10	9	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	DAIRY CHEMISTRY	Hrs	Mode
I	COMPOSITION OF MILK Milk – definition – general composition of milk – constituents of milk – lipids, proteins, carbohydrate, vitamins and minerals – physical properties of milk – colour, odour, acidity, specific, gravity, viscosity and conductivity.	06	Chalk & Talk, Power Point
II	PROCESSING OF MILK Microbiology milk – destruction of microorganisms in milk – physico – chemical changes taking place in milk due to processing – boiling, pasteurization – types of pasteurization –Vacuum pasteurization – Ultra High Temperature Pasteurization.	06	Chalk & Talk, Power Point
ш	MAJOR MILK PRODUCTS Cream – definition – composition – chemistry of creaming process – gravitational and centrifugal methods of separation cream – estimation of fat in cream. Butter – definition -estimation of acidity and moisture content in butter. Ghee – major constitutents – common adulterants added to ghee.	06	Chalk & Talk, Power Point
IV	SPECIAL MILK Standardised milk – definition – merits – reconstituted milk –definition – flow diagram of manufacture – Homogenised milk – flavoured milk – condensed milk – definition composition and nutritive value.	06	Chalk & Talk, Power Point
V	FERMENTED AND OTHER MILK PRODUCTS Fermentation of milk – definition, condition- Indigeneous products— Gulabjamun, chana sweet, Rasogolla. Ice cream – definition – percentage composition types – Ingredients – manufacture of ice-cream -milk powder – definition – need for making milk powder. Visit to a pasteurization factory / Milk product company and submission of a report.	06	Chalk & Talk, Power Point

Course Designed by: Dr. V. Ramasamy Raja & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

Course Name	D	YE CHEMISTRY							
Course Code	21	UCHS22					L	P	C
Category	Sk	kill							2
Nature of course:		EMPLOYABILITY		SKILL ORIENTED	✓	ENTREPRENE	EURS	SHIP	✓

Course Objectives:

- To Recall the constitution of colour and dyes.
- To Classify the dyes and demonstration of its various types.
- To Compare nitrogenous, triphenyl, azo and phthalein dyes with their applications
- To Execute the synthesis and applications of quinonoid dyes including vat dyes based
- To Determine the requirement of a pigment and applications and their uses.

10 200	ermine the requirement of a pigment and applications and their ases.	
Unit: I	CHEMISTRY AND THEORY OF COLOURS Colour and Constitution – Relationship of Colour observed to wavelength of light absorbed – Terms used in Colour Chemistry – Chromophores, Auxochromes, Bathochromes shift, Hypsochromic shift.	06
Unit: II	DIRECT AND DISPERSE DYES Direct or substantive dyes, mordent dyes, vat dyes, Ingrain or developed dyes, Disperse dyes, sulphur dyes, reactive dyes, oil and spirit soluble dye, food, dry and cosmetic dyes. (Definition, applications and examples only).	06
Unit: III	NITROGENOUS, TRIPHENYL, AZO AND PHTHALEIN DYES Classification according to chemical structure: a) Nitro and Nitroso dyes. b) Tripheyl methane dye -malachite green, crystal violet and its applications. c) Azo dyes -, methyl orange, and congo red. d) Phthalein dye- phenolphthalein and fluorescein. (Definition, applications and examples only)	06
Unit: IV	AZINE, OXACINE AND TRIAZINE DYES Azine, Oxazine and Triazine Dyes – Synthesis and applications of quinonoid dyes including vat dyes based on anthraquinone.	06
Unit: V	PIGMENTS AND THEIR APPLICATIONS Requirement of a pigment – Typical Organic and Inorganic pigments – Applications and their uses in paints – Applications of dyes in other areas – medicine, cosmetics, food and beverages.	06
	Total Lecture Hours	30 Hrs

Books for Study:

1. Gurdeep R.Chatwal, Synthetic Dyes – Himalaya Publishing House, 2016.

Books for References:

- 1. B. S. Bahl and Arun Bahl, Advanced Organic Chemistry, 2012.
- 2. P.L.Soni and H.M.Chawla, Text book of Organic Chemistry, Sultan & Sons Publications, 2019.
- 3. K.S.Tewari, N.K.Vishnol & S.N. Mehrotra, A Text book of Organic Chemistry, Vikas Publishing House, 1976.

Web Resources:

- 1. https://www.youtube.com/watch?v=a6Lw7Dzwvqo
- 2. https://www.youtube.com/watch?v=sLcT7P-ZS4E
- 3. https://www.youtube.com/watch?v=SFH0iJmnTLY

3. https://www.youtube.com/watch:v=SF110131mi1121							
Course Outcomes:							
On th	On the completion of the course the student will be able to						
CO1:	Identify the colour and constitution observed to wavelength of light.	[Up to K2]					
CO2:	Outline the direct or disperse dyes and applications.	[Up to K3]					
CO3:	Apply Azine, Oxacine, triazine dyes, pigments towards its applications.	[Up to K3]					
CO4:	Classify the Nitro, Nitroso, Triphenyl methane, Azo and Phthalein dyes.	[Up to K4]					
CO5:	Determine the properties of dyes and apply in medicine, cosmetics, food and	IIIn to K/I					
CO5:	beverages.	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	2	3	2	3	1	2		
CO 2	1	2	3	1	2	3		
CO 3	2	2	2	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	2	3	1	3	2	1		
Weightage	10	11	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	DYE CHEMISTRY	Hrs	Mode
I	CHEMISTRY AND THEORY OF COLOURS Colour and Constitution – Relationship of Colour observed to wavelength of light absorbed – Terms used in Colour Chemistry – Chromophores, Auxochromes, Bathochromes shift, Hypsochromic shift.	06	Chalk & Talk, Power Point
II	DIRECT AND DISPERSE DYES Direct or substantive dyes, mordent dyes, vat dyes, Ingrain or developed dyes, Disperse dyes, sulphur dyes, reactive dyes, oil and spirit soluble dye, food, dry and cosmetic dyes. (Definition, applications and examples only).	06	Chalk & Talk, Power Point
Ш	NITROGENOUS, TRIPHENYL, AZO AND PHTHALEIN DYES Classification according to chemical structure: a) Nitro and Nitroso dyes. b) Tripheyl methane dye -malachite green, crystal violet and its applications. c) Azo dyes –, methyl orange, and congo red. d) Phthalein dye– phenolphthalein and fluorescein. (Definition, applications and examples only)	06	Chalk & Talk, Power Point
IV	AZINE, OXACINE AND TRIAZINE DYES Azine, Oxazine and Triazine Dyes – Synthesis and applications of quinonoid dyes including vat dyes based on anthraquinone.	06	Chalk & Talk, Power Point
V	PIGMENTS AND THEIR APPLICATIONS Requirement of a pigment – Typical Organic and Inorganic pigments – Applications and their uses in paints – Applications of dyes in other areas – medicine, cosmetics, food and beverages.	06	Chalk & Talk, Power Point

Course Designed by: Dr. R. Satheesh & Dr. J.E. Sangeetha

(For those who joined in 2021-2022 and after)

Course Name	PHYSICAL CHEMIS	STR	Y – I						
Course Code	21UCHC31				L	P	C		
Category	Core	ore 4 -							
Nature of cours	e: EMPLOYABILITY	✓	SKILL ORIENTED	D ENTREPRENURSHIP			√		
Course Objectives:									

- To Recall the characteristics of ideal and real gases and deviations of real gases from ideal behaviour.
- To Remember the law of distribution of velocities and characteristics of colloids.
- To Compare the classification of adsorption and catalysis.
- To Perform the purification of colloids and comparison between order and molecularity of a reaction
- To Determine the effect of temperature on various velocities and applications of colloids, adsorption and catalysis.

GASEOUS STATE Unit: I

Characteristics of Gases and its parameters. Gas laws- Boyle's law, Charles's law, The Combined Gas law, Gay Lussac's law, Avogadro's law and the Ideal Gas equation. Postulates of kinetic theory gases – Derivation of ideal gas laws from the expression on the basis of kinetic theory of gases – Maxwell – Boltzmann law of distribution of velocities (Derivation not necessary) graphical representation – Effect of temperature on various velocities – Experimental verification of Maxwell's law. Different types of molecular velocities— Average Velocity, Most Probable Velocity, Average Velocity and their calculations-Principle of equipartition of energy.

Unit: II COLLOIDAL STATE

12

Introduction— Distinction between true solution, colloidal dispersion and suspension classification of colloids. Difference between Lyophilic and Lyophobic colloids. Purification of colloids- Dialysis and Ultrafiltration. Properties of colloids-Tyndall effect, Sedimentation, Electrophoresis. Origin of Charge on Colloids- Hardy – Schulze law. Protection of Colloids – Gold Number. Application of colloids in foods, medicines, industrial goods, sewage disposal, clarification of water, smoke screens and detergent action of soap.

Unit: III | ADSORPTION

Definition – Adsorption, adsorbent, adsorbate & occlusion - types of adsorptions - Differences between physisorption and chemisorption-Langmuir's and Freundlich adsorption isotherms, positive and negative adsorption, Adsorption of gases on solids - characteristics of adsorption of gases on solids - factors influencing adsorption - adsorption isotherm - BET (Elementary idea only) - Applications of adsorption in gas masks, chromatography, cleaning of sugars, paint industry, catalysis and adsorption indicators

Unit: IV | CATALYSIS

Catalysis - Definition -- Characteristics - Types of catalysts - positive - negative - auto and induced catalyst-Theories of catalysis -The Intermediate Compound Formation theory & The Adsorption theory- Action of Promoters and Poisons with suitable examples. Enzyme Catalysis – characteristic features-Mechanism – Michaelis - Menten equation.

Unit: V CHEMICAL KINETICS

12

Introduction – Rate of Reaction – Rate law and Rate constant – Order and Molecularity of a reaction. Derivation of rate equation and half-life period for first order- examples- Catalytic Decomposition of hydrogen peroxide – Decomposition of Dinitrogen pentoxide. Pseudo unimolecular reaction - Derivation of rate equation and half-life period. examples- inversion of cane sugar and hydrolysis of ester by acid. second, third and zero order reactions – examples – rate equation – half period (no derivation required). Methods for the determination of the order of a reaction. Influence of temperature on the rate of reaction – Arrhenius rate equation and its significance. Collision Theory of Reaction Rate and its limitations.

Total Lecture Hours | 60 Hrs

Books for Study:

5. Arun Bahl, B. S Bahl & G.D. Tuli, Essentials of Physical Chemistry, S.Chand and Co, New Delhi, 2014.

Books for References:

- 4. Gilbert. W. Castellan, Physical Chemistry, Narosa Publishing house, third edition 1985.
- 5. P.W. Atkins, Physical Chemistry, 7th edition, Oxford university press, 2001.
- 6. S.K. Dogra and S. Dogra, Physical Chemistry Through Problems, New age international, 4th edition 1996.
- 7. B.R. Puri, L.R. Sharma and S.Pathania, Principles of Physical Chemistry, Shoban Lal Nagin Chand and Co, 47th edition, 2017.
- 8. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan limited, New York, 1966.

Web Resources:

- 1. https://youtu.be/u3BWeogwNN4
- 2. https://youtu.be/fctkOV_wdWI
- 3. https://youtu.be/UIVJ4JkqjaI
- 4. https://youtu.be/B fg6EDNFd4
- 5. https://youtu.be/W8FhlGNnMkg

Course	e Outcomes	K Level				
On the completion of the course the student will be able to						
CO1:	Recall the postulates of kinetic theory of gases and classification of colloids	[Up to K2]				
CO2:	Discuss the gaseous state and types of adsorptions	[Up to K3]				
CO3:	Enumerate the properties of gaseous state, colloids, adsorption and catalysis	[Up to K3]				
CO4:	Examine the characteristics of adsorption and catalysis	[Up to K4]				
CO5 :	Apply the order and molecularity of the reaction and derivation of order of the reactions	[Up to K4]				

CO & PO Mapping:

Course Outcomes		Programme Outcomes (POs)					
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	1	3	2	3	2	1	
Weightage	10	10	10	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	GASEOUS STATE Characteristics of Gases and its parameters. Gas laws- Boyle's law, Charles's law, The Combined Gas law, Gay Lussac's law, Avogadro's law and the Ideal Gas equation. Postulates of kinetic theory gases – Derivation of ideal gas laws from the expression on the basis of kinetic theory of gases – Maxwell – Boltzmann law of distribution of velocities (Derivation not necessary) graphical representation – Effect of temperature on various velocities – Experimental verification of Maxwell's law. Different types of molecular velocities— Average Velocity, Most Probable Velocity, Average Velocity and their calculations-Principle of equipartition of energy.	12	Chalk, Talk & Power point
II	COLLOIDAL STATE Introduction—Distinction between true solution, colloidal dispersion and suspension—classification of colloids. Difference between Lyophilic and Lyophobic colloids. Purification of colloids—Dialysis and Ultrafiltration. Properties of colloids-Tyndall effect, Sedimentation, Electrophoresis. Origin of Charge on Colloids—Hardy—Schulze law. Protection of Colloids—Gold Number. Application of colloids in foods, medicines, industrial goods, sewage disposal, clarification of water, smoke screens and detergent action of soap.	12	Chalk, Talk & Power point
III	ADSORPTION Definition – Adsorption, adsorbent, adsorbate & occlusion - types of adsorptions - Differences between physisorption and chemisorption-Langmuir's and Freundlich adsorption isotherms, positive and negative adsorption, Adsorption of gases on solids - characteristics of adsorption of gases on solids - factors influencing adsorption – adsorption isotherm – BET (Elementary idea only) – Applications of adsorption in gas masks, chromatography, cleaning of sugars, paint industry, catalysis and adsorption indicators.	12	Chalk, Talk & Power point
IV	CATALYSIS Catalysis – Definition — Characteristics – Types of catalysts – positive – negative - auto and induced catalyst-Theories of catalysis – The Intermediate Compound Formation theory & The Adsorption theory-Action of Promoters and Poisons with suitable examples. Enzyme Catalysis – characteristic features – Mechanism – Michaelis - Menten equation.	12	Chalk, Talk & Power point
V	CHEMICAL KINETICS Introduction – Rate of Reaction – Rate law and Rate constant – Order and Molecularity of a reaction. Derivation of rate equation and half-life period for first order- examples- Catalytic Decomposition of hydrogen peroxide – Decomposition of Dinitrogen pentoxide. Pseudo unimolecular reaction - Derivation of rate equation and half-life period. examples- inversion of cane sugar and hydrolysis of ester by acid. second, third and zero order reactions – examples – rate equation – half	12	Chalk, Talk & Power point

period (no derivation required). Methods for the determination of the order of a reaction. Influence of temperature on the rate of reaction -Arrhenius rate equation and its significance. Collision Theory of Reaction Rate and its limitations.

Course Designed by: Dr. V. Ramasamy Raja & Dr. A. J. Sunija

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)												
_			Section	on A	Section	В	Section C	Section D					
Inte	Cos	K Level	MC	Qs	Short Ans	wers	Either or	Open					
rnal	Cos	K Ecver	No. of. Questions	K – Level	No. of. Questions	K - Level	Choice	Choice					
CI	CO1	Up to K2	2	K1&K2	1	K1	2 (K2&K2)	1(K2)					
ΑI	CO2	Up to K3	2	K1&K2	2	K2	2 (K3&K3)	2(K2&K3)					
CI	CO3	Up to K2	2	K1&K2	1	K2	2 (K2&K2)	1(K2)					
AII	CO4	Up to K4	2	K1&K2	2	K2	2 (K3&K3)	2(K3&K4)					
		No. of Questions to be asked	4		3		4	3					
Pat	estion tern	No. of Questions to be answered	4		3		2	2					
CIA I	1 & 11	Marks for each question	1		2		5	10					
		Total Marks for	4		6		10	20					

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2	2	-	-	4	6.67					
	K2	2	4	10	20	36	60	67				
CI	К3	-	•	10	10	20	33.33	33				
AI	K4	-	-	-	-	-	-	-				
	Marks	4	6	20	30	60	100	100				
	K1	2	2	-	-	4	6.67					
	K2	2	4	10	10	26	43.33	50				
CI	К3	-	-	10	10	20	33.33	33				
A II	K4	-	-	-	10	10	16.67	17				
	Marks	4	6	20	30	60	100	100				

6

K1- Remembering and recalling facts with specific answers

4

each section

- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

10

20

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
			MCO	Qs	Short An	swers	Section C	Section D				
S.No	Cos	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)				
1	CO1	Up to K 2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)				
2	CO2	Upto K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)				
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
5	CO5	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
No. of	Questions	s to be Asked	10		5		10	5				
No.of Questions to be answered		10		5		5	3					
Marks for each question		1		2		5	10					
Total Marks for each section		10		10		25	30					
	(Figures	in parenthes	sis denotes, q	uestions s	hould be asl	ked with	the given K	level)				

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K 1	5	4	-	•	9	7.5	33				
K2	5	6	10	10	31	25.83	33				
К3	-	-	40	20	60	50	50				
K4	-	-	-	20	20	16.67	17				
Marks	10	10	50	50	120	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	К3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
	_	en Choice	
	CO	Three ques K Level	
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO ₂	K3	
24	CO3	K4	
25	CO ₄	K4	
43	CO3	17.4	

(For those who joined in 2021-2022 and after)

Course Name	INORGANIC CHEMISTRY – II						
Course Code	21UCHC32	L	P	C			
Category	Core	4	-	4			
Nature of cours	e: EMPLOYABILITY SKILL ORIENTED ENTREPREN	NURS	SHIP	✓			
Course Objectives:							

- To Recall the general characteristics of s-, p- block elements and its basic properties.
- To Remember the electronic configurations of the elements and naming the coordination compounds.
- To Compare the role of transition elements in coordination compounds.
- To Execute the structure, preparation and properties of important compounds.
- To Determine the properties and uses of the elements in biological systems and EAN rule.

s – Block Elements Unit: I

Group 1 Elements: Alkali Metals – general characteristics – atomic and ionic radii – ionization energies – electropositive character – chemical properties – complexes of alkali metals – comparison of lithium with other members of the family – resemblance of lithium and magnesium – role of Na⁺ and K⁺ ions in biological systems – sodium pump.

Group 2 Elements: Alkaline Earth Metals – general characteristics – atomic and ionic radii ionization energies – chemical properties – comparison of beryllium with other elements of Group 2 - properties and uses of alkaline earth metals - Portland cement - role of Mg²⁺ and Ca²⁺ ions in biological systems.

Unit: II p – Block Elements – I

Group 13 Elements: general characteristics - ionization energies – oxidation states – electropositive character – tendency to form ionic and covalent compounds – diagonal relationship between boron and silicon – properties of elements – relative strengths of trihalides as Lewis acids – borides – boron hydrides – boranes – preparation, properties and structure of diborane – bonding in boranes. **Group** 14 Elements: general characteristics - ionization energy - tendency to form chains, catenation properties and structure of allotropes of carbon – Structure, preparation and properties of Nickel, Cobalt and Iron carbonyls, silicates and silicones – types of silicates – zeolites.

Group 15 Elements: general characteristics – metallic and non – metallic character – variation in physical state – anomalous properties of nitrogen – allotropic forms of phosphorus – marsh test – preparation and properties of urotropine. Group 16 Elements: general characteristics – oxidation states – anomalous behaviour of oxygen – structure and properties of ozone – allotropes of sulphur preparation and properties of sulphuric acid, caros's acid, marshall's acid. Group 17 Elements: general characteristics – electron affinity – oxidation states - preparation and properties of chlorine oxoacids of halogens - interhalogen compounds. Group 18 Elements: occurrence - general characteristics – general physical properties of noble gases – structure and shape of XeF₆, XeOF₄, XeO₂F₂ and XeO₂F₄ molecules.

COORDINATIN COMPOUNDS - I Unit: IV

Double salts – coordination compounds – coordination complex sand complex ions – coordination number – unidentate, bidentate and polydentate ligands, chelating ligands and chelates – Werner's theory – Nomenclature of coordination compounds – EAN rule – stability of complex ions - factors affecting the stability of a complex ion – isomerism in coordination compounds: structural isomerism – linkage isomerism, coordination position isomerism, ionization isomerism, hydrate isomerism – stereo isomerism – geometrical isomerism, optical isomerism.

Unit: V | COORDINATION COMPOUNDS – II

12

Valence bond theory – shortcomings of valence bond theory – the crystal field theory – crystal field splitting of energy levels – crystal field stabilization energy (CFSE) – factors influencing the magnitude of crystal field splitting – colour of transition metal complexes – ligand field theory – evidence of covalent bonding in metal ligand bonding – molecular orbital theory of coordination complexes – pi bonding in octahedral complexes – sigma bonding in tetrahedral complexes – sigma and pi bonding in square planar complexes.

Total Lecture Hours | 60 Hrs

Books for Study:

5. B. R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2018.

Books for Reference:

- 4. J. E. Huheey, E. A. Kieter and R. L. Keiter, Inorganic Chemistry, 4th ed., Harper Collins, New York, 1993.
- 5. F. A. Cotton, G. Wilkinson, C. Murillo and M. Bochman, Advanced Inorganic Chemistry,6th ed., John Wiley, New York, 1999.
- 6. T. Moeller, Inorganic Chemistry: A Modern Introduction, Wiley, New York, 1990.
- 7. R. D Madan S.Chand, Modern Inorganic Chemistry band Co.Ltd, New Delhi 2012.

Web Resources:

- 1. https://youtu.be/1uJk4K_irP8
- 2. https://voutu.be/xOJOfAKgSOY
- 3. https://youtu.be/xMjJxjhJWj4

Course	Course Outcomes:			
On th				
CO1:	Relate the general characteristics of s-block, p-block elements.	[Up to K2]		
CO2:	Understand the concepts of important compounds of s-, p- block and naming the coordination compounds.	[Up to K3]		
CO3:	Compare the isomerism of coordination compounds.	[Up to K3]		
CO4:	Correlate the diagonal relationship and anomalous properties of each group elements	[Up to K4]		
CO5 :	Construct the EAN rule, VBT, CFT on the basis of coordination compounds.	[Up to K4]		

CO & PO Mapping:

Course Outcomes		Programme Outcomes (POs)					
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	2	3	1	3	2	1	
Weightage	11	10	9	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	INORGANIC CHEMISTRY – II	Hrs	Mode
I	s – BLOCK ELEMENTS Group 1 Elements: Alkali Metals – general characteristics – atomic and ionic radii – ionization energies – electropositive character – chemical properties – complexes of alkali metals – comparison of lithium with other members of the family – resemblance of lithium and magnesium – role of Na ⁺ and K ⁺ ions in biological systems – sodium pump. Group 2 Elements: Alkaline Earth Metals – general characteristics – atomic and ionic radii – ionization energies – chemical properties – comparison of beryllium with other elements of Group 2 – properties and uses of alkaline earth metals – Portland cement – role of Mg ²⁺ and Ca ²⁺ ions in biological systems.	12	Chalk & Talk, Power Point
II	p-BLOCK ELEMENTS Group 13 Elements: general characteristics - ionization energies - oxidation states - electropositive character - tendency to form ionic and covalent compounds - diagonal relationship between boron and silicon - properties of elements - relative strengths of trihalides as Lewis acids - borides - boron hydrides - boranes - preparation, properties and structure of diborane - bonding in boranes. Group 14 Elements: general characteristics - ionization energy - tendency to form chains, catenation - properties and structure of allotropes of carbon - Structure, preparation and properties of Nickel, Cobalt and Iron carbonyls, silicates and silicones - types of silicates - zeolites.	12	Chalk & Talk, Power Point
III	p – BLOCK ELEMENTS – II Group 15 Elements: general characteristics – metallic and non – metallic character – variation in physical state – anomalous properties of nitrogen – allotropic forms of phosphorus – marsh test – preparation and properties of urotropine. Group 16 Elements: general characteristics – oxidation states – anomalous behaviour of oxygen – structure and properties of ozone – allotropes of sulphur – preparation and properties of sulphuric acid, caros's acid, marshall's acid. Group 17 Elements: general characteristics – electron affinity – oxidation states – preparation and properties of chlorine – oxoacids of halogens – interhalogen compounds. Group 18 Elements: occurrence – general characteristics – general physical properties of noble gases – structure and shape of XeF ₆ , XeOF ₄ , XeO ₂ F ₂ and XeO ₂ F ₄ molecules.	12	Chalk & Talk, Power Point
IV	COORDINATION COMPOUNDS – I Double salts – coordination compounds – coordination complexes and complex ions – coordination number – unidentate, bidentate and polydentate ligands, chelating ligands and chelates – Werner's theory – Nomenclature of coordination compounds – EAN rule – stability of complex	12	Chalk & Talk, Power Point

V	ionization isomerism, hydrate isomerism - stereo isomerism - geometrical isomerism, optical isomerism. COORDINATION COMPOUNDS - II Valence bond theory - shortcomings of valence bond theory - the crystal field theory - crystal field splitting of energy levels - crystal field stabilization energy (CFSE) - factors influencing the magnitude of crystal field splitting - colour of transition metal complexes - ligand field theory - evidence of covalent bonding in metal ligand bonding - molecular orbital	12	Chalk & Talk, Power Point
	theory of coordination complexes – pi bonding in octahedral complexes – sigma bonding in tetrahedral complexes – sigma		
	and pi bonding in square planar complexes.		

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
-	Cos	K Level	Section A MCQs		Section B Short Answers		Section C	Section D
Inte rnal			No. of. Questions	K – Level	No. of. Questions	K - Leve	Either or Choice	Open Choice
CI	CO1	Up to K2	2	K1&K2	1	K1	2 (K2&K2)	1(K2)
AI	CO2	Up to K3	2	K1&K2	2	K2	2 (K3&K3)	2(K2 & K3)
CI	CO3	Up to K2	2	K1&K2	1	K2	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)
		No. of Questions to be asked	4		3		4	3
Ques Patt		No. of Questions to be answered	4		3		2	2
CIA		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	20

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2	2	-	-	4	6.67	67	
	K2	2	4	10	20	36	60	07	
CIA	К3	-	-	10	10	20	33.33	33	
I	K4	-	-	-	-	-	-	•	
_	Marks	4	6	20	30	60	100	100	
	K1	2	2	-	-	4	6.67	50	
	K2	2	4	10	10	26	43.33	50	
CIA	К3	-	-	10	10	20	33.33	33	
II	K4	-	-	-	10	10	16.67	17	
	Marks	4	6	20	30	60	100	100	

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
			MCQs		Short Answers		Cartina C	G. A. D
S.No	COs	K - Level	No. of Question s	K – Level	No. of Question	K – Level	Section C (Either / or Choice)	Section D (Open Choice)
1	1 CO1 Up to K2		2	K1,K2	1	K1	2 (K2&K2)	1(K2)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	No. of Questions to be Asked				5		10	5
No	No.of Questions to be answered				5		5	3
Mar	Marks for each question				2		5	10
Total I	Total Marks for each section				10		25	30
	(Figures in parenthesis denotes, questions should be asked with the given K level)							

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	1	9	7.5	33		
K2	5	6	10	10	31	25.83	33		
К3	-	-	40	20	60	50	50		
K4	-	-	-	20	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

${\bf Summative\ Examinations\ \textbf{-}\ Question\ Paper\ \textbf{-}\ Format}$

Answer			ice Questions)				
	Answer All Questions (10x1=10 marks)						
Q.No	CO	K Level	Questions				
	CO1	K1					
	CO1	K2					
3 (CO2	K1					
	CO2	K2					
	CO3	K1					
	CO3	K2					
7	CO4	K1					
	CO4	K2					
9	CO5	K1					
10	CO5	K2					
		ort Answei	rs)				
Answer			(5x2=10 marks)				
_ `	CO	K Level	Questions				
	CO1	K1					
	CO2	K1					
	CO3	K2					
14	CO4	K2					
	CO5	K2					
		her/Or Ty	pe)				
Answer			$(5 \times 5 = 25 \text{ marks})$				
	CO	K Level	Questions				
	CO1	K2					
	CO1	K2					
	CO2	K3					
	CO2	K3					
	CO3	K3					
	CO3	K3					
	CO4	K3					
	CO4	K3					
	CO5	K3					
	CO5	K3					
			ormance of the students is to be assessed by attempting higher				
level of I							
		en Choice					
		hree ques					
	CO1	K Level	Questions				
	CO1	K2					
	CO2	K3					
	CO ₄	K3					
	CO4	K4					
25	CO5	K4					

(For those who joined in 2021-2022 and after)

Course Name Major Chemistry Practical – II (Volumetric Analysis)											
Course Co	de		UCHCP2						L	P	C
Category		Co	ore Practical						-	2	-
Nature of c	ourse	:	EMPLOYABILITY	7	√	SKILL ORIENTED	ENT	REPREN	IURS	HIP	
Course Ob	jecti	ves	•								
• To :	recoll	lect	the theory of laborat	ory s	afety	y measures and strength	of soluti	ons.			
					-	and alkalimetry and re					
	_		the concept of titrati			on redox and hardness	of water.				
			e the estimation of v	_		•					
UNIT						List of Experiments	-	G		Hrs	,
I	Solu	utio		olarity		Laboratory Safety Molality. Handling of a					6
II	List of Experiments							24			
	I. A	cidi	imetry and Alkalime	try							
	1. Estimation of Na ₂ CO ₃										
	2. Estimation of NaOH / KOH										
	3. E	estin	nation of oxalic acid								
	II. F	Redo	ox Titrations								
	a. P	erm	anganometry								
		1. E	Estimation of ferrous	ion							
		2. E	Estimation of oxalic a	icid							
		3. E	Estimation of calcium	(dire	ect n	nethod)					
	b. D	oich	rometry								
		1. E	Estimation of ferrous	ion							
		2. E	Estimation of ferric ic	n usi	ing e	xternal indicator					
	V. F	EDT	TA Titration		•						
		1.	Estimation of Hardn	ess o	f wa	ter using EDTA.					
			ution of marks			-					
	Max	x m	arks: 100 al : 40 marks				External	: 60			

Volume IV – Science Syllabus / 2022 - 2023

Laboratory Performance	: 30 marks	S Vivo voce	:	5 mark
Observation note book	: 10 marks	Record note book	:	10 ma
		Procedure writing	:	15 ma
		Volumetric estimation	:	30 ma
Total	: 40 marks	s Total	:	60 ma
For Volumetric Estimation if Less than 2%		ave 30 marks		
2-3% Error	-	25 marks		
3-4% Error	-	20 marks		

15 marks

10 marks

Books for Study:

1. Vogel, Text book of Inorganic quantitative analysis, Longman Sc & Tech, 2008.

Books for References:

1. Jeyavathana Samuel, Chemistry Practical Book, G.G.Printers, Chennai, 2012.

3-5% Error

Greater than 5%

2. Vickie. M.Williamson, M.Larry Peck, Lab manual for General Chemistry, Cengage Learning India Private Limited, New Delhi, 2009.

Web Resources:

- 1. https://youtu.be/xQDQNghs5dc
- 2. https://youtu.be/AdbK86BnXN8
- 3. https://youtu.be/dmnElKapQ00

Course	Course Outcomes:							
On th	On the completion of the course the student will be able to							
CO1:	Discuss the theory of safety measures in chemistry laboratory.	[Up to K2]						
CO2:	Understand the quantitative analysis in practical chemistry.	[Up to K3]						
CO3:	Apply the theory on quantitative titration methods.	[Up to K3]						
CO4:	Analyze the titrated values in tabular format.	[Up to K4]						
CO5 :	Construct the estimated value of the given compounds.	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	2	1	2	3	3	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	2	3	1	3	2	1			
Weightage	10	10	9	11	10	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	Theory of Volumetric Analysis and Laboratory Safety Measures	Hrs	Mode
I	Theory of Volumetric Analysis and Laboratory Safety Measures: Strength of Solutions – Normality, Molarity, Molality. Handling of apparatus, glasswares and chemicals – Safety aspects	6	
	List of Experiments		
II	 I. Acidimetry and Alkalimetry 1. Estimation of Na₂CO₃ 2. Estimation of NaOH / KOH 3. Estimation of oxalic acid. II. Redox Titrations a. Permanganometry 1. Estimation of ferrous ion 2. Estimation of oxalic acid 3. Estimation of calcium (direct method) b. Dichrometry 1. Estimation of ferrous ion 2. Estimation of ferric ion using external indicator V. EDTA Titration 1. Estimation of Hardness of water using EDTA. 	24	Practical

Course Designed by: Dr. Ramasamy Raja & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

Course Name	Al	ALLIED MATHEMATICS – I								
Course Code	21	21UMCA32 L P C								
Category	AI	ALLIED 6 -								
Nature of course: EMPLOYBILITY SKILL ORIENTED ENTREPR					REN	URS	HIP			

COURSE OBJECTIVES:

- To familiarize with the concepts of theory of equations
- To develop skills in solving equations
- To teach trigonometry and Expressing Trigonometric functions
- To develop the skills in expanding Trigonometric functions.

• To apply and prove trigonometric identities.

Unit: I	Theory of Equations: Formation of Equations - Relation between the roots and coefficients	18 hrs
Unit: II	Reciprocal Equations - Transformation of Equations	18 hrs
Unit: III	Approximate solutions of Numerical Equations: Newton's Method - Horner's Method - Cardan's method	18 hrs
Unit: IV	Trigonometry: Applications of Demoivre's Theorem - Expression for $\sin n\theta$, $\cos n\theta$ and $\tan n\theta$ - Expression of $\sin^n \theta$ and $\cos^n \theta$ - Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ .	18 hrs
Unit: V	Hyperbolic Functions – Inverse Hyperbolic Functions	18 hrs
	Total Lecture Hours	90 hrs

Books for Study:

Text Book: Dr. S. Arumugam and A.Thangapandi Isaac, **Ancillary Mathematics Paper I**, New Gamma Publishing House, Palayamkottai, 2007.

Unit I: Chapter 1: Sections 1.1 & 1.2

Unit II: Chapter 1: Sections 1.3 & 1.4

Unit III: Chapter 1: Sections 1.5 (1), 1.5 (2) & 1.5 (3).

Unit IV: Chapter 4: Sections 4.1, 4.2, 4.3

Unit V: Chapter 5: Sections 5.1, 5.2

Books for Reference:

- 1. T. K. Manickavashagam Pillai and S.Narayanan, **Algebra Volume I,** S.Viswanathan Printers Publishers Pvt. Ltd, Chennai, 2007.
- 2. T. K. Manickavashagam Pillai and S.Narayanan, **Trigonometry**, S.Viswanathan Printers Publishers Pvt. Ltd, Chennai, 2011.
- 3. Dr. S. Arumugam and Isaac, Classical Algebra, New Gamma Publishing House, Palayamkottai, 2003.

Web Resources:

- 1. https://sites.google.com/a/iitjeemathematics.com/www/conte/quadratic-equations/12-relation-between-roots-and-coefficients-of-any-polynomial-equation
- 2. https://onlinecourses.swayam2.ac.in/cec21 ma07/preview

Course	Course Outcomes:					
After t	After the completion of the course, Students will be able to					
CO1:	Learn and solve system of linear equations.	К3				
CO2:	Develop and maintain problem solving skills in Numerical Equations.	K4				
CO3:	Solve the exponential and trigonometric equations	К3				
CO4:	Recognize the relationship between $\sin \theta$, $\cos \theta$ and $\tan \theta$.	К3				
CO5:	Understand the ideas about the Hyperbolic functions and Inverse Hyperbolic Functions	К3				

CO & PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	3	2
CO 2	2	2	2	2	3	2
CO 3	3	3	2	3	3	2
CO 4	2	2	2	2	2	3
CO 5	3	3	2	2	2	3

^{*3} –Advanced Application; 2 – Intermediate Development; 1 – Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hrs	Pedagogy
I	Theory of Equations: Formation of Equations - Relation between the roots and coefficients	18	Chalk & Talk, PPT
II	Reciprocal Equations - Transformation of Equations	18	Chalk & Talk, Group Discussion
III	Approximate solutions of Numerical Equations: Newton's Method - Horner's Method & Cardan's method	18	Chalk & Talk, LCD
IV	Trigonometry: Applications of Demoivre's Theorem - Expression for $\sin n\theta$, $\cos n\theta$ and $\tan n\theta$ - Expression of $\sin^n \theta$ and $\cos^n \theta$ - Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ .	18	Chalk & Talk, Seminar
V	Hyperbolic Functions – Inverse Hyperbolic Functions	18	Chalk & Talk, Seminar

Course designed by: Mr. A. Nambi Krishna and Dr. S. Suriyakala

	Learning Outcome Based Education & Assessment (LOBE)												
	Formative Examination - Blue Print												
Articulation Mapping – K Levels with Course Outcomes (COs)													
			Section	on A	Section B		Section C	Section					
Internal	Cos	K Level	MC	Qs	Short A	nswers	Either or	D					
Internal	Cos	K Level	No. of.	K -	No. of.	K -	Choice	Open					
			Questions	Level	Questions	Level	Choice	Choice					
CI	CO1	К3	2	K1&K2	1	K1	2(K3&K3)	1 (K3)					
AI	CO2	K4	2	K2&K2	2	K2&K2	2(K4&K4)	2 (K4)					
CI	CO3	К3	2	K1&K2	1	K1	2(K3&K3)	2 (K3)					
AII	CO4	К3	2	K2&K1	2	K2&K2	2(K3&K3)	1 (K3)					
		No. of			3		4						
	Que	stions to be	4					3					
		asked											
Question		No. of											
Pattern	Que	stions to be	4		3		2	2					
CIA I &		nswered											
II		ks for each	1		2		5	10					
		uestion	_		_			10					
		l Marks for	4		6		10	20					
	690	ch section	•	1		1	1 **						

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K 1	1	2	-	-	3	5	17				
	K2	3	4	-	-	7	11.67	17				
CIA	К3	-	-	10	10	20	33.33	33				
I	K4	-	-	10	20	30	50	50				
	Marks	4	6	20	30	60	100	100				
	K 1	2	2	-	-	4	6.67	17				
	K2	2	4	-	-	6	10	17				
CIA	К3	-	-	20	30	50	83.33	83				
II	K4	-	-	-	-	-	-	-				
	Marks	4	6	20	30	60	100	100				

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

 ${
m CO5}$ will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
			MCC		Short An	swers	Section C	Section D
S.No COs		K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	К3	2	K1&K2	1	K1	2 (K3& K3)	1 (K3)
2	CO2	K4	2	K1&K2	1	K1	2 (K4 &K4)	1 (K4)
3	CO3	К3	2	K1&K2	1	K2	2 (K3& K3)	1 (K3)
4	CO4	К3	2	K1&K2	1	K2	2 (K3& K3)	1 (K3)
5	CO5	К3	2	K1&K2	1	K2	2 (K3 &K3)	1 (K3)
No.	of Quest Aske	ions to be	10		5		10	5
No. of Questions to be answered		10		5		5	3	
Marks for each question		1		2		5	10	
Total Marks for each section		10		10		25	30	
	(Figures	in parenthesi	is denotes, qu	iestions s	hould be as	ked with	the given K	level)

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	-	9	7.5	17		
K2	5	6	-	-	11	9.17	17		
K3	-	-	40	40	80	66.67	67		
K4	-	-	10	10	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mul	tiple Choice	e Questions)
Answer	All Que	estions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Shor	rt Answers)	
Answer			(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		er/Or Type	
Answer			$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K4	
17) b	CO2	K4	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
	gher lev	el of perfor	mance of the students is to be assessed by attempting higher level of K
levels	D (O	Ch a!)	
	` -	n Choice)	(2v10_20 moules)
Q.No	CO CO	ree questio K Level	Ons (3x10=30 marks) Questions
21	CO1	K Level K3	Questions
22	CO2	K3 K4	
23	CO ₂	K3	
24	CO4	K3	
25	CO4	K3	
43	CO3	KS	

(For those who joined in 2021-2022 and after)

Course Name	FUNDAMENTALS (TUNDAMENTALS OF MICROBIOLOGY						
Course Code	21UMBA32	L P C						
Category	ALLIED MICROBIO	ALLIED MICROBIOLOGY - I						
Nature of cours	e: EMPLOYABILITY	SKILL ORIENTED	✓	ENTREPRENURSHIP		ΙP		

Course Objectives:

- > To understand history of microbiology towards modern microbiology.
- ➤ To study the basic morphology structure, classification and biological and economic importance of bacteria.
- To interpret the characteristics and significance of Fungi.
- ➤ To explain the nomenclature and classification of Viruses.
- ➤ To enable the students to explore knowledge about the Algae and Protozoa.

Unit: I DEVELOPMENT OF MICROBIOLOGY AND MICROSCOPY 18

Definition and scope of Microbiology. History & development of Microbiology. General principal and Binominal nomenclature of Microorganism. Microscope- Principles, Working, Mechanism and Application - Simple and Compound microscope.

Unit: II BACTERIOLOGY

18

General characteristics of Bacteria-Classification, Ultra Structure- Gram positive and Gram negative cell wall, Reproduction, Biological and Economic importance of *Bacillus, Rhizobium, E.coli* and *Vibrio*.

Unit: III | MYCOLOGY

18

General characteristics of Fungi- Classification, Ultra structure, Reproduction, Biological and Economic importance of *Saccharomyces, Aspergillus, Agaricus, Penicillium*.

Unit: IV VIROLOGY

18

General characteristics of Viruses-Classification, Ultra Structure, Reproduction of Plant virus – (TMV, CMV); Animal virus-(Pox and Adeno); Bacterial virus (T4 and lambda) - Antiviral agent.

Unit: V PHYCOLOGY AND PARASITOLOGY

18

General characteristics of Algae – Classification, Ultra structure, Reproduction, Biological and Economic importance of *Chlorella*, *Spirulina*, *Chlamydomonas*, Protozoa - Classification, Ultra structure, Reproduction of *Entamoeba histolytica*, *Plasmodium*.

Total Lecture Hours 90 Hrs

Books for Study:

- 1. Prescott L.M., Harley J.P & Klein D.A. Microbiology, 6/e, McGraw Hill Publishers, 2006.
- 2. Pelczar M.J., Chan E.C.S. & Kreig N.R. **Microbiology**, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 1993.

Books for reference:

- 1. Ananthanarayanan R & Jayaram Panicker, C.K., **Textbook of Microbiology**, Orient Longman, 2005.
- 2. Madigan, Michael T., Martinko., John M., Dunlap., Paul V., Clark., David P., **Brock's Biology of Microorganisms** Global Ed. Pearson Publications, 2015.
- 3. Stainer R.Y. Ingraham J.L. Wheolis H.H and Painter P.R,. **The Microbial world**, 5th Ed. Eagle Works Cliffs N.J. Prentice Hall, 1986.

Web Resources:

- 1. https://www.britannica.com/science/microbiology
- 2. https://www.brainkart.com/article/Ultrastructure-of-a-Bacterial-cell_32841/
- 3. https://www.toppr.com/guides/biology/biological-classification/kingdom-fungi/
- 4. https://www.toppr.com/guides/biology/plant-kingdom/algae/
- 5. https://www.sciencedirect.com/topics/immunology-and-microbiology/virus-classification

	<u></u>						
Course	Course Outcomes						
On Suc	On Successful Completion of Course the student will be able to						
CO1:	Describe the knowledge and historical perspective of microbiology.	Up to K2					
CO2:	Determine about the structure and classification of Bacteria.						
CO3:	Illustrate about the Fungi classification, Structure and reproduction.	Up to K4					
CO4:	Differentiate the different types of Virus structure, classification and	Up to K4					
CO4:	reproduction.	Op to K4					
CO5:	Identify the structural organization of Algae and Protozoa.	Up to K3					

CO & PO Mapping:

CO's	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	1	1	3	3	2
CO 2	3	2	3	2	2	2
CO 3	2	1	1	1	1	2
CO 4	3	2	3	2	2	1
CO 5	3	2	3	2	2	1

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	Development of Microbiology and Microscopy - Definition and scope of Microbiology. History & development of Microbiology. General principal and Binominal nomenclature of Microorganism. Microscope- Principles, Working, Mechanism and Application - Simple and Compound microscope.	18	Chalk &Talk
II	Bacteriology - General characteristics of Bacteria-Classification, Ultra Structure- Gram positive and Gram negative cell wall, Reproduction, Biological and Economic importance of <i>Bacillus</i> , <i>Rhizobium</i> , <i>E.coli</i> and <i>Vibrio</i> .	18	PPT, Chalk &Talk
III	Mycology - General characteristics of Fungi- Classification, Ultra structure, Reproduction, Biological and Economic importance of <i>Saccharomyces, Aspergillus, Agaricus, Penicillium</i> .	18	PPT, Chalk &Talk
IV	Virology - General characteristics of Viruses-Classification, Ultra Structure, Reproduction of Plant virus – (TMV, CMV); Animal virus-(Pox and Adeno); Bacterial virus (T4 and lambda) - Antiviral agent.	18	Chalk &Talk & PPT
V	Phycology and Parasitology - General characteristics of Algae – Classification, Ultra structure, Reproduction, Biological and Economic importance of <i>Chlorella, Spirulina, Chlamydomonas</i> , Protozoa - Classification, Ultra structure, Reproduction of <i>Entamoeba histolytica</i> , <i>Plasmodium</i> .	18	Chalk &Talk, Assignment

Course Designed by: 1. Ms. C. Thenmozhi, Assistant Professor.

2. Mrs. M.R.S. Saranya, Assistant Professor.

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

				Section		Section			
Inter				MC		Short An		Section C	Section D
nal	Co	OS	K Level	No. of. Questions	K - Level	No. of. Questions	K - Level	Either or Choice	Open Choice
CIA I	CC)1	Up to K2	2	K1& K2	1	K2	2(K2&K2)	1(K2)
CIA I	CO)2	Up to K3	2	K1 &K2	2	K2	2(K3&K3)	2(K3&K3)
CIA C)3	Up to K4	2	K1&K2	1	K2	2(K2&K2)	1(K4)
II	CO)4	Up to K4	2	K1&K2	2	K2	2(K3&K3)	2(K4&K4)
		_	No. of uestions to be asked	4		3		4	3
Question		No. of Questions to be answered		4		3		2	2
Patter CIA I	rn		Marks for ch question	1		2		5	10
II			otal Marks for each section	4		6		10	20

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	`		Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2	-	-	-	2	3.33	50	
	K2	2	6	10	10	28	46.66	30	
CIA	К3	-	•	10	20	30	50	50	
I	K4	-	•	-	ı	-	-	-	
_	Marks	4	6	20	30	60	100	100	
	K 1	2	2	-	-	4	6.66	33	
CTA	K2	2	4	10	-	16	26.66	33	
CIA II	К3	-	-	10	-	10	16.66	17	
11	K4	-	-	-	30	30	50	50	
	Marks	4	6	20	30	60	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

 ${
m CO5}$ will be allotted for individual Assignment which carries five marks as part of CIA component.

Sum	mative	Examination -	– Blue Print	Articulation (COs)		K Level	with Course	Outcomes		
S No	S.No Cos	K - Level	Section (MC		Section (Short An		Section C	Section D		
S.No Cos	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	Section D (Open Choice) 1(K2) 1(K3) 1(K4) 1(K4) 1(K3) 5 3			
1	CO1	Up to K2	2	K1&K2	1	K2	2(K2&K2)	1(K2)		
2	CO2	Up to K3	2	K1&K2	1	K2	2(K3&K3)	1(K3)		
3	CO3	Up to K4	2	K1&K2	1	K2	2(K3&K3)	1(K4)		
4	CO4	Up to K4	2	K1&K2	1	K2	2(K4&K4)	1(K4)		
5	CO5	Up to K3	2	K1&K2	1	K2	2(K2&K2)	1(K3)		
No.	of Ques Ask	stions to be ted	10		5		10	5		
No. of Questions to be answered		10		5		5	3			
Marks for each question			1		2		5	10		
Total Marks for each section			10		10		25	30		
	(Figu	res in parenth	esis denotes,	(Figures in parenthesis denotes, questions should be asked with the given K level)						

	Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5	-	-	-	05	4.16	4	
K2	5	10	20	10	45	37.5	38	
K3	-	-	20	20	40	33.33	33	
K4	-	-	10	20	30	25	25	
Marks	10	10	50	50	120	100	100	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

${\bf Summative\ Examinations\ \textbf{-}\ Question\ Paper\ \textbf{-}\ Format}$

Section	n A (M	ultiple Cho	pice Questions)
	er All (Questions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	n B (Sh	ort Answe	rs)
Answe	er All Q	Questions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K2	
12	CO2	K2	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section	n C (Ei	ther/Or Ty	/pe)
Answe	er All Q	Questions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K4	
19) b	CO4	K4	
20) a	CO5	K2	
20) b	CO5	K2	
NB: H of K le		evel of peri	formance of the students is to be assessed by attempting higher level
		pen Choice	
		Three ques	
Q.No	CO	K Level	Questions
21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO3	K3 K4	
24	CO4	K4 K4	
25	CO5	K3	
23	003	IXJ	

(For those who joined in 2021-2022 and after)

Course Name BASIC CONCEPTS IN CHEMISTRY							
Course Code 21UCHN31	L	P	C				
Category Non Major Elective	2	-	2				
Nature of course: EMPLOYABILITY SKILL ORIENTED ✓ ENTREPREM	NUR	SHIP					
Course Objectives:							
To recall the atoms and molecules and basic properties of both metals and non-metals.	tals.						
To remember the basics of pure substance and mixtures, fuels and catalysts.							
• To compare the homogeneous and heterogeneous mixtures and types of catalysts.							
To perform the properties of states of matter and separation process.							
• To determine the various concepts on atoms, molecules, fuels and catalysis.							
Unit: I MATTER		06)				
Atoms and Molecules – atom – molecule – subatomic particles of atom – structu	ire o	fator	m –				
valence electrons – valency – Bohr's model of an atom – states of matter – solid, liqu							
evaporation							
Unit: II PURE SUBSTANCE AND MIXTURES		06)				
Pure Substance – Mixtures – Homogeneous and Heterogeneous mixtures – solution –	true	solut	ion,				
colloidal and suspension. Separation process of mixtures – evaporation, centrifugation	on, se	epara	ting				
funnel, sublimation, simple distillation – difference between pure substance and mixtu		•					
Unit: III METALS AND NON-METALS		06)				
Metals – physical properties of Metals – Hardness, lustrous, malleability, ductility,	cond	uction	n of				
heat and electricity and sonorous. Non - Metals - exceptional cases of metals and							
ionic bond.							
Unit: IV FUELS		06)				
Fuels – Definition – classification - Solid, liquid and gases, petroleum, refining between petrol and diesel.	– d	iffere	ence				
Unit: V CATALYSIS		06	<u> </u>				
Catalyst: definition, homogeneous and heterogeneous catalysis (definitions and	exai						
catalytic poisons, catalytic promoters, enzyme catalysts.	CHUI	пртов	')				
Total Lecture Hor	ırs	30 H	rs				
Books for Study:							
1. Ramesh Kapoor, R S Chopra, Sunita Bhagat, Fundamental Chemistry, R. Chand	1 & 0	N	Jew				
Delhi, 2018.		,,,,					
Books for References:							
1. Anil Kumar Tomar and Pallabi B. Tomar, Basics of Chemistry, Pegasus Encyclop	oedia	Libr	ary,				
New Delhi, 2018	L		<i>J</i> /				
Web Resources:							
1. shorturl.at/gIKP6							
Course Outcomes K Level							
On the completion of the course the student will be able to							
CO1: Ability to remember the basic concepts of atoms, molecules, fuels, catalysis. [Up to K2]							
CO2: Discuss the composition of the solutions and mixtures and type of catalysts. [Up to K3]							

CO3:	Interpret the knowledge of atoms, molecules, fuels and catalysts.	[Up to K3]
CO4:	Examine the properties of metals and non-metals and role of catalysts.	[Up to K4]
CO5:	Distinguish between pure substance and mixtures, various types of catalysts.	[Up to K4]

CO & PO Mapping:


Course Outcomes		Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6				
CO 1	3	1	2	3	1	2				
CO 2	1	3	1	1	2	3				
CO 3	2	2	3	2	3	3				
CO 4	3	1	2	2	1	2				
CO5	1	3	2	3	2	1				
Weightage	10	10	10	11	9	11				

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	MATTER Atoms and Molecules – atom – molecule – subatomic particles of atom – structure of atom – valence electrons – valency – Bohr's model of an atom – states of matter – solid, liquid and gases – evaporation	06	Chalk, Talk & Power point
II	PURE SUBSTANCE AND MIXTURES Pure Substance — Mixtures — Homogeneous and Heterogeneous mixtures — solution — true solution, colloidal and suspension. Separation process of mixtures — evaporation, centrifugation, separating funnel, sublimation, simple distillation — difference between pure substance and mixtures.	06	Chalk, Talk & Power point
Ш	METALS AND NON-METALS Metals – physical properties of Metals – Hardness, lustrous, malleability, ductility, conduction of heat and electricity and sonorous. Non – Metals – exceptional cases of metals and non-metals – ionic bond.	06	Chalk, Talk & Power point
IV	FUELS Fuels – Definition – classification - Solid, liquid and gases, petroleum, refining – difference between petrol and diesel	06	Chalk, Talk & Power point
V	CATALYSIS Catalyst: definition, homogeneous and heterogeneous catalysis (definitions and examples) – catalytic poisons, catalytic promoters, enzyme catalysts	06	Chalk, Talk & Power point

Course Designed by: Dr. A. J. Sunija & Dr. R. Satheesh

(For those who joined in 2021-2022 and after)

Course Name	ORGANIC CHEMISTRY – II									
Course Code	1UCHC41 L P C									
Category	Core 4 -									
Nature of cours	Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ENTREPRENURSHIP									

Course Objectives:

- To recall the general characteristics of aromatic compounds and reaction mechanisms.
- To remember the basics of aromatic compounds and polynuclear compounds.
- To compare the preparation, properties of ortho, para, meta directing and aromatic compounds.
- To perform the mechanism of reactions and effects of substituents.
- To determine the various concepts on mechanisms and polynuclear compounds.

Unit: I | AROMATIC COMPOUNDS – I

12

Introduction – General characteristics of aromatic compounds – Aromaticity and Huckel's rule – Structure of benzene – Mechanism of aromatic electrophilic substitution (Halogenation, nitration, sulphonation and Friedel – Crafts reactions. Directive influence of substituents based on electronic effects (ortho/para/meta directing) –Di-substituted benzenes – Steric hindrance – Mechanism of aromatic nucleophilic substitution, unimolecular, bimolecular and benzyne mechanisms.

Unit: II | AROMATIC COMPOUNDS – II

12

Aromatic aldehydes: Mechanism of Cannizzaro, Perkins, Claisen, Knoevenagel reaction and Benzoin condensation – Preparation and properties of cinnamaldehyde and vanillin. Phenolic ketones: Phloroactetophenone – preparation – Houben – Hosch synthesis. Phenols: Acidity of phenols – effect of substituents on the acidity of phenol – mechanism of Kolbe's reaction.

Unit: III AROMATIC HYDROCARBONS, HALOGEN, NITRO AND AMINO COMPOUNDS

12

Aromatic Hydrocarbons: Preparation, properties and uses of toluene xylene and mesitylene – Aromatic halogen compounds: preparation, Properties and uses of bromobenzene and benzyl bromide- Reactivity of aryl halides, distinction between nuclear and side chain halogenated derivatives. Aromatic nitro compounds: preparation and properties of nitrotoluenes. Aromatic amino compounds: Preparation by reduction of nitro compounds and from chlorobenzene – Effect of substituents on the basic character of aromatic amines – Comparison between aliphatic and aromatic amines – Preparation of aniline, sulphanilic acid, nitroanilines and phenylenediamines – Preparation and synthetic applications of benzene diazonium chloride.

Unit: IV | AROMATIC ACIDS

12

Effect of substituents on acidic character. Monocarboxylic acids: preparation, properties of salicylic acid and anthranilic acid. Dicarboxylic acids: preparation, properties of phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid & coumarin. Aromatic Sulphonic acids: preparation, properties and uses of benzene sulphonic acid and saccharin.

Unit: V POLY NUCLEAR HYDROCARBONS AND THEIR DERIVATIVES

Isolated systems: Preparation and properties of diphenyl, benzidine diphenic acid, diphenylmethane, triphenylmethane and stilbene. Condensed systems: Preparation properties, uses and structure of Naphthalene, Naphthylamines, Naphthols, Naphthaquinones, anthracene, anthraquinone, alizarin and phenanthrene.

Total Lecture Hours

60 Hrs

Books for Study:

1. Soni. P.L and Chawla. H.M, Textbook of Organic Chemistry, S. Chand & Sons, 2007, New Delhi.

Books for References:

- 1. Jain. M.K, and Sharma. S.C, Modern Organic Chemistry, 4th Edition, Vishal Publishing Co., 2016, Jalandhar.
- 2. Arun Bahl and Bahl. B.S, A Textbook of Organic Chemistry, S. Chand & Co., 2012, New Delhi.
- 3. Jerry March, Advanced Organic Chemistry, 4th Edition, John Wiley and Sons, 1992, New York.
- 4. S.H. Pine, Organic Chemistry, 5th Edition, McGraw Hill International Edition, Chemistry Series, 1987, New York.
- 5. Morrison. R.T and Boyd. R.N, Organic Chemistry, 6th Edition, Printice-Hall of India Ltd., 1992, New Delhi.

Web Resources:

- 1. https://youtu.be/IVbuBY0YMu4
- 2. https://youtu.be/Ywgkw4vK01s
- 3. https://youtu.be/Ixe0swwcca0
- 4. https://youtu.be/A1IzmE_r7NY
- 5. https://youtu.be/vKmTUIKoJVM

Course	Course Outcomes							
On th	On the completion of the course the student will be able to							
CO1:	Recall the general characteristics of aromatic compounds and discuss the reaction	[Up to K2]						
CO2:	Prepare the aromatic compounds like aromatic hydrocarbons, halogen, amino, substituted	[Up to K3]						
CO3 :	Examine the effect of substituents on acidic/basic character of aromatic compounds.	[Up to K3]						
CO4:	Interpret the directive influence of substituent on electronic effects and properties of aromatic compounds.	[Up to K4]						
CO5 :	Integrate the reaction mechanism of aromatic compounds and formulate in the synthetic applications.	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	AROMATIC COMPOUNDS – I Introduction – General characteristics of aromatic compounds – Aromaticity and Huckel's rule – Structure of benzene – Mechanism of aromatic electrophilic substitution (Halogenation, nitration, sulphonation and Friedel – Crafts reactions. Directive influence of substituents based on electronic effects (ortho/para/meta directing) –Di-substituted benzenes – Steric hindrance – Mechanism of aromatic nucleophilic substitution, unimolecular, bimolecular and benzyne mechanisms.	12	Chalk, Talk & Power point
II	AROMATIC COMPOUNDS – II Aromatic aldehydes: Mechanism of Cannizzaro, Perkins, Claisen, Knoevenagel reaction and Benzoin condensation – Preparation and properties of cinnamaldehyde and vanillin. Phenolic ketones: Phloroactetophenone – preparation – Houben – Hosch synthesis. Phenols: Acidity of phenols – effect of substituents on the acidity of phenol – mechanism of Kolbe's reaction.	12	Chalk, Talk & Power point
III	AROMATIC HYDROCARBONS, HALOGEN, NITRO AND AMINO COMPOUNDS Aromatic Hydrocarbons: Preparation, properties and uses of toluene xylene and mesitylene –Aromatic halogen compounds: preparation, Properties and uses of bromobenzene and benzyl bromide-Reactivity of aryl halides, distinction between nuclear and side chain halogenated derivatives. Aromatic nitro compounds: preparation and properties of nitrotoluenes. Aromatic amino compounds: Preparation by reduction of nitro compounds and from chlorobenzene – Effect of substituents on the basic character of aromatic amines – Comparison between aliphatic and aromatic amines – Preparation of aniline, sulphanilic acid, nitroanilines and phenylenediamines – Preparation and synthetic applications of benzene diazonium chloride.	12	Chalk, Talk & Power point
IV	AROMATIC ACIDS Effect of substituents on acidic character. Substituted acids: preparation, properties of salicylic acid and anthranilic acid. Mono & Dicarboxylic acids: preparation, properties of phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid & coumarin. Aromatic Sulphonic acids: preparation, properties and uses of benzene sulphonic acid and saccharin.	12	Chalk, Talk & Power point
V	POLY NUCLEAR HYDROCARBONS AND THEIR DERIVATIVES Isolated systems: Preparation and properties of diphenyl, benzidine diphenic acid, diphenylmethane, triphenylmethane and stilbene. Condensed systems: Preparation properties, uses and structure of Naphthalene, Naphthylamines, Naphthols, Naphthaquinones, anthracene, anthraquinone, alizarin and phenanthrene.	12	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

			Section A		Section B		Section C	Section D
Inte	Cos	K Level MCQs Short Answ		swers	Either or	Open		
rnal	Cus	K Level	No. of.	K –	No. of.	K -	Choice	Choice
			Questions	Level	Questions	Level	Choice	Choice
CI	CO1	Up to K2	2	K1&K2	1	K1	2 (K2&K2)	1(K2)
ΑI	CO2	Up to K3	2	K1&K2	2	K2	2 (K3&K3)	2(K2 & K3)
CI	CO3	Up to K2	2	K1&K2	1	K2	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1&K2	2	K2	2 (K3&K3)	2(K3 &K4)
		No. of Questions to be asked	4		3		4	3
Question Pattern CIA I & II		No. of Questions to be answered	4		3		2	2
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	20

	Distribution of Marks with K Level CIA I & CIA II										
	K (Multiple Level Choice Questions		Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K 1	2	2	-	-	4	6.67				
	K2	2	4	10	20	36	60	67			
CIA	К3	-	-	10	10	20	33.33	33			
I	K4	-	-	-	-	•	-	-			
	Marks	4	6	20	30	60	100	100			
	K 1	2	2	-	-	4	6.67				
	K2	2	4	10	10	26	43.33	50			
CIA	К3	-	-	10	10	20	33.33	33			
II	K4	-	-	-	10	10	16.67	17			
	Marks	4	6	20	30	60	100	100			

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
			MC		Short An	swers	Section C	Section D				
S. No	Cos	K - Level	No. of Question	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)				
1	CO1	Up to K 2	2	K1, K2	1	K1	2 (K2&K2)	1(K2)				
2	CO2	Upto K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)				
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
5	CO5	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
No. of	Questions	s to be Asked	10		5		10	5				
No	No.of Questions to be answered		10		5		5	3				
Mai	Marks for each question		1		2		5	10				
Total	Marks for	each section	10		10		25	30				
	(Figures	in parenthesi	is denotes, q	uestions s	hould be asl	ked with	the given K	level)				

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	1	-	9	7.5	33					
K2	5	6	10	10	31	25.83	33					
K3	-	-	40	20	60	50	50					
K4	-	-	-	20	20	16.67	17					
Marks	10	10	50	50	120	100	100					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section A	A (Mul	tiple Choic	ee Questions)
Answer			(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section 1	B (Shor	t Answers	
Answer	All Qu	estions	(5x2=10 marks)
Q. No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section	C (Eith	er/Or Typ	e)
Answer		estions	$(5 \times 5 = 25 \text{ marks})$
Q. No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	К3	
20) a	CO5	K3	
20) b	CO5	K3	
			rmance of the students is to be assessed by attempting higher
level of l			
	_	n Choice)	
		ree questi	
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	

(For those who joined in 2021-2022 and after)

Course Name	PHYSICAL CHEMISTRY – II						
Course Code	21UCHC42	L	P	C			
Category	Core	4 -					
Nature of cours	e: EMPLOYABILITY / SKILL ORIENTED / ENTREPRE	ENUR	SHIP	· •			
Course Object	ves:						
 To recal 	the basic thermodynamic laws and gibbs phase rule.						
 To reme 	mber the symmetry operations, absorption, emission and vibrational	specti	a.				
 To Com 	pare the relationship between Kp and Kc, two component system and	l grou	p table	es.			
• To exec	te the group multiplication tables and phase rules.						
 To Dete 	rmine the Le-chatelier principle, distillation, Condon principle and po	oint gi	oups.				
	EMICAL EQUILIBRIUM		12				
	s action- Thermodynamic treatment of law of mass action, Relation	nship	betw	een			
Kp and Kc. Ap	plication of Law of mass action to Homogeneous system- Dissociati	on of	PCl ₅	and			
N ₂ O ₄ . Applicat	on of Law of mass action to Heterogeneous system -Calcium	carbo	nate.	Le-			
Chatelier Princi	ple-Formation of Ammonia – Haber's process.						
	ASE RULE		12				
Gibbs phase rul	e – Definition of terms involved – Derivation of Gibb's phase rule -	- appl	ication	ı of			
	e component system -water system. Two component system-simple						
	and formation-Congruent melting point-Zn-Mg system, Incongruent						
	stem. Liquid system – partially miscible liquid system-phenol-						
	cible system-Alcohol-water system Completely immiscible system-b	oenzei	ne –wa	ater			
	of fractional distillation - steam distillation.						
	OUP THEORY		12				
	metry elements and symmetry operations - operations - production						
	operties of a group – classes and sub groups – groups multiplication			$\mathbb{C}_{2\mathbf{v}}$.			
	Classification of molecules into point groups $-C_{2v}$, C_{3v} , C_{2h} , D_{2h} , D_{6h} ,	and [
	ECTROSCOPY – I		12				
	Absorption and Emission spectra (Elementary ideas)-Electromagnetic						
	ies in each region. Molecular spectra – Types of molecular spec						
•	mic molecules – Rigid rotator – selection rule-determination of mo						
	th. UV Visible spectroscopy - Types of electronic transitions						
_		tensit	y sn	ifts			
probability-Chr	1 1	•	1 4	nic			
probability-Chr (Bathochromic,	hypsochromic, hyperchromic and hypochromic shifts). Theory	of e	electro				
probability-Chr (Bathochromic, spectroscopy	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra.	of e					
probability-Chr (Bathochromic, spectroscopy Unit: V SP	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II	of e	12				
probability-Chr (Bathochromic, spectroscopy] Unit: V SP Vibrational spec	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II etra – IR spectra of diatomic molecules – Hooke's law – simple har	of e	12 oscil	lator			
probability-Chricology (Bathochromic, spectroscopy	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II etra – IR spectra of diatomic molecules – Hooke's law – simple har force constant – selection rule – Vibrational energy level diagram	of e	12 oscil	lator			
probability-Chr (Bathochromic, spectroscopy	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II etra – IR spectra of diatomic molecules – Hooke's law – simple har force constant – selection rule – Vibrational energy level diagram etermination and calculation of zero-point energy. Modes of vibration	monic — Appon in p	12 oscil plicati	lator ons- omic			
probability-Chr (Bathochromic, spectroscopy] Unit: V SP Vibrational spec (no derivation) force constant d molecules – CO	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II etra – IR spectra of diatomic molecules – Hooke's law – simple har force constant – selection rule – Vibrational energy level diagram etermination and calculation of zero-point energy. Modes of vibration and H ₂ O molecules. Raman spectra — Quantum theory of Raman	monic — Appon in properties of the content of the	12 coscil plicati polyato ct— St	lator ons- omic okes			
probability-Christopher (Bathochromic, spectroscopy	hypsochromic, hyperchromic and hypochromic shifts). Theory Franck and Condon principle - Applications of UV – Visible spectra. ECTROSCOPY – II etra – IR spectra of diatomic molecules – Hooke's law – simple har force constant – selection rule – Vibrational energy level diagram etermination and calculation of zero-point energy. Modes of vibration	monic Appn in properties of the contract of t	12 coscil plicati polyato ct— St spect	lator ons- omic okes			

Books for Study:

- 1. B.S. Puri, L.R. Sharma and S. Pathania, Principles of Physical Chemistry, 47th Edition, Shoban Lal Nagin Chand & Co., New Delhi, 2012.
- 2. A.S. Negi, S. C. Anand, A Text Book of Physical Chemistry. 2nd Edition, New Delhi: New Age International Publishers, 1998.
- 3. Y. R. Sharma, Elementary Organic spectroscopy Principles and Chemical Applications, 3rd Edition, New Delhi, 2011.

Books for Reference:

- 8. W. Gilbert, Castellan, Physical Chemistry, 4th Edition, Narosa Publishing House, New Delhi, 2004.
- 9. P.W. Atkins, Physical Chemistry, 7th Edition, Oxford University, Press, 2001.
- 10. S.K. Dogra, S. Dogra, Physical Chemistry through Problems, 4th Edition, New Age International Publishers, 1996.

Web Resources:

- 1. https://youtu.be/Ye1ZD3wEJXM
- 2. https://youtu.be/lrosz8N-9tA
- 3. https://youtu.be/Ioi6YiPGV4A
- 4. https://youtu.be/x56OIrdFJrw
- 5. https://youtu.be/i07KnMEGjS8
- 6. https://youtu.be/WukUvN721Ag
- 7. https://youtu.be/RRME2G7k4Tw

Course	e Outcomes:	K Level						
On th	On the completion of the course the student will be able to							
CO1:	Outline the basic principles and applications of chemistry in detail.	[Up to K2]						
CO2:	Apply the concept of duality, spectroscopic techniques, symmetry aspects, theory of dilute solutions and phase equilibrium for chemical systems.	[Up to K3]						
CO3 :	Analyze the concept of quantum theory, the physical properties of various equilibria and spectroscopic parameters.	[Up to K3]						
CO4:	Evaluate the practical utility of complicated problem-solving skill aspects.	[Up to K4]						
CO5:	Develop a strategy to acquire advanced knowledge in various analytical techniques.	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	2	3	1	3	2	1		
Weightage	11	10	9	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	PHYSICAL CHEMISTRY – II	Hrs	Mode
I	CHEMICAL EQUILIBRIUM The law of mass action- Thermodynamic treatment of law of mass action, Relationship between Kp and Kc. Application of Law of mass action to Homogeneous system- Dissociation of PCl ₅ and N ₂ O ₄ . Application of Law of mass action to Heterogeneous system -Calcium carbonate. Le-Chatelier Principle-Formation of Ammonia – Haber's process.	12	Chalk & Talk, Power Point
II	PHASE RULE Gibbs phase rule — Definition of terms involved — Derivation of Gibb's phase rule — application of phase rule to one component system—water system. Two component system-simple eutectic — Pb -Ag system. Compound formation-Congruent melting point-Zn-Mg system, Incongruent melting point-Na ₂ SO ₄ -H ₂ O system. Liquid system — partially miscible liquid system-phenol-water system. Completely miscible system-Alcohol-water system Completely immiscible system-benzene —water system — Theory of fractional distillation - steam distillation.	12	Chalk & Talk, Power Point
III	GROUP THEORY Molecular symmetry elements and symmetry operations – operations – production of symmetry operations – properties of a group – classes and sub groups – groups multiplication table – C_{2v} . Point groups – Classification of molecules into point groups – C_{2v} , C_{3v} , C_{2h} , D_{2h} , D_{6h} , and T_d .	12	Chalk & Talk, Power Point
IV	SPECTROSCOPY – I Introduction – Absorption and Emission spectra (Elementary ideas)- Electromagnetic radiation with relative intensities in each region. Molecular spectra – Types of molecular spectra. Rotational spectra of diatomic molecules – Rigid rotator – selection rule-determination of moment of inertia and bond length. UV Visible spectroscopy - Types of electronic transitions – Transition Probability - Chromophore and Auxochrome concepts – Absorption and Intensity shifts (Bathochromic, hypsochromic, hyperchromic and hypochromic shifts). Theory of electronic spectroscopy - Franck and Condon principle - Applications of UV – Visible spectra.	12	Chalk & Talk, Power Point
V	SPECTROSCOPY – II Vibrational spectra – IR spectra of diatomic molecules – Hooke's law – simple harmonic oscillator (no derivation) force constant – selection rule – Vibrational energy level diagram – Applications- force constant determination and calculation of zero-point energy. Modes of vibration in polyatomic molecules – CO ₂ and H ₂ O molecules. Raman spectra — Quantum theory of Raman effect– Stokes and Anti - Stokes lines – experimental study – Comparison between IR and Raman spectra – Applications of Raman spectra – Rotational-vibrational Raman spectra of a diatomic molecule.	12	Chalk & Talk, Power Point

Course Designed by: Dr. R. Satheesh & Dr. K. Muthupandi

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

			Section A		Section	n B	Section C	Section D	
Inte	Cos	K Level	MC	Qs	Short Ans	swers	Either or	Open	
rnal	Cus	K Level	No. of.	K –	No. of.	K -	Choice	Choice	
			Questions	Level	Questions	Level	Choice	Choice	
CI	CO1	Up to K2	2	K1&K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1&K2	2	K2	2 (K3&K3)	2(K2 & K3)	
CI	CO3	Up to K2	2	K1&K2	1	K2	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1&K2	2	K2	2 (K3&K3)	2(K3 &K4)	
		No. of	4						
		Questions to			3		4	3	
		be asked							
		No. of							
Que	stion	Questions to	4		3		2	2	
Pat	tern	be answered							
CIA	I & II	Marks for	1		2		5	10	
		each question	1		2		3	10	
		Total Marks							
		for each	4		6		10	20	
		section							

	Distribution of Marks with K Level CIA I & CIA II												
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Short (Either / Or (Open Choice)		Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	2	2	-	-	4	6.67	67					
	K2	2	4	10	20	36	60	07					
CIA	К3	-	•	10	10	20	33.33	33					
I	K4	-	•	-	ı	-	•	-					
_	Marks	4	6	20	30	60	100	100					
	K1	2	2	-	ı	4	6.67	50					
	K2	2	4	10	10	26	43.33	30					
CIA	К3	-	-	10	10	20	33.33	33					
II	K4	-	-	-	10	10	16.67	17					
	Marks	4	6	20	30	60	100	100					

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
			MC		Short An	swers	Section C	Coetion D				
S. No	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	Section D (Open Choice)				
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)				
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)				
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
No.	of Question Asked		10		5		10	5				
No.	No.of Questions to be answered		10		5		5	3				
Mar	Marks for each question		1		2		5	10				
Total Marks for each section		10		10		25	30					
	(Figures	in parenthe	esis denotes, o	questions s	hould be asl	ked with	the given K	level)				

	Distribution of Marks with K Level												
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %						
K1	5	4	-	1	9	7.5	33						
K2	5	6	10	10	31	25.83	33						
K3	1	-	40	20	60	50	50						
K4	-	-	-	20	20	16.67	17						
Marks	10	10	50	50	120	100	100						

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

	Section A (Multiple Choice Questions)						
Answer A	All Que		(10x1=10 marks)				
Q. No	CO	K Level	Questions				
1	CO1	K1					
2	CO1	K2					
3	CO2	K1					
4	CO2	K2					
5	CO3	K1					
6	CO3	K2					
7	CO4	K1					
8	CO4	K2					
9	CO5	K1					
10	CO5	K2					
		Answers)					
Answer A			(5x2=10 marks)				
Q. No	CO	K Level	Questions				
11	CO1	K1					
12	CO2	K1					
13	CO3	K2					
14	CO4	K2					
15	CO5	K2					
		r/Or Type					
Answer A			$(5 \times 5 = 25 \text{ marks})$				
Q. No	CO	K Level	Questions				
16) a	CO1	K2					
16) b	CO1	K2					
17) a	CO2	K3					
17) b	CO2	K3					
18) a	CO3	K3					
18) b	CO3	K3					
19) a	CO4	K3					
19) b	CO4	K3					
20) a	CO5	K3					
20) b	CO5	K3					
		l of perfor	mance of the students is to be assessed by attempting higher				
level of K							
Section D	_						
		ree questio	·				
Q. No	CO	K Level	Questions				
21	CO1	K2					
22	CO2	K3					
23	CO3	K3					
24	CO4	K4					
25	CO5	K4					

(For those who joined in 2021-2022 and after)

Course Name	Majo	Major Chemistry Practical – II (Volumetric Analysis)									
Course Code	21UC	21UCHCP2 L P C									
Category	Core	Practical	-	2	2						
Nature of course	e:	EMPLOYABILITY	✓	SKILL ORIENTED	ENTRE	PREN	URS	HIP			

Course Objectives:

- To recollect the theory of laboratory safety measures and strength of solutions.
- To remember the estimation of acidimetry and alkalimetry and redox titrations.
- To compare the concept of titration based on redox and hardness of water.
- To execute the concept of permanganometry and dichrometry.
- To determine the estimation of volumetric analysis.

UNIT	Theory of Volumetric Analysis and List of Experiments	Hrs
Ι	Theory of Volumetric Analysis and Laboratory Safety Measures: Strength of	6
	Solutions – Normality, Molarity, Molality. Handling of apparatus, glasswares	
	and chemicals – Safety aspects	
II	List of Experiments	24

- I. Acidimetry and Alkalimetry
- 1. Estimation of Na₂CO₃
- 2. Estimation of NaOH / KOH
- 3. Estimation of oxalic acid.
- II. Redox Titrations
- a. Permanganometry
 - 1. Estimation of ferrous ion
 - 2. Estimation of oxalic acid
 - 3. Estimation of calcium (direct method)
- b. Dichrometry
 - 1. Estimation of ferrous ion
 - 2. Estimation of ferric ion using external indicator
- V. EDTA Titration
 - 1. Estimation of Hardness of water using EDTA.

External: 60 marks

Distribution of marks

Max marks: 100 Internal: 40 marks

Laboratory Performance	:	30 marks	Vivo voce	:	5 marks
Observation note book		10 marks	Record note book	:	10 marks
			Procedure writing	:	15 marks
			Volumetric estimation	:	30 marks
Total	:	40 marks	Total	:	60 marks

For Volumetric Estimation if the student have

 Less than 2% Error
 30 marks

 2-3% Error
 25 marks

 3-4% Error
 20 marks

 3-5% Error
 15 marks

 Greater than 5%
 10 marks

TOTAL HOURS | 30 Hrs

Books for Study:

1. Vogel, Text book of Inorganic quantitative analysis, Longman Sc & Tech, 2008.

Books for References:

- 1. Jeyavathana Samuel, Chemistry Practical Book, G.G.Printers, Chennai, 2012.
- **2.** Vickie. M.Williamson, M.Larry Peck, Lab manual for General Chemistry, Cengage Learning India Private Limited, New Delhi, 2009.
- **3.** Dr. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis, National Publishing Company, Chennai, 3rd edition, 1974.

Web Resources:

- 1. https://youtu.be/xQDQNghs5dc
- 2. https://youtu.be/AdbK86BnXN8
- 3. https://youtu.be/dmnElKapQ00

Course	Course Outcomes:								
On th	On the completion of the course the student will be able to								
CO1:	1: Discuss the theory of safety measures in chemistry laboratory.								
CO2:	Understand the qualitative and quantitative analysis in practical chemistry.	[Up to K3]							
CO3:	Apply the theory on quantitative titration methods.	[Up to K3]							
CO4:	Analyze the titrated values in tabular format.	[Up to K4]							
CO5:	Construct the estimated value of the given compounds.	[Up to K4]							

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	2	1	2	3	3	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	2	3	1	3	2	1		
Weightage	10	10	9	11	10	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	Theory of Volumetric Analysis and Laboratory Safety Measures	Hrs	Mode
I	Theory of Volumetric Analysis and Laboratory Safety Measures: Strength of Solutions – Normality, Molarity, Molality. Handling of apparatus, glasswares and chemicals – Safety aspects	6	
	List of Experiments		
II	 I. Acidimetry and Alkalimetry 1. Estimation of Na₂CO₃ 2. Estimation of NaOH / KOH 3. Estimation of oxalic acid. II. Redox Titrations a. Permanganometry 1. Estimation of ferrous ion 2. Estimation of oxalic acid 3. Estimation of calcium (direct method) b. Dichrometry 1. Estimation of ferrous ion 2. Estimation of ferric ion using external indicator V. EDTA Titration 1. Estimation of Hardness of water using EDTA. 	24	Practical

Course Designed by: Dr. Ramasamy Raja & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

Allie	Allied Mathematics – II (B.Sc., Chemistry)							
21UN	MCA43			L	P	C		
Allie	ed			6	-	4		
	21U l	Allied Mathematics – II (21UMCA43 Allied		21UMCA43	21UMCA43 L	21UMCA43 L P		

Nature of Course: **EMPLOYBILITY** | **SKILL ORIENTED ENTREPRENURSHIP**

COURSE OBJECTIVES:

- To understand mathematical models used in Operations Research
- To apply these techniques constructively to make effective business decisions
- To develop the notions about Mathematical formulation and Solving Linear Programming Problem.
- To evaluate game theory and linear problems.
- To develop mathematical skills to analyze and solve network models.

Unit: I	Mathematical Formulation of a LPP: General form of a LPP – Summation notation – Matrix form – Canonical form – Standard form - Solution of LPP by Graphical Method - The Simplex Method	23 hrs
Unit: II	Transportation Problems: Mathematical Formulation of TP - Initial Basic Feasible Solution — North west corner rule- Least cost method- Vogels Approximation method - Optimum solution of TP (MODI Method).	18 hrs
Unit: III	Assignment Problems: Mathematical formulation of Assignment Problems – Solution to Assignment Problems	15 hrs
Unit: IV	Games and Strategies: Introduction – Two person zero sum game – The Maximin – Minimax Principle - Saddle point – Games without saddle point – Graphic Solution of 2 x n and m x 2 Games – Dominance Property	16 hrs
Unit: V	Network Flow Problems – Minimal Spanning Tree Problem – Shortest Route Problems	18 hrs
	Total Lecture Hours	90 hrs

Books for Study:

- Text Book 1: Dr. S. Arumugam and A.Thangapandi Isaac, Topics in Operations Research Linear Programming, New Gamma Publishers Pvt. Ltd, Palayamkottai, Tirunelveli, March 2015.
- Text Book 2: Kanti Swarup, P.K. Gupta, Man Mohan, Operations Research, 17th Edition, Sultan Chand and Sons, New Delhi, 2014.

Unit I: Text Book 1: Chapter 3 – Sections: 3.2, 3.4, 3.5

Unit II: Text Book 1: Chapter 4 – Section: 4.1

Unit III: Text Book 1: Chapter 5 – Sections: 5.1 & 5.2 Unit IV: Text Book 2: Chapter 17 -Sections: 17.1 - 17.7.

Text Book 2: Chapter 24 – Sections: 24.2, 24.3 & 24.4. Unit V:

Books for Reference:

- 1. Rathindra P. Sen, Operations Research Algorithms and Applications, PHI, EEE, New Delhi, 2010.
- 2. Sharma J.K., Operations Research: Problems and Solutions, Laxmi Publications, Third Edition, 2009.

Web 1	Resources:					
1. http	os://nptel.ac.in/courses/111/107/111107128/					
2. <u>htt</u>	os://onlinecourses.swayam2.ac.in/cec20_ma10/preview					
Course	Course Outcomes: K Lev					
After	the completion of the course, Students will be able to					
CO1:	Develop the notions about Mathematical formulation and Solving Linear Programming Problem.	K4				
CO2:	Acquire the knowledge about the view of transportation and assignment problems.	К3				
CO3:	Identify and develop the real life problems into network problems.	К3				
CO4:	Distinguish a game situation from a pure individuals decision problems	K4				
CO5:	Understand the Mathematical tools that are needed to solve various optimization problems.	К3				

CO & PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	3	2	2	3	2
CO 2	2	3	3	2	2	2
CO 3	2	2	2	2	2	3
CO 4	2	3	2	2	2	2
CO 5	2	2	3	2	2	3

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hrs	Pedagogy
I	Mathematical Formulation of a LPP: General form of a LPP (2 hrs) – Summation notation – Matrix form – Canonical form (4 hrs) – Standard form (2 hrs) - Solution of LPP by Graphical Method. (7 hrs) - The Simplex Method (8 hrs)	23	Chalk & Talk , LCD
II	Transportation Problems: Mathematical Formulation of TP (4 hrs)- Initial Basic Feasible Solution (all methods) (7 hrs)- Optimum solution of TP (MODI Method). (7 hrs)	18	Chalk & Talk , PPT
III	Assignment Problems: Mathematical formulation of Assignment Problems(3 hrs) – Solution to Assignment Problems. (7 hrs) – Travelling Salesman Problem (5 hrs)	15	Chalk & Talk , Seminar
IV	Games and Strategies: Introduction – Two person zero sum game (1 hr) – The Maximin – Minimax Principle(3 hrs) - Saddle point (2 hrs) – Games without saddle point (3 hrs) – Graphic Solution of 2 x n and m x 2 Games (3 hrs) – Dominance Property (4 hrs)	16	Chalk & Talk , Group Discussion
V	Network Flow Problems(5 hrs) – Minimal Spanning Tree Problem (6 hrs) – Shortest Route Problems(7 hrs)	18	Chalk & Talk , PPT

Course Designed By: Dr. S. Suriyakala and Dr. M. Sasikala

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

			Cas	4: a A	Coat	on D			
		ļ	Section A			on B	g g	Section	
Inte		K Level	MCQs		Short A	nswers	Section C	D	
rnal	Cos		No. of. Questio ns	K - Level	No. of. Questions	K - Level	Either or Choice	Open Choice	
CI	CO1	K4	2	K1 & K2	1	K2	2 (K3 & K3)	1 (K4)	
ΑI	CO2	К3	2	K2 & K2	2	K2 & K2	2 (K3 & K3)	2 (K3)	
CI	CO3	К3	2	K1& K2	1	K2	2 (K3 & K3)	2 (K3)	
AII	CO4	K4	2	K2 & K2	2	K2 & K2	2 (K4 & K4)	1 (K4)	
		No. of Questions to be asked No. of	4		3		4	3	
_	estion tern	Questions to be answered	4		3		2	2	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	20	

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K 1	1	-	-	-	1	1.67	16.67			
	K2	3	6	-	-	9	15	10.07			
CIA	К3	-	-	20	20	40	66.67	66.67			
I	K4	-	-	-	10	10	1.67	1.67			
_	Marks	4	6	20	30	60	100	100			
	K1	1	-	-	-	1	1.67	16.67			
	K2	3	6	-	-	9	15	10.07			
CIA	К3	-	-	10	20	30	50	50			
II	K4	-	-	10	10	20	33.33	33.33			
	Marks	4	6	20	30	60	100	100			

- K1- Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
		T 7	MC		Short An	swers	Section C	Section D		
S.No	COs	K - Level	No. of	K –	No. of	K –	(Either / or	(Open		
		Levei	Questions	Level	Question	Level	Choice)	Choice)		
1	CO1	K4	2	K1&K2	1	K1	2 (K3 &K3)	1 (K4)		
2	CO2	К3	2	K1&K2	1	K1	2 (K3 &K3)	1 (K3)		
3	CO3	К3	2	K1&K2	1	K2	2 (K3 &K3)	1 (K3)		
4	CO4	K4	2	K1&K2	1	K2	2 (K4 &K4)	1 (K4)		
5	CO5	К3	2	K1&K2	1	K2	2 (K3 &K3)	1 (K3)		
No. o	of Questic	ons to be	10		5		10	5		
	Asked		10		3		10			
No. o	of Questic		10		5		5	3		
	answere				_		_			
Mark	Marks for each question		1		2		5	10		
Total Marks for each		10		10		25	30			
	section		10		10		25	30		
	(Figures	in parenth	esis denotes,	questions	should be a	sked wit	th the given K	level)		

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	16.67
K2	5	6	-	-	11	9.17	10.07
К3	-	-	40	30	70	58.33	58.33
K4	-	-	10	20	30	25	25
Marks	10	10	50	50	120	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

			ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	pe)
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K3	
16) b	CO1	К3	
17) a	CO2	K3	
17) b	CO2	К3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K4	
19) b	CO4	K4	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Hi			formance of the students is to be assessed by attempting higher
		en Choice	<u> </u>
		Three ques	
Q.No	CO	K Level	Questions
21	CO1	K4	Z management
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K3	
	203	113	

(For those who joined in 2021-2022 and after)

Course Name APPLIED MICROBIOLOGY							
Course Code 21UMBA42	Code 21UMBA42 L P C						
Category ALLIED MICROBIOLOGY - II	ALLIED MICROBIOLOGY - II 6 - 4						
Nature of course EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRI	ENURS	HIP	✓				
Course Objectives:							
To provide information regarding biofertilizers and their significance.							
➤ To gain the Knowledge about microbes present in environments							
To learn to isolate industrially important organisms							
To understand the key concepts in food microbiology							
To acquire various basic concepts of medical microbiology							
Unit: I Agricultural microbiology	Agricultural microbiology 18						
Soil - general properties - Soil microflora and its importance. Microbial tr	ansform	ation	of				
Carbon, Nitrogen and phosphorus. Beneficial microorganisms in agricu	lture: 1	Bacte	rial				
biofertilizer – Rhizobium, Bacterial insecticides - Bacillus thuringiensis.							
Unit: II Environmental microbiology		18					
Microbes in air - Microbial assessment of air quality - Microbes in water - Micro	obial ass	sessm	ent				
of water quality - sewage water treatment-primary, secondary and tertiary -	Microbe	es in	the				
production of biogas.							
Unit: III Industrial microbiology		18					
Industrially important microorganisms - Bioreactors / Fermenter, compon	ents of	typi	ical				
fermenter - applications -microbial production of Industrial products - Ethano	l, Penic	illin a	and				
vitamin B12.							
Unit: IV Food microbiology		18					
Important microorganisms in food (bacteria, molds and yeasts). Sources of food	i Coman	actors that influence microbial growth in food - Intrinsic factors -extrinsic factors.					
		facto	ors.				
		facto	ors.				
Factors that influence microbial growth in food - Intrinsic factors -ex		facto	ors.				
Factors that influence microbial growth in food - Intrinsic factors -ex Microorganisms as food - SCP, edible mushrooms. Probiotics and their benefits.	xtrinsic	18					
Factors that influence microbial growth in food - Intrinsic factors -ex Microorganisms as food - SCP, edible mushrooms. Probiotics and their benefits. Unit: V Medical microbiology	xtrinsic	18					

Text Books:

- 1. Satyanarayana U. **Biotechnology**, 12th Edition, Books and Allied Pvt. Ltd, 2019.
- 2. Willey J, Sandman K AND Wood D, **Prescott's Microbiology**. 11th Edition. McGraw Hill education, 2019.
- 3. Crueger W and Crueger A. **Biotechnology: A textbook of Industrial Microbiology**, 2nd Edition. Panima Publishing Company, New Delhi, 2000.

Books For Reference:

- 1. Joseph C Daniel. **Environmental aspects of Microbiology**, 1st edition, Bright Sun publications, Chennai, 1999.
- 2. Mitchell R. **Introduction to Environmental Microbiology,** Printice Hall. Inc., Englewood Cliffs, New Jersey, 1974.

- 3. Patel A.H. **Industrial microbiology**, 2nd edition, Mac Millan India Ltd., New Delhi, 2005.
- 4. Sivashankar B. **Food Processing and Preservation**, Eastern Economy edition, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 5. SubbaRao N.S. **Soil Microbiology**, 4th edition, Oxford and BH Publishing Co. Pvt. Ltd., New Delhi, 2004.

Web Resources:

- 1.http://www.swayam.gov.in/
- 2.http://www.nptel.ac.in/
- 3.https://www.sciencedirect.com/food-microbiology

C CLICO BEOTT	**************************************					
COURSE	COURSE OUTCOME					
On succe	On successful completion of the course, the learners will be able to					
CO1:	Recognize the Beneficial microorganism in agriculture	Up to K2				
CO2:	Experiment with the role of microbes present in air and water.	Up to K3				
CO3:	Analyze and compare the important microorganisms in food	Up to K4				
CO4:	Examine the Industrially important microorganisms and its products.	Up to K4				
CO5:	Summarize the importance of microbes in human diseases	Up to K3				

CO & PO Mapping:

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	3	2	2
CO 2	3	3	3	3	3	2
CO 3	3	3	3	3	3	1
CO 4	3	3	3	3	3	2
CO5	3	3	3	3	3	2

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Mode
I	Agricultural microbiology - Soil - general properties - Soil microflora and its importance. Microbial transformation of Carbon, Nitrogen and phosphorus. Beneficial microorganism in agriculture: Bacterial biofertilizer – Rhizobium, Bacterial insecticides - Bacillus thuringiensis	18	Chalk and talk, PPT
II	Environmental microbiology - Microbes in air - Microbial assessment of air quality - Microbes in water - Microbial assessment of water quality - sewage water treatment-primary, secondary and tertiary - Microbes in the production of biogas	18	Chalk and talk, PPT
III	Industrial microbiology- Industrially important microorganisms- Bioreactors / Fermenter-components of typical fermenter - applications -microbial production of Industrial products—Ethanol, Penicillin and vitamin B12	18	Chalk and talk, PPT
IV	Food microbiology -Important microorganisms in food (Bacteria, Molds and Yeasts) Sources of contamination of food. Factors that influence microbial growth in food - Intrinsic factors -extrinsic factors. Microorganisms as food - SCP, edible mushrooms. Probiotics and their benefits.	18	Chalk and talk, PPT
V	Medical microbiology - Normal micro flora of the human body- role of normal flora – beneficial and harmful effect. Important human diseases -Typhoid, Hepatitis, Aspergillosis & Malaria.	18	Chalk and talk, PPT, Assignment

Course Designed by: 1. Dr. S. Subramani, Assistant Professor.
2. Ms. C. Thenmozhi, Assistant Professor.

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

The detailed with course outcomes (COS)									
			Secti	on A	Sectio	n B	Section C	Section D	
Internal	Cos	K Level	MC	CQs	Short Answers			Open Open	
Internal	Cus	K Level	No. of. Questions	K - Level	No. of. Questions	K - Level	Section C Either or Choice 2(K2&K2) 2(K3&K3) 2(K2&K2) 2(K3&K3) 4	Choice	
CIA I	CO1	Up to K2	2	K1& K2	1	K2	2(K2&K2)	1(K2)	
CIAI	CO2	Up to K3	2	K1 & K2	2	K2	Either or Choice 2(K2&K2) 2(K3&K3) 2(K2&K2) 2(K3&K3) 4	2(K2&K3)	
C		Up to K4	2	K1 & K2	1	K2	2(K2&K2)	1(K4)	
CIA II	CO4	Up to K4	2	K1 & K2	2	K2	2(K3&K3)	2(K3&K4)	
		No. of Questions to be asked	4		3		4	3	
Questic Patter		No. of Questions to be answered	4		3		2	2	
CIA I &	z II	Marks for each question	1		2		5	10	
		Total Marks for each	4		6		10	20	

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %		
	K1	2	-	-	-	2	3.33	67		
	K2	2	6	10	20	38	63.34	07		
CIA	К3	-	•	10	10	20	33.33	33		
I	K4	-	•	-	-	•	-	-		
_	Marks	4	6	20	30	60	100	100		
	K 1	2	-	-	-	2	3.33	34		
CTA	K2	2	6	10	-	18	30	34		
CIA II	К3	-	-	10	10	20	33.33	33		
11	K4	-	-	-	20	20	33.33	33		
	Marks	4	6	20	30	60	100	100		

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

 ${
m CO5}$ will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
			MC		Short An	swers	Section C	Section			
S. No	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	D (Open Choice)			
1	CO1	Up to K2	2	K1&K2	1	K2	2(K2&K2)	1(K2)			
2	CO2	Up to K3	2	K1&K2	1	K2	2(K3&K3)	1(K3)			
3	CO3	Up to K4	2	K1&K2	1	K2	2(K3&K3)	1(K4)			
4	CO4	Up to K4	2	K1&K2	1	K2	2(K4&K4)	1(K4)			
5	CO5	Up to K3	2	K1&K2	1	K2	2(K2&K2)	1(K3)			
No.	of Questi Aske	ons to be	10		5		10	5			
No.	No. of Questions to be answered		10		5		5	3			
Mark	s for eacl	h question	1		2		5	10			
Tot	Total Marks for each section		10		10		25	30			
	(Figures	in parenthe	esis denotes, o	questions sl	hould be ask	ed with t	he given K lev	vel)			

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	-	-	-	5	4.16	42			
K2	5	10	20	10	45	37.5	42			
К3	-	-	20	20	40	33.33	33			
K4	-	-	10	20	30	25	25			
Marks	10	10	50	50	120	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

${\bf Summative\ Examinations\ -\ Question\ Paper\ -\ Format}$

Section	A (Mu	ıltiple Cho	oice Questions)
Answei	r All Q	uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
Answei	r All Q	uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section	C (Eit	her/Or Ty	pe)
Answei	r All Q	uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K1	
16) b	CO1	K1	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K4	
19) b	CO4	K4	
20) a	CO5	K2	
20) b	CO5	K2	
			formance of the students is to be assessed by attempting higher
level of			
		en Choice	
		Three ques	
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K4	
24	CO4	K4	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	WATER TREATMENT	,						
Course Code	21UCHN41			L	P	C		
Category	Category Non Major Elective							
Nature of course	e: EMPLOYABILITY	SKILL ORIENTED	ENTREPREN	URS	HIP	✓		
Course Objecti	ves:					,		
• To Recall the	e hardness of water, boiling	g, boiler feed water and de	esalination.					
 To Rememb 	er the estimation of hardne	ss of water, chlorination a	nd membrane ted	chniq	ues.			
 To Compare 	e the ultraviolet treatment, i	nternal and external condi	tioning and osme	osis.				
• To Perform	the break point chlorination	n, difference in types of di	stillation.					
• To Determin	ne the water quality standar	ds, priming, foaming and	ion exchange pro	cess.				
Unit: I HA	RDNESS OF WATER				06	5		
Introduction - T	ypes of impurities present i	n water - Hardness of wat	er - Estimation o	f h	ardne	ess		
by EDTA metho	od - Domestic water treatme	ent - water quality standar	ds.					
Unit: II STI	ERILIZATION METHO	DS			06	<u> </u>		
Sterilization - Bo	oiling - Ozone gas treatmen	nt - Ultraviolet treatment -	- Chlorination –	Break	с р	oint		
chlorination.								
	ILER TROUBLES				06			
Boiler feed war	ter - Scale and sludge for	ormation - Comparison	of sludge and s	scale	- Bo	oiler		
corrosion - Rem	noval of carbon dioxide and	d dissolved oxygen – Cau	istic embrittleme	nt - I	Primi	ng -		
Foaming - Requ	irements of boiler feed wat	er						
	TER CONDITIONING				06			
	oning - Colloidal conditio							
	itioning. External conditio							
_	Ivantages and disadvantage	es of ion exchange process	s - Difference be	tweer	n inte	rnal		
	d external conditioning.							
	SALINATION				06			
	Reverse osmosis – Electr	odialysis – Thermal dist	illation – Solar	disti	llatio	n –		
Membrane Tech	inologies.							
		To	otal Lecture Ho	urs	30 H	rs		
Books for Study	y:							
1. Nicholas P. C	Cheremisinoff, Handbook	of water and wastewater t	reatment techno	logies	s, Bos	ston		
	tland Johannesburg Melbou			O	,			
Books for Refer		,						
1. B.K.Sharma,	Industrial Chemistry, Goel	publishing House, Meeru	ıt, 2003, New De	lhi.				
	Industrial Chemical Prod				y, 20	005,		
Mumbai.				•	•			
Web Resources	5:							
	be/ByCMhI2yi2M							
	be/XKNDXrlBnLM							
	oe/aGo0GUAAeuA							
	be/zXKHjS_Q9wE			- -				
Course Outcom	nes			<u> </u>	K Lev	/el		

On th	On the completion of the course the student will be able to						
CO1:	Recall the general characteristics of hardness of water and its estimation.	[Up to K2]					
CO2:	Discuss the sterilization methods and comparison of sludge and scale.	[Up to K3]					
CO3:	Understand the concepts of internal conditioning and external conditioning.	[Up to K3]					
CO4:	Examine the boiler corrosion and demineralization processes.	[Up to K4]					
CO5:	Apply the domestic water treatment and ultraviolet treatment on water analysis.	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	HARDNESS OF WATER Introduction - Types of impurities present in water - Hardness of water - Estimation of hardness by EDTA method - Domestic water treatment - water quality standards.	12	Chalk, Talk & Power point
II	STERILIZATION METHODS Sterilization - Boiling - Ozone gas treatment - Ultraviolet treatment - Chlorination - Break point chlorination.	12	Chalk, Talk & Power point
III	BOILER TROUBLES Boiler feed water - Scale and sludge formation - Comparison of sludge and scale - Boiler corrosion - Removal of carbon dioxide and dissolved oxygen - Caustic embrittlement - Priming - Foaming - Requirements of boiler feed water.	12	Chalk, Talk & Power point
IV	WATER CONDITIONING Internal conditioning - Colloidal conditioning - Phosphate conditioning - Calgon conditioning - Carbonate conditioning. External conditioning - Demineralization process - Regeneration of ion exchangers - Advantages and disadvantages of ion exchange process - Difference between internal conditioning and external conditioning.	12	Chalk, Talk & Power point
V	DESALINATION Desalination - Reverse osmosis - Electrodialysis - Thermal distillation - Solar distillation - Membrane Technologies.	12	Chalk, Talk & Power point

Course Designed by: Dr. A. J. Sunija & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

Course Name	ORGANIC CHEMIS	PRGANIC CHEMISTRY – III						
Course Code	21UCHC51	UCHC51 L P C						
Category	Core	Core 6 - 6						
Nature of cours	: EMPLOYABILITY ✓ SKILL ORIENTED ENTREPRENURSHIP ✓						✓	
Course Objecti	Course Objectives:							

- To Recall the characteristics of alicyclic compounds, conformational analysis and Civetone and Muscone.
- To Remember the free radicals and molecular rearrangements.
- To Compare the heterocyclic compounds, alkaloids and terpenes.
- To Interpret the structure and classifications of proteins and nucleic acids.
- To Determine the principles and applications of spectroscopy.

Unit: I ALICYCLIC COMPOUNDS, CONFORMATIONAL ANALYSIS, 18 **CIVETONE AND MUSCONE**

Alicyclic compounds: General methods of preparation and properties of cycloparaffins Baeyer's strain theory and its modification. Conformational Analysis: Difference between configuration and conformation- Fisher- Saw horse and Newman Projection formulate -Conformational analysis of ethane, n-butane 1,2- dichloroethane, cyclohexane and monosubstituted cyclohexane. Civetone and Muscone any one method of synthesis Structure only (no Structural elucidation)

Unit: II MOLECULAR REARRANGEMENT AND FREE RADICALS 18

Molecular rearrangements: Detailed mechanisms of the following: pinacol - Pinacolone, Hofmann, Curtius, benzil-benzilic acid, claisen, benzidine, Fries and Wagner-Meerwein rearrangements. Free radicals: Definition - preparation and reactions of short lived and long-lived free radicals - Reaction and Mechanism of Sand Meyer reaction, Gomberg reaction and Hofmann-Loeffler reaction - chain reactions - photochemical reactions of olefins - cis-trans isomerization.

Unit: III | HETEROCYCLIC COMPOUNDS

18

Heterocyclic compounds: Introduction and definition, Preparation and basic properties of pyrrole, pyridine, quinoline and isoquinoline. Alkaloids: Definition - occurrence and extraction of alkaloids - general methods for determining the structure of alkaloids classification of alkaloids – structural elucidation – coniine, piperine and nicotine. Terpenes: Introduction, classification, occurrence and isolation – general properties – isoprene rule – general methods of determining structure. Properties, Structure of citral and terpineol.

Unit: IV | PROTEINS AND NUCLEIC ACIDS

Proteins: Definition - Classification of Amino Acids - Zwitter ion - Peptide bond Classification of proteins - colour reactions of proteins - primary, secondary, tertiary and quaternary structure of proteins (an elementary idea only). Nucleic acids: Definition -Classification of Nucleic acids – nucleosides – nucleotides – difference between nucleosides and nucleotides - RNA and DNA general structure - Basic structure of DNA and RNA -Functions of DNA and RNA – RNA types.

PRINCIPLES AND APPLICATIONS OF SPECTROSCOPY Unit: V

18

UV: Introduction- Type of electronic transition - absorption law bathochromic shift and

hypso chromic shift – hyperchromic and hypochromic effect – applications of UV to organic compounds – Woodward - Fieser calculation of λ max. IR: Introduction – Instrumentation–different regions of IR, finger print regions – fundamental, overtone, Hot bands and combination bands – applications of IR to organic compounds – effect of hydrogen bonding – NH2. NMR: Introduction – Conditions for NMR active – chemical shift – shielding and deshielding effects - factors influencing chemical shift – solvent used (TMS) – splitting of signals –NMR spectra of simple ethanol and anisole.

Total Lecture Hours 90 Hrs

Books for Study:

6. Soni, P.L and Chawla. H.M, A Textbook of Organic Chemistry, S. Chand & Co., 2007, New Delhi.

Books for References:

- 9. Jain. M.K and Sharma. S.C, Modern Organic Chemistry, 4th Edition, Vishal Publishing CO., 2016, Jalandhar.
- 10. Bahl. B.S and ArunBahl, A Textbook of Organic Chemistry, S. Chand & Co., 2012, New Delhi.
- 11. Jerry March, Advanced Organic Chemistry, 4th Edition, John Wiley & Sons, 1992, New York.
- 12. Pine, S.H, Organic Chemistry, 5th Edition, McGraw Hill International Edition, Chemistry Series, 1987, New York.
- 13. Sehan N. Ege, Organic Chemistry Structure and Reactivity, 3rd Edition, A.I.T.B.S., 1998, New Delhi.
- 14.Morrison. R.T and Boyd. R.N, Organic Chemistry, 6th Edition, Printice-Hall of India Ltd., 1992, New Delhi.

Web Resources:

- 1. https://youtu.be/uJWy8mPxIzw
- 2. https://youtu.be/12hmgzeiGo4
- 3. https://youtu.be/MM4IcBYZrb4
- 4. https://youtu.be/6OOUDOVWm0M
- 5. https://youtu.be/YoQORrw_5Yk

Course	Course Outcomes						
On th	e completion of the course the student will be able to						
CO1:	Reminiscence the alicyclic compounds, free radicals and proteins and deliberate the reaction mechanism of aromatic compounds.	[Up to K2]					
CO2:	Prepare the heterocyclic compounds, short lived and long-lived free radicals.	[Up to K3]					
CO3 :	Differentiate between configuration and conformation and distinguish between proteins and nucleic acids.	[Up to K3]					
CO4:	Interpret the directive influence of substituents on electronic effects and properties of aromatic compounds.	[Up to K4]					
CO5:	Integrate the reaction mechanism of aromatic compounds and formulate in the synthetic applications.	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	ALICYCLIC COMPOUNDS, CONFORMATIONAL ANALYSIS, CIVETONE AND MUSCONE Alicyclic compounds: General methods of preparation and properties of cycloparaffins — Baeyer's strain theory and its modification. Conformational Analysis: Difference between configuration and conformation- Fisher- Saw horse and Newman Projection formulate — Conformational analysis of ethane, n-butane 1,2— dichloroethane, cyclohexane and monosubstituted cyclohexane. Civetone and Muscone any one method of synthesis — Structure only (no Structural elucidation)	18	Chalk, Talk & Power point
II	MOLECULAR REARRANGEMENT AND FREE RADICALS Molecular rearrangements: Detailed mechanisms of the following: pinacol - Pinacolone, Hofmann, Curtius, benzil-benzilic acid, claisen, benzidine, Fries and Wagner-Meerwein rearrangements. Free radicals: Definition – preparation and reactions of short lived and long-lived free radicals – Reaction and Mechanism of Sand Meyer reaction, Gomberg reaction and Hofmann-Loeffler reaction – chain reactions – photochemical reactions of olefins – cis-trans isomerization.	18	Chalk, Talk & Power point
III	HETEROCYCLIC COMPOUNDS Heterocyclic compounds: Introduction and definition, Preparation and basic properties of pyrrole, pyridine, quinoline and isoquinoline. Alkaloids: Definition – occurrence and extraction of alkaloids – general methods for determining the structure of alkaloids – classification of alkaloids – structural elucidation – coniine, piperine and nicotine. Terpenes: Introduction, classification, occurrence and isolation – general properties – isoprene rule – general methods of determining structure. Properties, Structure of citral and terpineol.	18	Chalk, Talk & Power point
IV	PROTEINS AND NUCLEIC ACIDS Proteins: Definition – Classification of Amino Acids – Zwitter ion – Peptide bond - Classification of proteins – colour reactions of proteins – primary, secondary, tertiary and quaternary structure of proteins (an	18	Chalk, Talk & Power point

	elementary idea only). Nucleic acids: Definition – Classification of Nucleic acids – nucleosides – nucleotides – difference between nucleosides and nucleotides – RNA and DNA general structure – Basic structure of DNA and RNA – Functions of DNA and RNA – RNA types.		
V	PRINCIPLES AND APPLICATIONS OF SPECTROSCOPY UV: Introduction— Type of electronic transition— absorption law bathochromic shift and hypso chromic shift— hyperchromic and hypochromic effect— applications of UV to organic compounds— Woodward— Fieser calculation of λmax. IR: Introduction— Instrumentation— different regions of IR, finger print regions— fundamental, overtone, Hot bands and combination bands—applications of IR to organic compounds—effect of hydrogen bonding—NH2. NMR: Introduction— Conditions for NMR active—chemical shift—shielding and deshielding effects—factors influencing chemical shift—solvent used (TMS)—splitting of signals—NMR spectra of simple ethanol and anisole.	18	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. A. J. Sunija

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

		Section A Section B		B	Section C	Section D		
Inte	Cos	K Level	MCQs		Short Ans	swers	Either or	Open
rnal	Cos	IX LEVEI	No. of.	K –	No. of.	K -	Choice	Choice
			Questions	Level	Questions	Level	Choice	Choice
CI	CO1	Up to K2	2	K1	1	K1	2 (K2&K2)	1(K2)
AI	CO2	Up to K3	2	K2	2	K2	2 (K3&K3)	1(K3)
CI	CO3	Up to K3	2	K1	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K2	2	K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
Pat	stion tern I & II	No. of Questions to be answered	4		3		2	1
CIA	1 & 11	Marks for each question 1 2			5	10		
		Total Marks for each section	4		6		10	10

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K 1	2	2	-	-	4	8		
	K2	2	4	10	10	26	52	60	
CIA	К3	-	•	10	10	20	40	40	
I	K4	-	•	-	-	•	•	-	
	Marks	4	6	20	20	50	100	100	
	K1	2	2	-	-	4	8		
	K2	2	4	10	10	26	52	60	
CIA	К3	-	-	10	-	10	20	20	
II	K4	-	-	-	10	10	20	20	
	Marks	4	6	20	20	50	100	100	

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Sumn	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
			MC(Qs	Short Answers		Section C	Section D
S.No	Cos	K - Level	No. of	K –	No. of	K –	(Either / or	(Open
			Questions	Level	Question	Level	Choice)	Choice)
1	CO1	Up to K 2	2	K1,K2	1	K 1	2 (K2&K2)	1(K2)
2	CO2	Upto K 3	2	K1&K2	1	K 1	2 (K3&K3)	1(K3)
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	Questions	s to be Asked	10		5		10	5
No	No.of Questions to be answered		10		5		5	3
Mar	Marks for each question		1		2		5	10
Total 1	Marks for	each section	10		10		25	30
	(Figures in parenthesis denotes, questions should be asked with the given K level)							

	Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5	4	1	1	9	7.5	33	
K2	5	6	10	10	31	25.83	33	
К3	-	-	40	20	60	50	50	
K4	-	-	-	20	20	16.67	17	
Marks	10	10	50	50	120	100	100	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	К3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
	_	en Choice	
	CO	Three ques K Level	
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO ₂	K3	
24	CO3	K4	
25	CO ₄	K4	
43	CO3	17.4	

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMISTRY PRACTICAL – III (PHYSICAL CHEMISTRY EXPERIMENTS)				
Course Code	21UCHCP3	L	P	C	
Category	Core		6	5	
Nature of course: EMPLOYABILITY SKILL ORIENTED ENTREPRENURSHIP					

Course Objectives:

- To learn the general methods for the determination of molecular weight.
- To analyze the concept of phase diagram, CST and potentiometric titrations.
- To study the equilibrium constant for the reaction
- To determine the relative strength of acids by hydrolysis of ester
- To interpret the cell constant and conductivity titration between as acid and a base.

List of Experiments

I. Determination of Molecular weight by

- a) Transition Temperature method Sodium thiosulphate pentahydrate
- b) Rast Macro method Naphthalene as Solvent

II. Phase diagram involving

a) Simple eutectic b) Compound formation

III. Critical solution temperature (CST)

Determination of CST of phenol – water system

IV. Potentiometric titrations

(a) HCl Vs NaOH (b) K₂Cr₂O₇ Vs FeSO₄.

V. Partition Coefficient experiments:

Study of the equilibrium constant for the reaction

 $KI+I_2 \leftrightarrow KI_3$

By determining the partition Co-efficient of I₂ between water an CCl₄

Determination of strength of given KI.

- **VI. Kinetics:** Determination of relative strength of acids by hydrolysis of ester.
- **VII.** Conductivity: Determination of cell constant and conductivity titration between as acid and a base (HCl Vs NaOH).

Distribution of Marks (Max. marks – 100)

Total Lecture Hours 45 Hrs

Duration of examination: 6 hrs			
Regular Test in the Class	: 30 Marks		
Observation note book	: 10 Marks		
Total	: 40 Marks		
Viva voce	: 10 marks		
Record Note book	: 10 marks		
For completion of the experiment	: 20 marks		
Graph	: 2 marks		
Calculation	: 5 marks		
Tabulation	: 3 marks		
Result	: 10 marks		

Books for Study:

Total

Thomas. A.O and Mani, Textbook of Practical Chemistry, 4th Revised Edition, Scientific Publication, 1976.

: 60 marks

Books for Reference:

- **1.** J. E. Huheey, E. A. Kieter and R. L. Keiter, Inorganic Chemistry, 4th ed., Harper Collins, New York, 1993.
- **2.** F. A. Cotton, G. Wilkinson, C. Murillo and M. Bochman, Advanced Inorganic Chemistry,6th ed., John Wiley, New York, 1999.
- 3. T. Moeller, Inorganic Chemistry: A Modern Introduction, Wiley, New York, 1990.
- 4. R. D Madan S.Chand, Modern Inorganic Chemistry band Co.Ltd, New Delhi 2012.

Web Resources:

- 1. https://youtu.be/2VzEpsEZOYo
- 2. https://youtu.be/Xwm98B3gLPw
- 3. https://youtu.be/KD7amFclq4s

Course	Course Outcomes:				
On th	On the completion of the course the student will be able to				
CO1:	Determination of molecular weight by Transition Temperature method and	[Up to K2]			
COI.	Rast macro method.				
CO2:	Involvement of phase diagram and CST.	[Up to K3]			
CO3:	Analyze the relative strength of acids by hydrolysis of ester.	[Up to K3]			
CO4:	Interpret the equilibrium constant for the reaction	[Up to K4]			
CO5:	Determine the cell constant and conductivity titration between as acid and a	[Up to K4]			
CO3:	base.	[Op to K4]			

CO & PO Mapping:

Course Outcomes			Programme O	utcomes (PC	Os)	
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	1	2	3	1	2
CO 2	1	3	1	1	2	3
CO 3	2	2	3	2	3	3
CO 4	3	1	2	2	1	2
CO5	2	3	1	3	2	1
Weightage	11	10	9	11	9	11

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	List of Experiments	Hrs	Mode
I	I. Determination of Molecular weight by		
	a) Transition Temperature method – Sodium thiosulphate		
	pentahydrate		
	b) Rast Macro method – Naphthalene as Solvent		
	II. Phase diagram involving		
	a) Simple eutectic b) Compound formation		
	III. Critical solution temperature (CST)		
	Determination of CST of phenol – water system		
	IV. Potentiometric titrations		
	(a) HCl Vs NaOH (b) K ₂ Cr ₂ O ₇ Vs FeSO ₄ .		
	V. Partition Coefficient experiments:	90	Practical
	Study of the equilibrium constant for the reaction		
	$KI+I_2 \leftrightarrow KI_3$		
	By determining the partition Co-efficient of I2 between water an		
	CCl ₄		
	Determination of strength of given KI.		
	VI. Kinetics: Determination of relative strength of acids by		
	hydrolysis of ester.		
	VII. Conductivity: Determination of cell constant and		
	conductivity titration between as acid and a base (HCl Vs NaOH).		

Course Designed by: Dr. A. J. Sunija & Dr. V. Ramasamy Raja

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMISTRY PRACTICAL – IV (GRAVIMETRIC ANALYSIS AND ORGANIC PREPARATION)					
Course Code	21UCHCP4 L P C					
Category	Core	1	3	-		
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENURSHIP ✓						

Course Objectives:

- To learn the concept of gravimetric analysis and organic preparation
- To analyze the estimation of lead, calcium, copper and nickel
- To study the organic preparation methods
- To understand the various organic preparation methods
- To interpret the gravimetric analysis and organic preparation

List of Experiments

1. Gravimetric Analysis

- 1. Estimation of lead as lead chromate
- 2. Estimation of barium as barium chromate
- 3. Estimation of calcium as calcium oxalate monohydrate
- 4. Estimation of copper as cuprous thiocyanate
- 5. Estimation of nickel as Ni DMG.

2. Organic Preparation

- 1. Nitration
- a. dinitrobenzene from nitrobenzene
- b. Picric acid from phenol
- 2. Bromination: p-bromo acetanilide from acetanilide
- 3. Hydrolysis: Aromatic acid from (a) an ester (b) an amide
- 4. Oxidation: Benzoic acid from benzaldehyde.
- 5. Benzoylation: (a) Amine (b) phenols.
- 6. Acetylation: (a) Amine (b) phenols

Distribution of Marks (Max.marks – 100) **Duration of examination: 6 hrs**

Int: 40

Regular Test in the Class : 30 Marks

Observation note book : 10 Marks

Total : 40 Marks

Academic Council Meeting Held On 20.04.2023

Record Note Book - 10 Marks Viva Voce - 10 Marks Ext: 60

Organic preparation (10 Marks)

Gravimetric Estimation (30 Marks)

Procedure - 2 Marks Procedure - 10 Marks
Crude sample - 6 Marks Estimation - 20 Marks
Recrystallised sample - 2 Marks Less than 2 % Error - 20 Marks

2-3% Error – 18 Marks 3-4% Error – 16 Marks 4-5% Error – 14 Marks

Greater than 5% Error – 8 Marks

Total Lecture Hours | 45 Hrs

Books for Reference:

- 1. Thomas. A.O and Mani, Textbook of Practical Chemistry, 4th Revised Edition, Scientific Publication, 1976.
- 2. N.S. Gnana pragasam and G. Ramamurthy, Organic Chemistry Lab Manual, Viswanath. S. Printers & Publishers Pvt. Ltd., 2010, Chennai.

Web Resources:

- 1. https://youtu.be/tftNgFVAWCY
- 2. https://youtu.be/npxbO-pzUvU
- 3. https://youtu.be/peMyqdJ57dA

Course	Course Outcomes:				
On th	On the completion of the course the student will be able to				
CO1:	Relate and classify between gravimetric analysis and organic preparation	[Up to K2]			
CO2:	Estimate lead, barium, calcium, copper and nickel.	[Up to K3]			
CO3:	Analyze the various types of organic preparation.	[Up to K3]			
CO4:	Interpret the organic preparation like nitration, bromination, hydrolysis, oxidation, benzoylation and acetylation.	[Up to K4]			
CO5 :	Assemble the analyzed and prepared organic compounds samples.	[Up to K4]			

CO & PO Mapping:

Course Outcomes			Programme O	utcomes (PC	Os)	
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	1	2	3	1	2
CO 2	1	3	1	1	2	3
CO 3	2	2	3	2	3	3
CO 4	3	1	2	2	1	2
CO5	2	3	1	3	2	1
Weightage	11	10	9	11	9	11

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	List of Experiments		Mode
	1. Gravimetric Analysis		
	 Estimation of lead as lead chromate Estimation of barium as barium chromate Estimation of calcium as calcium oxalate monohydrate Estimation of copper as cuprous thiocyanate Estimation of nickel as Ni DMG. 		
I	2. Organic Preparation	45	Practical
	1. Nitration		
	a. M-dinitrobenzene from nitrobenzene		
	b. Picric acid from phenol		
	2. Bromination: p-bromo acetanilide from acetanilide		
	3. Hydrolysis : Aromatic acid from (a) an ester (b) an amide		
	4. Oxidation: Benzoic acid from benzaldehyde.		
	5. Benzoylation: (a) Amine (b) phenols.		
	6. Acetylation: (a) Amine (b) phenols		

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMISTRY PRACTICAL – V (ORGANIC ANALYSIS AND ESTIMATION)				
Course Code	21UCHCP5	L	P	C	
Category	Core	-	3	1	
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENURSHIP ✓					

Course Objectives:

- To learn the analysis of an organic compound containing one or two functional groups.
- To analyze the concept of confirmation of the prepared one or two functional organic compounds
- To study estimation of phenol, aniline and glucose
- To understand the various functional groups of organic compounds
- To interpret organic analysis and estimation of organic compounds

List of Experiments

I. Organic Analysis

Analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative – acids, phenols, aldehydes, ketone, esters, nitro compounds, amines (primary, secondary and tertiary), aniline, aliphatic diamide, side chain and nuclear halogen compounds, diamide containing sulphur and monosaccharide.

II. ORGANIC ESTIMATION

- 1. Estimation of phenol
- 2. Estimation of aniline
- 3. Estimation of glucose

Distribution of Marks (Max. marks – 100)

Duration of examination: 6 hrs

Regular Test in the Class
Observation note book
: 30 Marks
: 10 Marks
-----Total
: 40 Marks

Organic estimation (30 Marks)

Organic analysis (30 Marks)

Record Note	- 10 marks	Viva Voce	– 10 marks
Procedure	- 5 marks	Preliminary reaction	- 2 marks
Estimation	- 15 marks	Elements present	- 4 marks
Less than 3%	Error – 15 Marks	Aliphatic or aromatic	- 3 marks
3-4%	Error – 13 Marks	Saturated / Unsaturated	- 3 marks

4-5% Error – 10 Marks	Functional group	- 6 marks
Greater than 5% - 8 Marks	Derivative	- 2 marks

Total Lecture Hours 45 Hrs

Books for Reference:

- 3. Thomas. A.O and Mani, Textbook of Practical Chemistry, 4th Revised Edition, Scientific Publication, 1976.
- 4. N.S. Gnana pragasam and G. Ramamurthy, Organic Chemistry Lab Manual, Viswanath. S. Printers & Publishers Pvt. Ltd., 2010, Chennai.

Web Resources:

- 1. https://youtu.be/1uJk4K_irP8
- 2. https://youtu.be/xQJOfAKgSOY
- 3. https://youtu.be/xMjJxjhJWj4

Course	Course Outcomes:						
On the completion of the course the student will be able to							
CO1:	Relate and classify between organic analysis and estimation of organic compounds	[Up to K2]					
CO2:	Estimate the phenol, aniline and glucose	[Up to K3]					
CO3:	Analyze the one or two functional groups of organic compounds	[Up to K3]					
CO4:	Interpret the organic analysis and estimation of organic compounds	[Up to K4]					
CO5:	Distinguish between analysis and estimation of one or two functional groups of organic compounds	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	2	3	1	3	2	1			
Weightage	11	10	9	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	List of Experiments	Hrs	Mode
I	I. Organic Analysis Analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative — acids, phenols, aldehydes, ketone, esters, nitro compounds, amines (primary, secondary and tertiary), aniline, aliphatic diamide, side chain and nuclear halogen compounds, diamide containing sulphur and monosaccharide. II. ORGANIC ESTIMATION 1. Estimation of phenol 2. Estimation of glucose	45	Practical

Course Designed by: Dr. V. Ramasamy Raja & Dr. K. Muthupandi

(For those who joined in 2021-2022 and after)

	ANALYTICAL CHEMISTRY											
Course Code 21UCHE51												
Category	CORE ELECTIVE	5	-	5								
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPREN												
Course Objecti	ves:			ı								
• To Recall th	e principle involved in the gravimetric analysis.											
• To Rememb	er the methods of precipitation and classification of errors.											
• To Analysis	the instrumental methods and its principles and applications.											
• To Know the	e photocatalytic reactor and photocatalytic calorimeter.											
• To Analyze	theory of chromatographic technique and applications.											
Unit: I PR	INCIPLES OF GRAVIMETRIC ANALYSIS		15	í								
Introduction to	gravimetric analysis - precipitation methods - conditions for p	orecip	itatio	n .								
	and precipitate formation - the purity of the precipitate: co-precipitate											
*	solubility product and precipitation - precipitation from homogene											
• •	precipitate - organic precipitants: dimethylglyoxime, cupferron, oxine											
	ROR ANALYSIS		15									
	f errors - determinate errors (systematic errors) and indeterminate	(ranc	_									
	nimization of errors: calibration of apparatus, analysis of standard sar											
				a blank determination and independent analysis - absolute and relative error - types of errors -								
correction of determinate errors and indeterminate errors - precision and accuracy: definition and												
				anc								
difference - cal	culation of mean - median and standard deviation - F-test, t- tes	t and		anc								
difference - cal confidence limit	culation of mean - median and standard deviation - F-test, t- test; - method of least squares - significant figures - rounding off the value	t and es.	Q-te	and st								
difference - cal confidence limit Unit: III TH	culation of mean - median and standard deviation - F-test, t- test: - method of least squares - significant figures - rounding off the valuer ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH	t and es.	Q-te	ancest -								
difference - cal confidence limit Unit: III TH Thermo Analy	culation of mean - median and standard deviation - F-test, t- test: - method of least squares - significant figures - rounding off the valuer ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHOD tical Methods: Thermogravimetric analysis (TGA): principle - therefore	t and es. IODS mal a	Q-te	and st -								
difference - cal confidence limit Unit: III TH Thermo Analyte derivative therm	culation of mean - median and standard deviation - F-test, t- test; - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods : Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA	t and es. ODS mal ar instr	Q-te	and est - is -								
difference - cal confidence limit Unit: III TH Thermo Analyte derivative thermal applications of the confidence of the	culation of mean - median and standard deviation - F-test, t- test :- method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHO tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instru	t and es. ODS mal ar instr ment-	Q-te	is -								
difference - cal confidence limit Unit: III TH Thermo Analyte derivative therm applications of to calcium oxalate.	culation of mean - median and standard deviation - F-test, t- test; - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods : Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction in the monohydrate. Electro Analytical Methods : Electrogravimetry	t and es. ODS mal ar instr ment- ele	Q-ted 15 nalys umer DTA	is - A of								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods : Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction of the monohydrate. Electro Analytical Methods : Electrogravimetry the metals - polarography - principles and applications - amperometrical methods.	t and es. ODS mal ar instr ment- ele	Q-ted 15 nalys umer DTA	is -								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test: - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHOD tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction in the monohydrate. Electro Analytical Methods: Electrogravimetry the metals - polarography - principles and applications - amperometric polications.	t and es. ODS mal ar instr ment- ele	Q-te 15 nalys umer DTA ectrol ration	is - nt - A of ytic								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHODS OF ANALYSIS	t and es. [ODS mal ar instrument eleric titi	Q-te	is - A or								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test t- method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction in the monohydrate. Electro Analytical Methods: Electrogravimetry metals - polarography - principles and applications - amperometropolications. ETRUMENTAL METHODS OF ANALYSIS mentation and applications of fluorimetry - nephelometry - flame	t and es. [ODS mal ar instr ment electic titut	Q-te	is - A of								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHOD Tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction of the monohydrate. Electro Analytical Methods: Electrogravimetry the metals - polarography - principles and applications - amperometropolications. ETRUMENTAL METHODS OF ANALYSIS Internation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori	t and es. [ODS mal ar instr ment electic titut	Q-te 15 nalys umer DT/ectrol ration 15 omet	ancest is is A or yytic ry								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test t- method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction and applications - amperometry metals - polarography - principles and applications - amperometry pulcations. ETRUMENTAL METHODS OF ANALYSIS mentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori ROMATOGRAPHY	t and es. [ODS mal ar instrument-electic tite photometer]	Q-te	and sis - nt - A or ytic								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test t- method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction and applications and applications - amperometry pelications. ETRUMENTAL METHODS OF ANALYSIS Immentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori ROMATOGRAPHY ication, definition of terms, principles, basic theory of chromatograp	t and es. [ODS] mal ar instrument electic titrument photometer	Q-te 15 nalys umer DTA ectrol ratior 15 comet:	and state of the s								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction and application and applications - amperometre pplications. ETRUMENTAL METHODS OF ANALYSIS Internation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori ROMATOGRAPHY ication, definition of terms, principles, basic theory of chromatograph dling. Band broadening and column efficiency: Definition, plate the	t and es. [ODS] mal ar instrument electic titrument- photometer photometer	Q-te 15 nalys umer DTA ectrol ration 15 comet	and state of the s								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction and applications and applications - amperometry petals - polarography - principles and applications - amperometry pelications. ETRUMENTAL METHODS OF ANALYSIS Immentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori ROMATOGRAPHY ication, definition of terms, principles, basic theory of chromatograph dling. Band broadening and column efficiency: Definition, plate the atographic technique, their limitation and applications. Basic principles	t and es. [ODS mal ar instrument - electic tithe photo meter construction of the cons	Q-te 15 nalys umer DTA ectrol ratior 15 omet	and est is - its - nt is - nt ytic ry que								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods : Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruction of the monohydrate. Electro Analytical Methods : Electrogravimetry the metals - polarography - principles and applications - amperometry polications. ETRUMENTAL METHODS OF ANALYSIS The metalion and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colorication, definition of terms, principles, basic theory of chromatographic technique, their limitation and applications. Basic principles atography - Column Chromatography - Thin layer Chromatography - Thin layer Chromatography	t and es. [ODS mal ar instrument - electic tithe photo meter construction of the cons	Q-te 15 nalys umer DTA ectrol ratior 15 omet	and est is - it is - nt is - nt is - ry id que								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METH tical Methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruct monohydrate. Electro Analytical Methods: Electrogravimetry netals - polarography - principles and applications - amperometry pplications. ETRUMENTAL METHODS OF ANALYSIS Immentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colori ROMATOGRAPHY ication, definition of terms, principles, basic theory of chromatograph dling. Band broadening and column efficiency: Definition, plate the atographic technique, their limitation and applications. Basic principle natography - Column Chromatography - Thin layer Chromatography - Ion exchange Chromatography - Applications of each technique.	t and es. [ODS] mal ar instrument electic titrumenter photo meter photo to neory les of aphy	Q-te 15 nalys umer DTA ectrol ration 15 omet 15 echni and comi — Pa	and est -								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHODE Incomparison of the methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruct monohydrate. Electro Analytical Methods: Electrogravimetry metals - polarography - principles and applications - amperometropolications. STRUMENTAL METHODS OF ANALYSIS mentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colorication, definition of terms, principles, basic theory of chromatographic technique, their limitation and applications. Basic principles atography - Column Chromatography - Thin layer Chromatography - Ion exchange Chromatography - Applications of each technique. Total Lecture Ho	t and es. [ODS] mal ar instrument electic titrumenter photo meter photo to neory les of aphy	Q-te 15 nalys umer DTA ectrol ratior 15 omet	and est -								
difference - cal confidence limit Unit: III	culation of mean - median and standard deviation - F-test, t- test - method of least squares - significant figures - rounding off the value ERMO ANALYTICAL AND ELECTRO ANALYTICAL METHODE Incomparison of the methods: Thermogravimetric analysis (TGA): principle - thermogravimetry (DTG) - factors affecting thermogram - TGA thermogravimetry - differential thermal analysis (DTA), DTA instruct monohydrate. Electro Analytical Methods: Electrogravimetry metals - polarography - principles and applications - amperometropolications. STRUMENTAL METHODS OF ANALYSIS mentation and applications of fluorimetry - nephelometry - flame on spectrophotometry - photocatalytic reactor and photoelectric colorication, definition of terms, principles, basic theory of chromatographic technique, their limitation and applications. Basic principles atography - Column Chromatography - Thin layer Chromatography - Ion exchange Chromatography - Applications of each technique. Total Lecture Ho	t and es. [ODS] mal ar instrument electic titrumenter photo meter photo to neory les of aphy	Q-te 15 nalys umer DTA ectrol ration 15 omet 15 echni and comi — Pa	is start is a start is								

& sons, 3rd edition 2004.

- 2. S.M.Khopkar, Basic concepts of Analytical Chemistry, Wiley Eastern Ltd.
- 3. A.I Vogel, A Text book of Qualitative Inorganic Analysis, ELBS 4th edition, 2002,
- 4. V.K. Srivastava, K.K. Srivastava, Introduction to Chromatography, S. Chand and Company Ltd., 3rd edition, 1985.

Books for References:

- 2. P.L. Soni, M. Katyal, Test book of Inorganic Chemistry, Sultan Chand and Sons, Reprint, 2015
- 3. Chatwal Anand, Instrumental methods of chemical analysis, Himalaya Publishing House, 5th edition, 2005

Web Resources:

- 1. https://youtu.be/KHpRNb_38OM
- 2. https://youtu.be/lB3Uni2gRkA
- 3. https://youtu.be/NzbDEjI8IKE
- 4. https://youtu.be/ck0qEruFy_o

Course	Course Outcomes							
On th	On the completion of the course the student will be able to							
CO1:	Ability to understand the concept of chromatography	[Up to K2]						
CO2:	Discuss the interplanar spacing and principles of gravimetric analysis	[Up to K3]						
CO3:	Interpret the methods of obtaining precipitate and types of errors	[Up to K3]						
CO4:	Examine the experimental analysis of methods	[Up to K4]						
CO5:	Analyze the chromatographic technique and applications	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	PRINCIPLES OF GRAVIMETRIC ANALYSIS Introduction to gravimetric analysis - precipitation methods - conditions for precipitation - supersaturation and precipitate formation - the purity of the precipitate: co-precipitation - post precipitation - solubility product and precipitation - precipitation from homogeneous solution - washing of the precipitate - organic precipitants: dimethylglyoxime, cupferron, oxine and cupron.	15	Chalk, Talk & Power point
II	ERROR ANALYSIS Classification of errors - determinate errors (systematic errors) and indeterminate (random and accidental) - minimization of errors: calibration of apparatus, analysis of standard samples, running a blank determination and independent analysis - absolute and relative error - types of errors - correction of determinate errors and indeterminate errors - precision and accuracy: definition and difference - calculation of mean - median and standard deviation - F-test, t- test and Q-test - confidence limit - method of least squares - significant figures - rounding off the values.	15	Chalk, Talk & Power point
III	THERMO ANALYTICAL AND ELECTRO ANALYTICAL METHODS Thermo Analytical Methods: Thermogravimetric analysis (TGA): principle - thermal analysis - derivative thermo gravimetry (DTG) - factors affecting thermogram - TGA instrument - applications of thermogravimetry - differential thermal analysis (DTA), DTA instrument- DTA of calcium oxalate monohydrate. Electro Analytical Methods: Electrogravimetry - electrolytic separation of metals - polarography - principles and applications - amperometric titrations - principles and applications.	15	Chalk, Talk & Power point
IV	INSTRUMENTAL METHODS OF ANALYSIS Principle, instrumentation and applications of fluorimetry - nephelometry - flame photometry - atomic absorption spectrophotometry - photocatalytic reactor and photoelectric	15	Chalk, Talk & Power point

Volume VI – Science Syllabus / 2023 - 2024

colorimeter.	
CHROMATOGRAPHY History, Classification, definition of terms, principles, basic theory of chromatographic technique and sample handling. Band broadening and column efficiency: Definition, plate theory and rate theory of chromatographic technique, their limitation and applications. Basic principles of common types of Chromatography – Column Chromatography – Thin layer Chromatography – Paper Chromatography – Ion exchange Chromatography – Applications of	Chalk, Talk & Power point

Course Designed by: Dr. V. Ramasamy Raja & Dr. R. Satheesh

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Section A		Secti	on B		Section
Inte			MCQs		Short A	nswers	Section C	D
rnal	Cos	K Level	No. of. Question	K – Level	No. of. Question s	K - Level	Either or Choice	Open Choice
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
_	estion ttern	No. of Questions to be answered	4		3		2	1
CIA	I & II	Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	10	20	40	40				
I	K4	-	-	-	-	-	-	•				
_	Marks	4	6	20	20	50	100	100				
	K1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	-	10	20	20				
II	K4	-	-	-	10	10	20	20				
	Marks	4	6	20	20	50	100	100				

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)

			MC	Qs	Short An	swers	Section C	Section
S. No	COs	K - Level	No. of Question	K – Level	No. of Question	K – Level	(Either / or Choice)	D (Open Choice)
1	CO1	Up to K2	2	K1,K2	1	K 1	2 (K2&K2)	1(K2)
2	CO2	Up to K3	2	K1&K2	1	K 1	2 (K3&K3)	1(K3)
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	Questions	to be Asked	10		5		10	5
No.	No. of Questions to be answered		10		5		5	3
Marl	Marks for each question		1		2		5	10
Total N	Aarks for	each section	10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	-	-	9	7.5	33					
K2	5	6	10	10	31	25.83	33					
K3	-	-	40	20	60	50	50					
K4	-	-	-	20	20	16.67	17					
Marks	10	10	50	50	120	100	100					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section A	A (Mul	tiple Choic	ce Questions)
Answer			(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section 1	B (Shor	rt Answers	
Answer	All Qu	estions	(5x2=10 marks)
Q. No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section 6	C (Eith	er/Or Typ	e)
Answer	All Qu	estions	$(5 \times 5 = 25 \text{ marks})$
Q. No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			rmance of the students is to be assessed by attempting higher
level of I			
		n Choice)	
		ree questi	
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	

(For those who joined in 2021-2022 and after)

Course Name	SUPRAMOLECULAR CHEMISTRY						
Course Code	21UCHE53	L 5	P -	C 5			
Category	CORE ELECTIVE						
lature of cour	se: EMPLOYABILITY SKILL ORIENTED ENTREPREN	URS	HIP	✓			
Course Object	ives:						
• To Recall th	ne selectivity, kinetic and thermodynamic concepts						
	ber the ionic and dipole – dipole interactions and hydrogen bonding						
	e the host – guest method and cation binding						
_	the anion and neutral binding and hydrogen binding interactions						
 To Determi 	ne the structure of zeolite and properties of coordination polymers						
Unit: I IN'	INTRODUCTION TO SUPRAMOLECULAR CHEMISTRY						
Introduction - s	electivity - the lock and key principle and induced-fit model - complete	menta	ırity -	· co			
operativity and	the chelate effect - preorganisation - binding constants - kinetic and the	hermo	odyna	ımi			
selectivity.			15				
	SUPRAMOLECULAR INTERACTIONS						
•	interactions: ionic and dipolar interactions - hydrogen bonding - π	t-inte	actio	ns ·			
	nteractions - hydrophobic effects - supramolecular design.		15				
Unit: III HOST - GUEST CHEMISTRY AND CATION BINDING							
	Chemistry : Introduction - guests in solution - macrocyclic versus acyclic						
	sis - template synthesis. Cation Binding: Introduction, crown ether						
	- spherands - hemispherands - cryptaspherands - heterocrowns - hete	erocry	ptan	ds -			
calixarenes.	ION AND NEUTRAL BINDINGS		1.5	,			
			15				
	: charged receptaors, electrostatic interactions, electrostatic, hydrautral receptors, Lewis-acid receptors and anticrowns - metal containing						
	ation and anion receptors - neutral binding.	ing re	сери	Л8			
	LID STATE SUPRAMOLECULAR CHEMISTRY		15	<u> </u>			
	zeolites: structure, composition, zeolites and catalysis - clathrates -	. ures					
	mesic acid clathrates - hydroquinone and Dianin's compound -						
	l organic frameworks and properties of coordination polymers.	•	Tallic	itioi			
	Total Lecture Ho	urs	75 H	rs			
	Total Decinic 110						
Books for Stud							

Books for References:

1. Katsuhiko Ariga, Toyoki Kunitake, Supramolecular Chemistry - Fundamentals and Applications, Advanced Textbook, Original Japanese edition published by Iwanami Shoten Publishers, Tokyo, https://doi.org/10.1007/b137036, Springer-Verlag Berlin Heidelberg 2006

Web Resources:

- 1. https://youtu.be/dsJzRxnz2Qg
- 2. https://youtu.be/YbeRLkhYZM0

Volume VI – Science Syllabus / 2023 - 2024

Course	e Outcomes	K Level
On th	e completion of the course the student will be able to	
CO1:	Ability to understand the ionic and dipole – dipole interactions and hydrogen	IIIn to W21
COI	bonding	[Up to K2]
CO2:	Discuss the host – guest method and cation binding	[Up to K3]
CO3:	Interpret the anion and neutral binding and hydrogen binding interactions	[Up to K3]
CO4:	Examine the structure of zeolite and properties of coordination polymers	[Up to K4]
CO5:	Distinguish between selectivity, kinetic and thermodynamic concepts	[Up to K4]

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	INTRODUCTION TO SUPRAMOLECULAR CHEMISTRY Distillation and fractionation of petroleum. Commercial uses of different petroleum fractions. Analysis of petroleum products. Analysis of traces of petroleum products in forensic exhibits. Comparison of petroleum	15	Chalk, Talk & Power point
	products. Adulteration of petroleum products.		P
II	SUPRAMOLECULAR INTERACTIONS Supramolecular interactions: ionic and dipolar interactions - hydrogen bonding - π -interactions - van der waals interactions - hydrophobic effects - supramolecular design.	15	Chalk, Talk & Power point
III	HOST – GUEST CHEMISTRY AND CATION BINDING Host – Guest Chemistry: Introduction - guests in solution - macrocyclic versus acyclic hosts - high dilution synthesis - template synthesis. Cation Binding: Introduction, crown ethers, lariat ethers and cryptands - spherands - hemispherands - cryptaspherands - heterocrowns - heterocryptands – calixarenes.	15	Chalk, Talk & Power point
IV	ANION AND NEUTRAL BINDINGS Anion binding: charged receptaors, electrostatic interactions, electrostatic, hydrogen binding interactions, neutral receptors, Lewisacid receptors and anticrowns - metal containing receptors - simultaneous cation and anion receptors - neutral binding.	15	Chalk, Talk & Power point
V	SOILD STATE SUPRAMOLECULAR CHEMISTRY Introduction - zeolites: structure, composition, zeolites and catalysis - clathrates - urea/thiourea clathrates - trimesic acid clathrates - hydroquinone and Dianin"s compound - coordination polymers: metal organic frameworks and properties of coordination polymers.	15	Chalk, Talk & Power point

Course Designed by: Dr. A. J. Sunija & Dr. R. Satheesh

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

		_	Secti	on A	Sec	tion B		
			MO	CQs	Short	Answers	Section C	Section
Inte rnal	Cos	K Level	No. of. Questions	K – Level	No. of. Ques tions	K - Level	Either or Choice	D Open Choice
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
Pat	estion ttern	No. of Questions to be answered	4		3		2	1
CIA	I & II	Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Answer Or		Iultiple (Short Choice Answer Or (Either / Open Choice) T		Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2	2	•	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	•	10	10	20	40	40		
I	K4	-	-		-	•	-	-		
	Marks	4	6	20	20	50	100	100		
	K1	2	2	ı	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	-	10	-	10	20	20		
II	K4	-	-	-	10	10	20	20		
	Marks	4	6	20	20	50	100	100		

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)

			MC	Qs	Short Answers		Section C	Section D	
S. No	COs	K - Level	No. of Questions	K – Level	No. of Questio	K – Level	(Either / or Choice)	(Open Choice)	
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)	
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)	
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)	
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)	
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)	
No. of	No. of Questions to be Asked		10		5		10	5	
No. of Questions to be answered			10		5		5	3	
Marks for each question			1		2		5	10	
Total N	Marks for e	each section	10		10		25	30	

(Figures in parenthesis denotes, questions should be asked with the given K level)

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	-	9	7.5	33		
K2	5	6	10	10	31	25.83	33		
К3	-	-	40	20	60	50	50		
K4	-	-	-	20	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

${\bf Summative\ Examinations\ -\ Question\ Paper-Format}$

		-	ee Questions)
Answer			(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section 1	B (Shor	t Answers	
Answer			(5x2=10 marks)
Q. No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section 6	C (Eith	er/Or Type	e)
Answer	All Que	estions	$(5 \times 5 = 25 \text{ marks})$
Q. No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Hig	her lev	el of perfor	rmance of the students is to be assessed by attempting higher
level of I		-	
Section 1	D (Oper	n Choice)	
	_	ree questi	ons (3x10=30 marks)
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	К3	
23	CO3	К3	
24	CO4	K4	
25	CO5	K4	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Name	BIOINORGANIC	C CHE	MIS	STRY							
Course Code	21UCHE54								L	P	C
Category	CORE ELECTIV	'E							5	-	5
Nature of cours	e: EMPLOYABIL	ITY v	/ SI	KILL (ORIENTE	D	✓	ENTREPRE	NURS	HIP	✓
Course Objecti	ives:	,				l.		I			
• To Identify	the fundamentals of	biomo	lecu	ules an	d metals in	bio	log	gical systems a	nd ger	nerali	ze
their structu											
	per the structures of				•			•	•	•	
_	e the behavior of dic								icine		
	the structure of the			•	_		_				
	ne the metals contain		otei	ins and	enzymes a	ınd	me	tal toxicity			
	ETALS IN BIOLO									15	
	Essential Chemical 1					_		•	_		
*	- Electronic and Ge		ic S	tructui	res of Meta	als -	–M	letals in Biolo	gical	Syste	ms –
	ng proteins and enzy									1	
	NDAMENTALS O									15	
	no Acid Building Blo										
	rotein Function, Enz	ymes,	Clas	ssificat	ion of enzy	me	s –	Enzyme Kinet	ics –		
Enzyme Inhibiti		TENAC	OT	ODIN						15	
	OGLOBIN AND I					1	/ a a	haniam fan Dav			
	Hemoglobin: Struct										
	nd Cooperativity of e Active Site in M										
Hemoglobin.	e Active Site iii N	riyogio	UIII	and i	Temogroun	11 —	Ъ	iliding of CO	to iv	Tyogi	oom,
	PPER AND NITR	OCEN	IFN	J7VM	FS					15	
	es: Occurrence – Str					ion	of	Specific Enzy	nec. S		
	lemocyanin. Enzym										
Detailed Mecha		1 1111	ogei	nasc.	non bunu	. С	lusi			uucu	110
	LE OF METALS	IN MF	DIC	CINE						15	
	cinal Chemistry - N				nd Homeos	tasi	s –	- Anti-cancer a	gents		
	pounds - Chelation			•					_		
MRI Imaging A		r	,						-		
	6					,	Tot	tal Lecture Ho	ours	75 H	rs
Books for Stud	y:										
1. Hussain Red	dv. K. Bioinorganic	Chem	istry	v. New	Age Interr	natio	าทล	1. 2003 New I)elhi		
 Hussain Reddy. K, Bioinorganic Chemistry, New Age International, 2003, New Delhi. Malik. W.U, Tuli. G.D, Madan. R.D, Selected topics in Inorganic Chemistry, 7th Edition, S. 											
Chand & Co., 2003, New Delhi.											
Books for Refe											
	Roat Malone, Bioing	rganic	Che	emistry	y: A short c	cour	se,	Wiley – Inters	cience	e, Joh	n
Wiley & Sons, 1				•	,		,	3		-	
2 16 1 6	, 1D 11 A T	т		. 01	·		-	11' ' 20'	20		

2. Miessler. G.L and Donald A. Tarr, Inorganic Chemistry, Pearson Publication, 2002.

- 3. James E. Huheey, Ellen Keiter and Richard Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Publication, 1993.
- 4. Lippard. S.T and Berg. T.M, Principles of Bioinorganic Chemistry, Panima Publishing Co., 1997, New York.

Web Resources:

- 1. https://youtu.be/pXztk04J7u0
- 2. https://youtu.be/eayeaUT5fus
- 3. https://youtu.be/6TVI_cjBeOs
- 4. https://youtu.be/2Xq-x1c8PZg

Course	e Outcomes	K Level				
On the completion of the course the student will be able to						
CO1:	Identify the fundamentals of biomolecules in biological systems and their structures	[Up to K2]				
CO2:	Remember the structures of myoglobin & hemoglobin, copper & nitrogen enzymes.	[Up to K3]				
CO3:	Compare the behavior of dioxygen bound to metals and role of metals in medicine	[Up to K3]				
CO4:	Perform the structure of the active site in myoglobin & hemoglobin	[Up to K4]				
CO5 :	Determine the metals containing proteins and enzymes and metal toxicity	[Up to K4]				

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	METALS IN BIOLOGY Introduction – Essential Chemical Elements – Metals in Biological Systems – Biological Metal Ion Complexation – Electronic and Geometric Structures of Metals –Metals in Biological Systems – Metals containing proteins and enzymes.	15	Chalk, Talk & Power point
II	FUNDAMENTALS OF BIOMOLECULES Proteins – Amino Acid Building Blocks – Protein Structure – Protein Sequencing and Proteomics – Protein Function, Enzymes, Classification of enzymes – Enzyme Kinetics – Enzyme Inhibition.	15	Chalk, Talk & Power point
III	MYOGLOBIN AND HEMOGLOBIN Myoglobin and Hemoglobin: Structure of the Prosthetic Group — Mechanism for Reversible Binding of Dioxygen and Cooperativity of Oxygen Binding — Behavior of Dioxygen Bound to Metals — Structure of the Active Site in Myoglobin and Hemoglobin — Binding of CO to Myoglobin, Hemoglobin.	15	Chalk, Talk & Power point
IV	COPPER AND NITROGEN ENZYMES Copper Enzymes: Occurrence – Structure – Function – Discussion of Specific Enzymes: Superoxide Dismutase – Hemocyanin. Enzyme Nitrogenase: Iron–Sulfur Clusters – Fe–Protein Structure – Detailed Mechanistic Studies.	15	Chalk, Talk & Power point
V	ROLE OF METALS IN MEDICINE Inorganic Medicinal Chemistry - Metal Toxicity and Homeostasis — Anti-cancer agents: Cisplatin and related compounds - Chelation therapy — Cancer treatment — Anti-arthritis drugs — Gadolinium MRI Imaging Agents.	15	Chalk, Talk & Power point

Course Designed by: Dr. R. Satheesh & Dr. V. Ramasamy Raja

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

		K Level	Section	on A	Sect	tion B		Sectio	
Inte	Cos		MC	^C Qs	Short Answers		Section C	n D	
rnal			No. of. Questions	K – Level	No. of. Questi ons	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
Pat	estion tern	No. of Questions to be answered	4		3		2	1	
CIA	I & II	Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K 1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	10	20	40	40				
I	K4	-	-	-	-	-	-	-				
	Marks	4	6	20	20	50	100	100				
	K 1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	-	10	20	20				
II	K4	-	-	-	10	10	20	20				
	Marks	4	6	20	20	50	100	100				

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
			MCQs		Short A	nswers	Section C	C4: D			
S. No	COs	K - Level	No. of Questions	K – Level	No. of Questio n	K – Level	(Either / or Choice)	Section D (Open Choice)			
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)			
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)			
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)			
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)			
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)			
No. of	Question	s to be Asked	10		5		10	5			
No	No.of Questions to be answered		10		5		5	3			
Ma	Marks for each question		1		2		5	10			
Total Marks for each section		10		10		25	30				
	(Figures	in parenthesi	is denotes, qu	estions sh	ould be asl	ked with	the given K	level)			

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	-	-	9	7.5	33					
K2	5	6	10	10	31	25.83	33					
К3	-	-	40	20	60	50	50					
K4	-	-	-	20	20	16.67	17					
Marks	10	10	50	50	120	100	100					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ltiple Choi	ice Questions)
Answer	All Qu	iestions	(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	rt Answer	s)
Answer	All Qu		(5x2=10 marks)
Q. No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Typ	
Answer			$(5 \times 5 = 25 \text{ marks})$
Q. No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
level of			ormance of the students is to be assessed by attempting higher
		en Choice)	
	_	'hree quest	
Q. No	CO	K Level	Questions
21	CO1	K2 K2	Questions
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Code 21UCHE55 L P C Category CORE ELECTIVE 5 - 5 Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENURSHIP ✓ Course Objectives: —
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENURSHIP ✓
Course Objectives:
·
To Recall the concept of forensic science and criminology studies
• To Remember the finger prints and classification and uses of finger prints
 To Compare the concepts of arsons, explosives and ballistics
• To Perform the biological substances in the dead clinic symptom
To Analyze the crime through network documents
Unit: I CRIMINOLOGY AND FORENSIC SCIENCE 15
Criminology - definition - nature and scope - types of crimes penology - Indian penal code - India
evidence act - Indian criminal procedure code. Forensic science - definition - principles and uses it
crime investigation.
Unit: II FINGER PRINTS & TRACKS-TRACES 15
Finger prints – patterns – classification - uses of finger print in crime investigation - direct and later
prints - development by powders - other methods of development - transfer methods of finger prints
Tracks – Traces - Foot prints - casting of foot prints - residue prints - walking pattern - tire marks
miscellaneous traces & tracks - glass fracture - tool marks - paints - fibres.
Unit: III BIOLOGICAL SUBSTANCES AND POISONS 15
Blood – semen – saliva – sweat – urine – hair – skin - DNA analysis. Poisons - types and
classification-diagonosis of poisoning in the living and in the dead - clinical symptom - post-morter
appearances - treatment in cases of poisoning - antidotes.
Unit: IV ARSONS, EXPLOSIVES AND BALLISTICS 15
Natural fires and arson - nature of action of fire - drifts and air supply - burning characteristics
Explosives – definition – classification - compostion and mechanism of explosion - bombs
Ballistics – classification - internal, external and terminal ballistics - small arms -classification and
characteristics - laboratory examination of barrel washing and detection of powder residues b
chemical tests.
Unit: V CYBER CRIMES AND DOCUMENTS 15
Cyber crimes - crime through network Documents - Chemistry of paper and ink - writing paper carbon paper - chalk - adhesives - sealing waxes - different types of forged signatures - simulate
and traced forgeries -inherent signs of forgery models - writing of forged models - writing
deliberately modified - use of ultraviolet rays - comparison of type written letters - counterfeit of
currency and coins.
Total Lecture Hours 75 Hrs
Books for Study:
1. Saferstein, R., Criminalities and introduction to Forensic Science, Prentice Hall of India.1978
Books for References:
1. James, T.H., Forensic Science.1987
Web Resources:

	1. https://youtu.be/Wtwx_uOgOUc 2. https://youtu.be/StcLHDM3Vng						
Course	Course Outcomes K Level						
On the	e completion of the course the student will be able to						
CO1:	Ability to understand the concept of forensic science	[Up to K2]					
CO2:	Discuss the criminological studies through finger prints	[Up to K3]					
CO3:	Interpret the classification of finger print and biological substances	[Up to K3]					
CO4:	Examine the relationship between arsons, explosives and ballistics	[Up to K4]					
CO5:	Analyze the cyber crime through network documents	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	CRIMINOLOGY AND FORENSIC SCIENCE Criminology – definition - nature and scope - types of crimes penology - Indian penal code - Indian evidence act - Indian criminal procedure code. Forensic science – definition - principles and uses in crime investigation.	15	Chalk, Talk & Power point
II	FINGER PRINTS & TRACKS – TRACES Finger prints – patterns – classification - uses of finger print in crime investigation - direct and latent prints - development by powders - other methods of development - transfer methods of finger prints. Tracks – Traces - Foot prints - casting of foot prints - residue prints - walking pattern - tire marks - miscellaneous traces & tracks - glass fracture - tool marks – paints – fibres.	15	Chalk, Talk & Power point
III	BIOLOGICAL SUBSTANCES AND POISONS	15	Chalk, Talk &

	Blood – semen – saliva – sweat – urine – hair – skin - DNA analysis. Poisons - types and classification-diagonosis of poisoning in the living and in the dead - clinical symptom - post-mortem appearances - treatment in cases of poisoning - antidotes.		Power point
IV	ARSONS, EXPLOSIVES AND BALLISTICS Natural fires and arson - nature of action of fire - drifts and air supply - burning characteristics. Explosives — definition — classification - compostion and mechanism of explosion - bombs. Ballistics — classification - internal, external and terminal ballistics - small arms - classification and characteristics - laboratory examination of barrel washing and detection of powder residues by chemical tests.	15	Chalk, Talk & Power point
V	CYBER CRIMES AND DOCUMENTS Cyber crimes - crime through network Documents - Chemistry of paper and ink - writing paper - carbon paper - chalk - adhesives - sealing waxes - different types of forged signatures - simulated and traced forgeries -inherent signs of forgery models - writing of forged models - writing deliberately modified - use of ultraviolet rays - comparison of type written letters - counterfeit of currency and coins.	15	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. R. Satheesh

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

		K Level	Section A		Sec	tion B		Secti
Inte	Cos		MC	CQs	Short	Answers	Section C	on D
rnal			No. of. Questions	K – Level	No. of. Questi ons	K - Level	Either or Choice	Open Choi ce
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
Pat	estion tern	No. of Questions to be answered	4		3		2	1
CIA	I & II	Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K 1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	10	20	40	40				
I	K4	-	-	-	-	-	-	-				
	Marks	4	6	20	20	50	100	100				
	K 1	2	2	-	-	4	8					
	K2	2	4	10	10	26	52	60				
CIA	К3	-	-	10	-	10	20	20				
II	K4	-	-	-	10	10	20	20				
	Marks	4	6	20	20	50	100	100				

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
			MCQs		Short Answers		Section C	C4' D
S. No	COs	K - Level	No. of Questions	K – Level	No. of Questio n	K – Level	(Either / or Choice)	Section D (Open Choice)
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	Question	s to be Asked	10		5		10	5
No	o. of Quest answe	ions to be red	10		5		5	3
Marks for each question			1		2		5	10
Total	Marks for	each section	10		10		25	30
	(Figures	in parenthesi	is denotes, aı	iestions sł	ould be as	ked with	the given K	level)

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	-	9	7.5	33		
K2	5	6	10	10	31	25.83	33		
К3	-	-	40	20	60	50	50		
K4	-	-	-	20	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section A	A (Mult	tiple Choic	e Questions)
Answer A	All Que	estions	(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section I	3 (Shor	t Answers	
Answer	All Que	estions	(5x2=10 marks)
Q. No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		er/Or Type	e)
Answer			$(5 \times 5 = 25 \text{ marks})$
Q. No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			rmance of the students is to be assessed by attempting higher
level of I			
	_	n Choice)	(2.40.20
		ree questi	
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO ₄	K3	
24	CO4	K4	
25	CO5	K4	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Name FOOD PROCESSING CHEMISTRY								
Course Code	21UCHE56	L	P	C				
Category	CORE ELECTIVE	5	-	5				
Nature of cours	e: EMPLOYABILITY SKILL ORIENTED ENTREPREN	URS	HIP	✓				
Course Objecti	ves:							
To Recall th	e raw materials in food processing and its properties							
• To Rememb	er the properties and deterioration reaction in fruits and vegetables							
• To Compare	small scale food processing and nutritional changes							
• To Perform	the chemistry of sweeteners, legal aspects of food adulteration							
• To Determin	the adulterants in food processing							
Unit: I IN	RODUCTION TO FOOD PROCESSING		15					
Introduction- in	nportance of raw materials in food processing-properties of raw	v ma	terial	-raw				
	ig and classifications: dry and wet cleaning, peeling, sorting, gr							
	and freezing- elements of food processing: food safety, food qual-							
foods - unit ope	ration - unit processing - common unit process: pasteurization, sterilization	ation,	dryi	ng,				
separation, evap	oration, refrigeration, freezing.		•					
Unit: II FR	UITS AND VEGETABLES PROCESSING		15					
Introduction - p	roperties of fruits and vegetables - Deterioration reactions in fruits	and	veget	able				
	mes, chemical changes, nutritional quality changes, physical chan							
	aterials for fruits and vegetables processing.							
	ALL-SCALE FOOD PROCESSING		15					
	ereal and pulses- grain processing: puffing, flaking, milling, dough	hs an	d ba	ters				
	ng, frying, porridge-baked products- snack foods processing- n							
beverages- coffe								
	OD ADDITIVES		15					
	mistry of sweeteners: intense sweetuieners, bulk sweeteners - food c	colou	rs: na	tura				
	c colours - permitted levels of colourants - list of permitted colourar							
•	nts: chemistry of antioxidants, type of antioxidants and uses:			_				
	vlated hydroxyanisole (BHA), citric acid, Beta-carotene, lutein -							
	,,,,,							
tocoperols, but	ning emulisifiers - types of emulsions - acidulants; acetic acid, citric a	CIU. I						
tocoperols, but foodstuff contai	ning emulisifiers - types of emulsions - acidulants: acetic acid, citric aphoric acid, tartaric acid.	ciu, i						
tocoperols, but foodstuff contai malic acid, phoa	phoric acid, tartaric acid.	ciu, i	15					
tocoperols, but foodstuff contain malic acid, phose Unit: V FO	phoric acid, tartaric acid. OD ADULTERATION		15					
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - 1	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food	d adu	ıltera	nts -				
tocoperols, but foodstuff contain malic acid, phose Unit: V FO Introduction - Int	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food ous food adulterants: analysis of adulterants in edible oils, ghee, coffe	d adu	ıltera vder,	nts -				
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - lanalysis of varied powder, turmerical tocoperols, but foodstuff containmalic acid, phose the foo	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food bus food adulterants: analysis of adulterants in edible oils, ghee, coffect powder, meat and milk - harmful effect of the adulterants. Food Pr	d adu	ıltera vder, ts : W	nts chil				
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - analysis of varied powder, turmer and wheat production and wheat production and some powder in the containment of the containm	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food ous food adulterants: analysis of adulterants in edible oils, ghee, coffe c powder, meat and milk - harmful effect of the adulterants. Food Practs- classification of wheat - wheat flour - wheat products - milk and its content of the content of the adulterants.	d adu	ıltera vder, ts : W	nts - chili hea				
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - analysis of varied powder, turmer and wheat production and wheat production and some powder in the containment of the containm	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food bus food adulterants: analysis of adulterants in edible oils, ghee, coffe to powder, meat and milk - harmful effect of the adulterants. Food Practs- classification of wheat - wheat flour - wheat products - milk and milk - milk grades - some commercial milk products.	d adu e pov roduc milk	ıltera vder, ts : W produ	nts - chili hear				
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - analysis of varied powder, turmeriand wheat production of the composition of the state of the composition of the state of t	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food ous food adulterants: analysis of adulterants in edible oils, ghee, coffect powder, meat and milk - harmful effect of the adulterants. Food Practs- classification of wheat - wheat flour - wheat products - milk and milk - milk grades - some commercial milk products. Total Lecture House	d adu e pov roduc milk	ıltera vder, ts : W	nts - chili hear				
tocoperols, but foodstuff containmalic acid, phose Unit: V FO Introduction - analysis of varied powder, turmeriand wheat production of Books for Studential Foods for Studential	phoric acid, tartaric acid. OD ADULTERATION Legal Aspects of food adulteration and prevention - common food ous food adulterants: analysis of adulterants in edible oils, ghee, coffect powder, meat and milk - harmful effect of the adulterants. Food Practs- classification of wheat - wheat flour - wheat products - milk and milk - milk grades - some commercial milk products. Total Lecture House	d adu	vder, ts: W produ	nts chil hea icts				

2. A text book of Food Chemistry, Alex V Ramani, MJP Publications, Chennai, 2009.

Books for References:

- 1. P.J. Fellows, Food Processing Technology. Principles and Practices, Second Edition, Woodland Publishing Ltd, Cambridge, England, 2002.
- 2. Avantina Sharma, Text Book of Food Science and Technology, International Book, Distributing Co, Lucknow, UP, 2006.
- 3. Sivasankar, Food Processing and Preservation, Prentice Hall of India Pvt. Ltd., New Delhi. 3rd Printing, 2005.
- 4. Peter Zeuthen and Leif Bogh-Sorenson, Food Preservation Techniques, Woodland Publishing Ltd., Cambridge, England, 200

Web Resources:

- 1. https://youtu.be/naauUbo4Ick
- 2. https://youtu.be/WRYoGiOobqU
- 3. https://youtu.be/AMJYn3hgv3o
- 4. https://youtu.be/a4aKLHCLyD8

Course	Course Outcomes						
On th	On the completion of the course the student will be able to						
CO1:	Ability to understand the raw materials in food processing	[Up to K2]					
CO2:	Discuss the various elements of food processing and properties fruits and vegetables	[Up to K3]					
CO3:	Interpret the study of small-scale food processing	[Up to K3]					
CO4:	Examine the legal aspects of food adulteration and prevention	[Up to K4]					
CO5:	Analyze the food additives, food adulterants in food processing	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	Introduction- importance of raw materials in food processing-properties of raw material-raw material cleaning and classifications: dry and wet cleaning, peeling, sorting, grading, cutting, seeding, chilling and freezing- elements of food processing: food safety, food quality, convenient foods - unit operation - unit processing - common unit process: pasteurization, sterilization, drying, separation, evaporation, refrigeration, freezing.	15	Chalk, Talk & Power point
II	FRUITS AND VEGETABLES PROCESSING Introduction - properties of fruits and vegetables - Deterioration reactions in fruits and vegetable: changes in enzymes, chemical changes, nutritional quality changes, physical changes, biological changes - raw materials for fruits and vegetables processing.	15	Chalk, Talk & Power point
III	SMALL-SCALE FOOD PROCESSING Processing of cereal and pulses- grain processing: puffing, flaking, milling, doughs and batters, extrusion, baking, frying, porridge-baked products- snack foods processing- manufacture of beverages- coffee processing.	15	Chalk, Talk & Power point
IV	FOOD ADDITIVES Introduction-chemistry of sweeteners: intense sweetuieners, bulk sweeteners - food colours: natural colours, synthetic colours - permitted levels of colourants - list of permitted colourants - flavouring agents-antioxidants: chemistry of antioxidants, type of antioxidants and uses: ascorbic acid, tocoperols, butylated hydroxyanisole (BHA), citric acid, Beta-carotene, lutein - emulisifiers - foodstuff containing emulisifiers - types of emulsions - acidulants: acetic acid, citric acid, lactic acid, malic acid, phoaphoric acid, tartaric acid.	15	Chalk, Talk & Power point
V	FOOD ADULTERATION Introduction - Legal Aspects of food adulteration and prevention - common food adulterants - analysis of various food adulterants: analysis of adulterants in edible oils, ghee, coffee powder, chili powder, turmeric	15	Chalk, Talk & Power point

powder, meat and milk - harmful effect of the adulterants. Food

Products: Wheat and wheat products- classification of wheat - wheat

flour - wheat products - milk and milk products - composition of milk
milk grades - some commercial milk products.

Course Designed by: Dr. V. Ramasamy Raja & Dr. K. Muthupandi

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Sect	tion A	Section	on B			
Inte			M	CQs	Short A	nswers	Section C	Section D	
rnal	Cos	K Level	No. of. Questio ns	K – Level	No. of. Questions	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
Pat	estion ttern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2	2	-	-	4	8		
	K2	2	4	10	10	26	52	60	
CIA	К3	-	-	10	10	20	40	40	
I	K4	-	-	•	-	-	•	-	
_	Marks	4	6	20	20	50	100	100	
	K1	2	2	-	-	4	8		
	K2	2	4	10	10	26	52	60	
CIA	К3	-	-	10	-	10	20	20	
II	K4	-	-	-	10	10	20	20	
	Marks	4	6	20	20	50	100	100	

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences **CO5** will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summativ	ve Examination				ping – K	Level with (Course
			O	utcomes (C	COs)			
			MC	Qs	Short A	nswers	Section C	Section D
S.No	COs	K - Level	No. of Questions	K – Level	No. of Questio	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	Question	s to be Asked	10		5		10	5
No.of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
	(Figures	in parenthesi	is denotes, qu	iestions sh	ould be asl	ked with	the given K	level)

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	1	-	9	7.5	33		
K2	5	6	10	10	31	25.83	33		
K3	1	1	40	20	60	50	50		
K4	-	-	-	20	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	Section A (Multiple Choice Questions)							
		uestions	(10x1=10 marks)					
Q.No	CO	K Level	Questions					
1	CO1	K1						
2	CO1	K2						
3	CO2	K1						
4	CO2	K2						
5	CO3	K1						
6	CO3	K2						
7	CO4	K1						
8	CO4	K2						
9	CO5	K1						
10	CO5	K2						
		ort Answei	rs)					
		uestions	(5x2=10 marks)					
Q.No	CO	K Level	Questions					
11	CO1	K1						
12	CO2	K1						
13	CO3	K2						
14	CO4	K2						
15	CO5	K2						
		her/Or Ty						
		uestions	$(5 \times 5 = 25 \text{ marks})$					
Q.No	CO	K Level	Questions					
16) a	CO1	K2						
16) b	CO1	K2						
17) a	CO2	K3						
17) b	CO2	К3						
18) a	CO3	K3						
18) b	CO3	K3						
19) a	CO4	K3						
19) b	CO4	K3						
20) a	CO5	K3						
20) b	CO5	K3						
			formance of the students is to be assessed by attempting higher					
level of								
	Section D (Open Choice) Answer Any Three questions (3x10=30 marks)							
	CO	K Level						
Q.No 21	CO1	K Level K2	Questions					
22	CO2	K2 K3						
23	CO ₂	K3						
24	CO3	K4						
25	CO ₄	K4						
43	CO3	17.4						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Name DRUG CHEMISTRY								
Course Code	21UCHS51					L	P	C
Category	SKILL					2	-	2
Nature of course: EMPLOYABILITY SKILL ORIENTED ENTREPREN								✓
Course Object	ives:							
• To Identify	the different systems of	med	licines and its drug acti	ons				
• To Rememb	per the basic of anaesthet	ics	and chemotherapy					
• To Interpret	the therapeutic function	of	synthetic drugs					
• To Understa	and about the antibiotics	and	indole derivatives					
• To Determine	ne the various synthetic	drug	gs, gaseous anaesthetics	s, cl	nemotherapy ar	nd its	uses	
	FRODUCTION TO TH						06	·)
Different syste	ms of medicine: Ayur	ved	a, Siddha, Homeopat	hy	and Allopathy	y – I	Histor	y o
medicinal chem	nistry – discovery of dru	ıgs	 Introduction. Analg 	esic	s and Antipyr	etics -	- Nar	coti
analgesics - N	Morphine and derivativ	es.	Total synthetic analg	gesi	cs pethidine a	and n	nethad	lone
Antipyretic ana	lgesics – salicylic acid d	eriv	atives, Indole derivativ	es a	ınd p-amino ph	enol d	leriva	tive
(Medicinal uses	s and structure only). Ar	tibi	otics – Definition, Pen	icil	lin – Tetracycl	ine (A	uron	nyci
& Terramycin)	-Streptomycin and Chlo	rom	ycetin – drug action ar	ıd u	ses.			
Unit: II AN	AESTHETICS						06)
Gaseous anaes	thetics – Vinyl ether	_ (Cyclopropane – Halo	hy	ydrocarbons –	Chlo	orofor	m -
Haloethane- Ti	richloro ethylene – Intra	ven	nous anaesthetics - Th	iop	entone – Loca	l anae	esthet	ics -
	derivatives. (Therapeutic							
	TIBIOTICS AND ANT						06	
Sulpha drugs –	Sulphadiazine, prontosil	and	d prontosil-S. Antimala	ırial	ls – quinine and	d its d	eriva	tives
Arsenical drugs	- Salvarsan - 606 - Ned	osal	varsan.					
Unit: IV SY	NTHETIC DRUGS						06	·)
Synthetic drugs	and its therapeutic fun	ctio	on of paracetamol – A	spir	rin – naproxen	- An	noxyl	lin -
ciprofloxacin -	Ibuprofen.							
	stry and submission of l	-		: / A	Assignment $= 5$	mark	s inte	rnal
	Industrial Centre (DIC t		,					
	PRMONES AND VITA						06	
	Classification Testoster	one	e, Progesterone, Thyro	oxin	e, Vitamin C,	Struc	cture	only
(Structural eluc	idation not necessary)					-		
				To	tal Lecture Ho	ours	30 H	rs
Books for Stud	ly:							
1. Jayashree G	hosh, A Textbook of Pha	rma	aceutical Chemistry, S.	Ch	and & Co., 199	99, Ne	w De	lhi.
Books for Refe								
	Craig and Robert E. Stitz	el, N	Modern Pharmacology,	3^{rd}	Edition, Little	Brow	n and	Co.
Boston, 1990.								

2. Corwin Hansch, Peter G. Sammer, John B. Taylor and Peter D.K. Kennewell, Comprehensive

3. Bertram G. Katzung, Basic and Clinical Pharmocology, Lange Medical Publications, Atos, 1982,

Academic Council Meeting Held On 20.04.2023

Medicinal Chemistry, Pergmon Press, Great Britain, 1990.

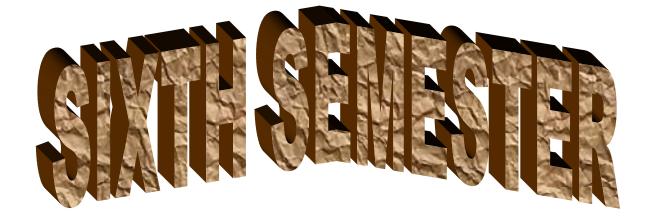
California.

Web Resources:

- 1. https://youtu.be/lUxkcEoGkVg
- 2. https://youtu.be/pss_sm2zaek
- 3. https://youtu.be/Z63xnlDNajE
- 4. https://youtu.be/qaYBUz14B3w

1. https://youtube/quibezilbow								
Course	Course Outcomes							
On th	On the completion of the course the student will be able to							
CO1:	Ability to know the basic of anaesthetics and chemotherapy	[Up to K2]						
CO2:	Discuss various synthetic drugs, gaseous anaesthetics, chemotherapy and its uses	[Up to K3]						
CO3:	Interpret the different systems of medicines and its drug actions	[Up to K3]						
CO4:	Examine the antibiotics and indole derivatives	[Up to K4]						
CO5:	Analyze the therapeutic function of synthetic drugs	[Up to K4]						

CO & PO Mapping:


Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	INTRODUCTION TO THE DIFFERENT SYSTEMS OF MEDICINE Different systems of medicine: Ayurveda, Siddha, Homeopathy and Allopathy – History of medicinal chemistry – discovery of drugs – Introduction. Analgesics and Antipyretics – Narcotic analgesics – Morphine and derivatives. Total synthetic analgesics pethidine and methadone. Antipyretic analgesics – salicylic acid derivatives, Indole derivatives and p-amino phenol derivatives (Medicinal uses and structure only). Antibiotics – Definition, Penicillin – Tetracycline (Auromycin & Terramycin) –Streptomycin and Chloromycetin – drug action and uses.	06	Chalk, Talk & Power point
II	ANAESTHETICS Gaseous anaesthetics – Vinyl ether – Cyclopropane – Halo hydrocarbons – Chloroform – Haloethane– Trichloro ethylene – Intravenous anaesthetics – Thiopentone – Local anaesthetics – Cocaine and its derivatives. (Therapeutic use only)	06	Chalk, Talk & Power point
III	ANTIBIOTICS AND ANTIMALARIALS Sulpha drugs – Sulphadiazine, prontosil and prontosil-S. Antimalarials – quinine and its derivatives. Arsenical drugs – Salvarsan – 606 – Neosalvarsan.	06	Chalk, Talk & Power point
IV	SYNTHETIC DRUGS Synthetic drugs and its therapeutic function of paracetamol – Aspirin – naproxen – Amoxyllin – ciprofloxacin – Ibuprofen. Visit to an Industry and submission of Report. For industrial visit / Assignment = 5 marks internal) Contact District Industrial Centre (DIC for visits)	06	Chalk, Talk & Power point
V	HORMONES AND VITAMINS Definition and Classification Testosterone, Progesterone, Thyroxine, Vitamin C, Structure only (Structural elucidation not necessary)	06	Chalk, Talk & Power point

Course Designed by: Dr. R. Satheesh & Dr. A.J. Sunija

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Name	PHYSICAL CHEMISTRY – III										
Course Code 21UCHC61					L	P	C				
Category Core					6	-	6				
Nature of course: EMPLOYABILITY		ILITY	✓	SKILL ORIENTED	EN	TREPREN	[URS]	HIP	✓		
Course Objecti	ve	s:									
To Recall th	e g	general	characte	eristics	of	aromatic compounds ar	nd reac	tion mechan	isms.		
To Remember the basics of aromatic compounds and polynuclear compounds.											
To Compare	th	 To Compare the preparation, properties of ortho, para, meta directing and aromatic compounds. 									

To Perform the mechanism of reactions and effects of substituents. To Determine the various concepts on mechanisms and polynuclear compounds.

THERMODYNAMICS – I 18

Definition of thermodynamic terms: system, surroundings - types of systems, intensive and extensive properties – State and path functions and their differentials – Thermodynamic process - Concept of heat and work - Definition of internal energy and enthalpy. Heat capacity - Heat capacities at constant volume and pressure and their relationship - Joule-Thomson effect – Joule-Thomson coefficient and inversion temperature – Calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process – Hess's Law of constant heat summation and its applications

Unit: II **THERMODYNAMICS - II**

18

Need for the second law-different statements of the second law-Carnot cycle and efficiency. Entropy as state function – entropy as a function of pressure and volume – Entropy changes of an ideal gas - physical significances of entropy - Clausius inequality - entropy as criteria of spontaneity and equilibrium. Gibbs function (G) and Helmholts function (H) as thermodynamics quantities - Gibbs-Helmholts equation. Clausius Clapeyron equation-**Application of Clausius- Clapeyron equation – Limitations of second law.**

Unit: III | PHOTOCHEMISTRY

Definition of photochemical reactions - comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer Law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – Jablonski diagram – Photophysical processes - fluorescence phosphorescene and other deactivating processes. Photochemical processes – kinetics of photochemical reactions (H₂/Br₂ reaction) – Photochemical equilibrium (Dimerisation of anthracene)- flash photolysis - photosensitization- chemiluminescence bioluminescence.

Unit: IV | ELECTROCHEMISTRY – I

Conductance-definition and determination of Specific conductance, equivalent conductance and molar conductance - variation of equivalent conductance with dilution - Migration of ions - Kohlrausch's law - Arrhenius theory of electrolyte dissociation and its limitations - Ostwald's dilution law – Debye Huckel-Onsagar's equation for strong electrolytes (elementary treatment only) - Definition of transport number - determination by Hittorfs method - Application of conductivity measurements- determination of solubility products of sparingly soluble salts and conductometric titrations – HCl Vs NaOH, CH₃COOH Vs NaOH.

Unit: V **ELECTROCHEMISTRY – II**

18

- a) Single electrode potential, sign convention, Reversible and irreversible cells, conditions for a cell to be a reversible and irreversible Nernst Equation measurement of Emf (Poggendorff's method) types of electrodes reference electrode (SHE, Calomel electrode, AgAgCl electrode) Potentiometric titrations HCl Vs NaOH and $K_2Cr_2O_7$ Vs FeSO₄.
- b) Commercial cells: Primary and secondary batteries dry cell lead storage cell fuel cell Hydrogen-Oxygen fuel cell

Total Lecture Hours 90 Hrs

Books for Study:

2. B.R. Puri, L.R. Sharma and S. Pathania, Principles of Physical Chemistry, 47th Edition, Shoban Lal Nagin Chand & Co., 2017.

Books for References:

- 6. Gilbert W. Castellan, Physical Chemistry, 3rd Edition, Narosa Publishing House, 1985.
- 7. S. Glasstone, Textbook of Physical Chemistry, McMillan and Co., London, 1974.
- 8. P.L. Soni and Dharmarha, Textbook of Physical Chemistry, S. Chand & Co., New Delhi, 1991.
- 9. Arun Bahl, B.S. Bahl and G.D. Tuli, Essentials of Physical Chemistry, S. Chand & Co., New Delhi, 2014.
- 10. S.K. Dogra and S. Dogra, Physical Chemistry through Problems, 4th Edition, New Age International, New Delhi 1996.

Web Resources:

- 1. https://youtu.be/hEZeQ_HSnOU
- 2. https://youtu.be/fHfv41HmIK0
- 3. https://youtu.be/BECSYfYhJGk
- 4. https://youtu.be/fM8hwkW8bIw
- 5. https://youtu.be/tJj-ilJTo6Y
- 6. https://youtu.be/uHoKGy704jk
- 7. https://youtu.be/4swtYzEbl64
- 8. https://youtu.be/q9c3-8CE_ro

Course	K Level					
On the completion of the course the student will be able to						
CO1:	To acquire elaborate the basic knowledge in thermodynamics.	[Up to K2]				
CO2:	To get more knowledge second law of thermodynamics, entropy.	[Up to K3]				
CO3:	To learn about the photochemical reactions and photochemical processes.	[Up to K3]				
CO4:	To determine the concept of conductance and conductometric titrations.	[Up to K4]				
CO5:	To analysis the basic knowledge in electrodes, electrode potentials and potentiometric titrations	[Up to K4]				

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	THERMODYNAMICS – I Definition of thermodynamic terms: system, surroundings – types of systems, intensive and extensive properties – State and path functions and their differentials – Thermodynamic process – Concept of heat and work – Definition of internal energy and enthalpy. Heat capacity – Heat capacities at constant volume and pressure and their relationship – Joule-Thomson effect – Joule-Thomson coefficient and inversion temperature – Calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process – Hess's Law of constant heat summation and its applications	18	Chalk, Talk & Power point
II	THERMODYNAMICS – II Need for the second law-different statements of the second law-Carnot cycle and efficiency. Entropy as state function – entropy as a function of pressure and volume – Entropy changes of an ideal gas – physical significances of entropy – Clausius inequality – entropy as criteria of spontaneity and equilibrium. Gibbs function (G) and Helmholts function (H) as thermodynamics quantities – Gibbs-Helmholts equation. Clausius Clapeyron equation – Application of Clausius- Clapeyron equation – Limitations of second law.	18	Chalk, Talk & Power point
III	PHOTOCHEMISTRY Definition of photochemical reactions – comparative study of thermal and photochemical reactions – laws of photochemistry – Lambert and Beer Law – Grothus – Draper law – Stark – Einstein law – quantum efficiency and its determination – Jablonski diagram – Photophysical processes – fluorescence phosphorescene and other deactivating processes. Photochemical processes – kinetics of photochemical reactions (H ₂ /Br ₂ reaction) – Photochemical equilibrium (Dimerisation of anthracene) – flash photolysis – photosensitization-chemiluminescence – bioluminescence.	18	Chalk, Talk & Power point
IV	ELECTROCHEMISTRY – I Conductance-definition and determination of Specific conductance,	18	Chalk, Talk & Power

	equivalent conductance and molar conductance – variation of equivalent		point
	conductance with dilution - Migration of ions - Kohlrausch's law -		
	Arrhenius theory of electrolyte dissociation and its limitations -		
	Ostwald's dilution law - Debye Huckel-Onsagar's equation for strong		
	electrolytes (elementary treatment only) - Definition of transport		
	number - determination by Hittorfs method - Application of		
	conductivity measurements- determination of solubility products of		
	sparingly soluble salts and conductometric titrations - HCl Vs NaOH,		
	CH3COOH Vs NaOH.		
	ELECTROCHEMISTRY – II		
	a) Single electrode potential, sign convention, Reversible and		
	irreversible cells, conditions for a cell to be a reversible and irreversible		
	- Nernst Equation - measurement of Emf (Poggendorff's method) types		Chalk,
V	of electrodes - reference electrode (SHE, Calomel electrode, Ag-AgCl	18	Talk & Power
	electrode) Potentiometric titrations – HCl Vs NaOH and K ₂ Cr ₂ O ₇ Vs		point
	FeSO ₄ .		
	b) Commercial cells: Primary and secondary batteries – dry cell – lead		
	storage cell – fuel cell – Hydrogen-Oxygen fuel cell		

Course Designed by: Dr. R. Satheesh & Dr. A.J. Sunija

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

			Section A			ion B		
Inte rnal Cos		M	MCQs			Section C	Section D	
	Cos	K Level	No. of. Questions	K – Level	No. of. Que stio ns	K - Level	Either or Choice	Open Choice
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
ΑI	CO2	Up to K3	2	K1 & K2	2	K2	2 (K3&K3)	2(K2 & K3)
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)
		No. of Questions to be asked	4		3		4	3
Pat	estion ttern	No. of Questions to be answered	4		3		2	2
CIA I & II	Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	20

	Distribution of Marks with K Level CIA I & CIA II													
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %						
	K1	2	2	-	-	4	6.67							
	K2	2	4	10	20	36	60	67						
CIA	К3	-	-	10	10	20	33.33	33						
I	K4	-	-	1	-	-	-	•						
	Marks	4	6	20	30	60	100	100						
	K 1	2	2		-	4	6.67							
	K2	2	4	10	10	26	43.33	50						
CIA	К3	-	-	10	10	20	33.33	33						
II	K4	-	-	-	10	10	16.67	17						
	Marks	4	6	20	30	60	100	100						

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course	
Outcomes (COs)	

			MCQs		Short Answers		Section C	Section D
S.No	Cos	K - Level	No. of Questions	K – Level	No. of Questio	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	Up to K 2	2	K1, K2	1	K1	2 (K2&K2)	1(K2)
2	CO2	Upto K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
5	CO5	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
No. of	No. of Questions to be Asked		10		5		10	5
No.of Questions to be answered			10		5		5	3
Ma	rks for eac	h question	1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level									
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated		
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%		
	Choice	Answer	Choice)	Choice)		without			
	Questions)	Questions)				choice)			
K 1	5	4	-	-	9	7.5	33		
K2	5	6	10	10	31	25.83	33		
K3	ı	-	40	20	60	50	50		
K4	-	-	-	20	20	16.67	17		
Marks	10	10	50	50	120	100	100		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	Section A (Multiple Choice Questions)						
	Answer All Questions (10x1=10 marks)						
Q.No	CO	K Level	Questions				
1	CO1	K1					
2	CO1	K2					
3	CO2	K1					
4	CO2	K2					
5	CO3	K1					
6	CO3	K2					
7	CO4	K1					
8	CO4	K2					
9	CO5	K1					
10	CO5	K2					
		ort Answei	rs)				
		uestions	(5x2=10 marks)				
Q.No	CO	K Level	Questions				
11	CO1	K1					
12	CO2	K1					
13	CO3	K2					
14	CO4	K2					
15	CO5	K2					
		her/Or Ty	pe)				
		uestions	$(5 \times 5 = 25 \text{ marks})$				
Q.No	CO	K Level	Questions				
16) a	CO1	K2					
16) b	CO1	K2					
17) a	CO2	K3					
17) b	CO2	K3					
18) a	CO3	K3					
18) b	CO3	K3					
19) a	CO4	K3					
19) b	CO4	K3					
20) a	CO5	K3					
20) b	CO5	K3					
			formance of the students is to be assessed by attempting higher				
level of							
	_	en Choice					
	Answer Any Three questions (3x10=30 marks)						
Q.No	CO	K Level	Questions				
21	CO1	K2					
22	CO2	K3					
23	CO3	K3					
24	CO4	K4					
25	CO5	K4					

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF CHEMISTRY

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMISTRY PRACTICAL – IV (GRAVIMETRIC ANALYSIS AND ORGANIC PREPARATION)						
Course Code	21UCHCP4	L	P	C			
Category	Core	-	3	5			
Nature of course: EMPLOYABILITY SKILL ORIENTED ENTREPRENURSHIP							

Course Objectives:

- To learn the concept of gravimetric analysis and organic preparation
- To analyze the estimation of lead, calcium, copper and nickel
- To study the organic preparation methods
- To understand the various organic preparation methods
- To interpret the gravimetric analysis and organic preparation

List of Experiments

1. Gravimetric Analysis

- 1. Estimation of lead as lead chromate
- 2. Estimation of barium as barium chromate
- 3. Estimation of calcium as calcium oxalate monohydrate
- 4. Estimation of copper as cuprous thiocyanate
- 5. Estimation of nickel as Ni DMG.

2. Organic Preparation

- 1. Nitration
- a. M-dinitrobenzene from nitrobenzene
- b. Picric acid from phenol
- 2. Bromination: p-bromo acetanilide from acetanilide
- 3. Hydrolysis: Aromatic acid from (a) an ester (b) an amide
- 4. Oxidation: Benzoic acid from benzaldehyde.
- 5. Benzoylation: (a) Amine (b) phenols.
- 6. Acetylation: (a) Amine (b) phenols

Distribution of Marks (Max.marks – 100) **Duration of examination: 6 hrs**

Int: 40

Regular Test in the Class : 30 Marks

Observation note book : 10 Marks

Total : 40 Marks

Record Note Book - 10 Marks Viva Voce - 10 Marks Ext: 60

Organic preparation (10 Marks)

Gravimetric Estimation (30 Marks)

Procedure - 2 Marks Procedure - 10 Marks
Crude sample - 6 Marks Estimation - 20 Marks
Recrystallised sample - 2 Marks Less than 2 % Error - 20 Marks

2-3% Error – 18 Marks 3-4% Error – 16 Marks 4-5% Error – 14 Marks

Greater than 5% Error – 8 Marks

Total Lecture Hours 45 Hrs

Books for Reference:

- 5. Thomas. A.O and Mani, Textbook of Practical Chemistry, 4th Revised Edition, Scientific Publication, 1976.
- 6. N.S. Gnana pragasam and G. Ramamurthy, Organic Chemistry Lab Manual, Viswanath. S. Printers & Publishers Pvt. Ltd., 2010, Chennai.

Web Resources:

- 1. https://youtu.be/tftNgFVAWCY
- 2. https://youtu.be/npxbO-pzUvU
- 3. https://youtu.be/peMyqdJ57dA

Course Outcomes:					
On the completion of the course the student will be able to					
CO1:	Relate and classify between gravimetric analysis and organic preparation	[Up to K2]			
CO2:	Estimate lead, barium, calcium, copper and nickel.	[Up to K3]			
CO3:	Analyze the various types of organic preparation.	[Up to K3]			
CO4:	Interpret the organic preparation like nitration, bromination, hydrolysis,	[Up to K4]			
	oxidation, benzoylation and acetylation.	[Op to 134]			
CO5 :	Assemble the analyzed and prepared organic compounds samples.	[Up to K4]			

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	2	3	1	3	2	1	
Weightage	11	10	9	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	List of Experiments	Hrs	Mode
	1. Gravimetric Analysis		
	 Estimation of lead as lead chromate Estimation of barium as barium chromate Estimation of calcium as calcium oxalate monohydrate Estimation of copper as cuprous thiocyanate Estimation of nickel as Ni DMG. 		
I	2. Organic Preparation	45	Practical
	1. Nitration		
	a. M-dinitrobenzene from nitrobenzene		
	b. Picric acid from phenol		
	2. Bromination: p-bromo acetanilide from acetanilide		
	3. Hydrolysis: Aromatic acid from (a) an ester (b) an amide		
	4. Oxidation: Benzoic acid from benzaldehyde.		
	5. Benzoylation: (a) Amine (b) phenols.		
	6. Acetylation: (a) Amine (b) phenols		

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

(For those who joined in 2021-2022 and after)

Course Name	MAJOR CHEMISTRY PRACTICAL – V (ORGANIC ANALYSIS AND ESTIMATION)					
Course Code	21UCHCP5	L	P	C		
Category	Core	-	3	5		
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENURSHIP						

Course Objectives:

- To learn the analysis of an organic compound containing one or two functional groups.
- To analyze the concept of confirmation of the prepared one or two functional organic compounds
- To study estimation of phenol, aniline and glucose
- To understand the various functional groups of organic compounds
- To interpret organic analysis and estimation of organic compounds

List of Experiments

I. Organic Analysis

Analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative – acids, phenols, aldehydes, ketone, esters, nitro compounds, amines (primary, secondary and tertiary), aniline, aliphatic diamide, side chain and nuclear halogen compounds, diamide containing sulphur and monosaccharide.

II. ORGANIC ESTIMATION

- 1. Estimation of phenol
- 2. Estimation of aniline
- 3. Estimation of glucose

Distribution of Marks (Max. marks – 100)

Duration of examination: 6 hrs

Regular Test in the Class
Observation note book
: 30 Marks
: 10 Marks
-----Total
: 40 Marks

Organic estimation (30 Marks)

Organic analysis (30 Marks)

Record Note	- 10 marks	Viva Voce	 10 marks
Procedure	- 5 marks	Preliminary reaction	- 2 marks
Estimation	- 15 marks	Elements present	- 4 marks
Less than 3%	Error – 15 Marks	Aliphatic or aromatic	- 3 marks
3-4%	Error – 13 Marks	Saturated / Unsaturated	- 3 marks

4-5% Error – 10 Marks	Functional group	- 6 marks
Greater than 5% - 8 Marks	Derivative	- 2 marks

Total Lecture Hours 45 Hrs

Books for Reference:

- 1. Thomas. A.O and Mani, Textbook of Practical Chemistry, 4th Revised Edition, Scientific Publication, 1976.
- 2. N.S. Gnana pragasam and G. Ramamurthy, Organic Chemistry Lab Manual, Viswanath. S. Printers & Publishers Pvt. Ltd., 2010, Chennai.

Web Resources:

- 1. https://youtu.be/1uJk4K_irP8
- 2. https://youtu.be/xQJOfAKgSOY
- 3. https://youtu.be/xMjJxjhJWj4

Course	e Outcomes:	K Level				
On th	On the completion of the course the student will be able to					
CO1:	Relate and classify between organic analysis and estimation of organic compounds	[Up to K2]				
CO2:	Estimate the phenol, aniline and glucose	[Up to K3]				
CO3:	Analyze the one or two functional groups of organic compounds	[Up to K3]				
CO4:	Interpret the organic analysis and estimation of organic compounds	[Up to K4]				
CO5:	Distinguish between analysis and estimation of one or two functional groups of organic compounds	[Up to K4]				

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	3	1	2	3	1	2	
CO 2	1	3	1	1	2	3	
CO 3	2	2	3	2	3	3	
CO 4	3	1	2	2	1	2	
CO5	2	3	1	3	2	1	
Weightage	11	10	9	11	9	11	

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	List of Experiments	Hrs	Mode
I	I. Organic Analysis Analysis of an organic compound containing one or two functional groups and confirmation by the preparation of a solid derivative – acids, phenols, aldehydes, ketone, esters, nitro compounds, amines (primary, secondary and tertiary), aniline, aliphatic diamide, side chain and nuclear halogen compounds, diamide containing sulphur and monosaccharide. II. ORGANIC ESTIMATION 1. Estimation of phenol 2. Estimation of glucose	45	Practical

Course Designed by: Dr. V. Ramasamy Raja & Dr. A.J. Sunija

(For those who joined in 2021-2022 and after)

Course Name	PR	PROJECT AND VIVA - VOCE								
Course Code	210	1UCHPR1					C			
Category	Pro	Project				-	4			
Nature of course: EMPLOYABILITY			SKILL ORIENTED	ENTREP	RENU	JRSF	HIP			

Course Objectives:

To identify, describe the problem and scope of project

- To collect, analyse and present data into significant form using appropriate tools.
- To choose, plan and implement a proper approach in problem solving.
- To work with team and ethically.
- To present the findings in both oral and written form

Course Description

• The Project is conducted by the following Course Pattern.

	Total - 100						
External Project Report Viva Voce	60						
Internal Presentation Submission	} 40						

COUR	COURSE OUTCOMES					
On the successful completion of the course , the students will be able to						
CO1:	Apply the skill of presentation and communication techniques	K3				
CO2:	Motive as an individual or in a team in development of projects.	K4				
CO3:	Analyze the available resources and to select most appropriate one	K4				
CO4 :	Make use of the fundamentals of Chemistry to search the related literature survey	К3				
CO5:	Explain the real life problems by using Chemistry and its Application.	K4				

Course Designed by: Dr. V. Ramasamy Raja, & Dr. A.J. Sunija

CO & PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	2	2	2	1	3
CO 2	1	2	2	1	2	3
CO 3	2	2	2	2	2	1
CO 4	3	2	2	2	1	2
CO 5	3	2	2	1	2	3

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

(For those who joined in 2021-2022 and after)

Course Name	APPLIED CHEMISTE	RY				
Course Code	21UCHE61			L	P	C
Category	CORE ELECTIVE			5	-	5
Nature of cours	e: EMPLOYABILITY	✓ SKILL ORIENTED	✓ ENTREPREN	URS	HIP	✓
Course Object	ves:					<u> </u>
To Recall th	e water treatment and qua	ality analysis of water				
	•	ides and preparation of ch	emicals			
To Compare	the knowledge of match	and silicate industry				
-	<u> </u>	trochemicals and lacquer	paint			
	· · · · · · · · · · · · · · · · · · ·	and know the fertilizer in				
	TER AND SEWAGE T		,		15	,
		is – Chemical and Physi	cal Analysis of w	ater -	- Oua	ality
		Vater Quality by WHO a				
	*	Electro dialysis method a				
		t: Municipal Waste Water				
and Anaerobic	process – Miscellaneous N	Method of Sewage Treatm	ent			
Unit: II INS	SECTICIDES, PESTICI	DES AND PREPARAT	ON OF CHEMIC	CALS	S 15	í
Insecticides and	Pesticides: Definition –	Classification – Inorgani	c pesticides: lead a	arsena	ate, P	aris
green, lime, sul	ohur, hydrocyanic acid –	Organic pesticides, natura	d, synthetic (DDT,	Gam	maxe	ene)
- Fungicides - 1	epellants.					
Unit: III MA	TCH AND SILICATE	INDUSTRY			15	,
Match Industry	: Pyrotechnics and exp	losives – Raw materials	needed for mate	ch in	dustr	y –
Manufacturing	process – Pyrotechniques	- Coloured smokes. Silie	cate Industry: Cem	ent C	Hass	and
Ceramics, Raw	materials and manufactur	e of Cement, Glass and C	eramics.			
Unit: IV PE	TROCHEMICALS ANI	D LACQUER PAINT			15	í
Petrochemicals:	Elementary study – Def	inition – Origin – Compo	sition – Chemicals	s fror	n nat	ural
gas, Petroleum,	Light Naphtha and Keros	ene – Synthetic Gasoline.	Paints and lacque	rs: Pi	gmen	ıts —
Paints – Ingredi	ents in Paints – Manufact	ure – Lacquers – Varnishe	es.			
Unit: V FE	RTILIZERS				15	;
Definition – nu	rients for plants – role of	various elements in plant	ts growth – natural	and	chem	ical
		lizers –urea, super phosph	ate and potassium	nitra	te-mi	xed
fertilizer-fertiliz	er industry in India.					
			Total Lecture Ho	ırs	75 H	rs

Books for Study:

1. Sharma. B.K, Industrial Chemistry including Chemical Engineering, Goel Publishing House – 13th Revised and enlarged Edition, 2009, New Delhi.

Books for References:

- 1. Srilakshmi. B, Food Science, 3rd Edition, New Age International Pvt. Ltd., Publishers, 2002.
- 2. Jayashree Ghosh, Fundamental concepts of Applied Chemistry, S. Chand & Co., Publishers, 1998.
- 3. Thanlamma Jacob, Text Books of Applied Chemistry for Home Science and Allied Sciences,

Macmi	llan, 2000.	
Web R	Resources:	
1. http	os://youtu.be/FY7z9ymxXFQ	
2. http	os://youtu.be/cLZ_PQhOnDY	
Course	e Outcomes	K Level
On th	e completion of the course the student will be able to	
CO1:	Define insecticides, pesticides, petrochemicals and fertilizers and discuss their classification.	[Up to K2]
CO2:	Determine water quality, raw materials needed for match and silicate industries.	[Up to K3]
CO3:	Distinguish between water and sewage treatment and chemicals used between petrochemicals and paints and lacquers.	[Up to K3]
CO4:	Interpret the preparation of domestically useful chemical products.	[Up to K4]
CO5 :	Integrate the method of sewage treatment and fertilizer industries in India.	[Up to K4]

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3} – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	WATER AND SEWAGE TREATMENT Water Treatment: Water Quality Analysis – Chemical and Physical Analysis of water - Quality Parameters – Standards prescribed for Water Quality by WHO and other Indian standards – Sea Water as a source of Drinking Water – Electro dialysis method and Reverse osmosis method for purifications of water. Sewage Treatment: Municipal Waste Water – Sewage Treatment – Aerobic and Anaerobic process – Miscellaneous	15	Chalk, Talk & Power point
	Method of Sewage Treatment		
II	INSECTICIDES, PESTICIDES AND PREPARATION OF CHEMICALS Insecticides and Pesticides: Definition – Classification – Inorganic pesticides: lead arsenate, Paris green, lime, sulphur, hydrocyanic acid – Organic pesticides, natural, synthetic (DDT, Gammaxene) – Fungicides – repellants.	15	Chalk, Talk & Power point
III	MATCH AND SILICATE INDUSTRY Match Industry: Pyrotechnics and explosives – Raw materials needed for match industry – Manufacturing process – Pyrotechniques – Coloured smokes. Silicate Industry: Cement Glass and Ceramics, Raw materials and manufacture of Cement, Glass and Ceramics.	15	Chalk, Talk & Power point
IV	PETROCHEMICALS AND LACQUER PAINT Petrochemicals: Elementary study – Definition – Origin – Composition – Chemicals from natural gas, Petroleum, Light Naphtha and Kerosene – Synthetic Gasoline. Paints and lacquers: Pigments – Paints – Ingredients in Paints – Manufacture – Lacquers – Varnishes.	15	Chalk, Talk & Power point
V	FERTILIZERS Definition – nutrients for plants – role of various elements in plants growth – natural and chemical fertilizers-classification of chemical fertilizers –urea, super phosphate and potassium nitrate-mixed fertilizer-fertilizer industry in India.	15	Chalk, Talk & Power point

Course Designed by: Dr. V. Ramasamy Raja & Dr. R. Satheesh

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Secti	Section A		on B		Section	
Inte			MO	CQs	Short A	nswers	Section C	D	
rnal	Cos	K Level	No. of. Questions	K – Level	No. of. Question	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
~	estion ttern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Mar ks witho ut choice	Consolidate of %		
	K1	2	2	-	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	-	10	10	20	40	40		
I	K4	-	-	-	-	-	-	-		
_	Marks	4	6	20	20	50	100	100		
	K1	2	2	-	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	-	10	-	10	20	20		
II	K4	-	-	-	10	10	20	20		
	Marks	4	6	20	20	50	100	100		

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
				MCQs		Short Answers		Section D			
S.No	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)			
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)			
2	CO2	Up to K3	2	K1&K 2	1	K1	2 (K3&K3)	1(K3)			
3	CO3	Up to K3	2	K1&K 2	1	K2	2 (K3&K3)	1(K3)			
4	CO4	Up to K4	2	K1&K 2	1	K2	2 (K3&K3)	1(K4)			
5	CO5	Up to K4	2	K1&K 2	1	K2	2 (K3&K3)	1(K4)			
No. of	Question	s to be Asked	10		5		10	5			
No.of Questions to be answered		10		5		5	3				
Marks for each question		1		2		5	10				
Total	Marks for	each section	10		10		25	30			
	(Figures	in parenthesi	is d <mark>enotes, qu</mark>	iestions s	hould be as	ked with	the given K	level)			

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	4	-	-	9	7.5	33				
K2	5	6	10	10	31	25.83	33				
K3	1	-	40	20	60	50	50				
K4	-	-	-	20	20	16.67	17				
Marks	10	10	50	50	120	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	·
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO ₃	K3	
19) a	CO4	K3 K3	
19) b	CO4	K3	
20) a 20) b	CO5	K3	
			company of the students is to be assessed by attempting higher
level of			formance of the students is to be assessed by attempting higher
		en Choice	1
		Three ques	
Q.No	CO	K Level	Questions
21	CO1	K2	Vacanone
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	
	233		

(For those who joined in 2021-2022 and after)

Course Name	SOIL AND AGRICULTURE CHEMISTRY			
Course Code	21UCHE62	L	P	C
Category	CORE ELECTIVE	5	1	5
Nature of cou	se: EMPLOYABILITY SKILL ORIENTED ENTREPREN	URS	HIP	✓
Course Object	tives:			
To Realize	the volume and composition of soil and its importance on agriculture			
• To Remen	ber the properties of soil			
• To Discus	the various types of micronutrients needed to the soil			
	e the chemical composition of biofertilizer and soil			
• To Formul	ate the methods of analyzing the soil and applying the fertilizers.			
Unit: I So	OIL COMPONENTS		15	í
Definition - vo	lume, composition - uses - mineral soil - chemical ions - soil colloids -	- imp	ortan	ce ·
nature - prope	rties of inorganic and organic soil colloid - general characteristics - p	prope	rties	anc
importance - t	pes - silicate clays - silicates - silicon oxygen tetrahedron.			
	OIL SALINITY AND ALKALINITY		15	
Saline and alk	aline soil - nature - classification - characteristics - formation of saline		alka	line
Saline and alk soil - effects -	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water reso		alka	line
Saline and alk soil - effects - quality - classi	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resolication of water.		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resolution of water. NALYSIS OF SOIL		alka	line ate
Saline and alk soil - effects - quality - classi Unit: III A	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resortation of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation of ii) Analysis of	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resolution of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt.		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation o ii) Analysis of iii) Analysis o	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resortication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer.		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation of ii) Analysis of iii) Analysis of iv) Determinat	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resortication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity.		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation (ii) Analysis of (iii) Analysis of (iv) Determinatory) Estimation	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resorbication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil.		alka s - w	line ate
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation oii) Analysis of iii) Analysis oiv) Determinaty) Estimation Unit: IV V	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resorbication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil. ERMICOMPOSTING	ource	alka s - w 15	line
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation (ii) Analysis of iii) Analysis of iv) Determinate v) Estimation Unit: IV V Vermicompos	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resolution of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil. ERMICOMPOSTING ing: Economic implications - materials - preliminary treatment	ource	alkas - w	line ater
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation of iii) Analysis of iii) Analysis of iv) Determinate v) Estimation Unit: IV V Vermicompost	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resorbication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil. ERMICOMPOSTING ing: Economic implications - materials - preliminary treatmenting - requirements for vermicomposting. Eco-Friendly Farming Systems	ource	alkas - w	line ater
Saline and alk soil - effects - quality - classi Unit: III A i) Estimation of iii) Analysis of iii) Analysis of iii) Analysis of iv) Determinate v) Estimation Unit: IV Vermicompose vermicompose farming - conditional volumes.	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resolution of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil. ERMICOMPOSTING ing: Economic implications - materials - preliminary treatment ng - requirements for vermicomposting. Eco-Friendly Farming Systept - options.	ource	alka s - w 15	ot otanic
Saline and alk soil - effects - quality - classifunction (ii) Analysis of iii) Analysis of iii) Analysis of iv) Determinate v) Estimation Unit: IV Vermicompose vermicompose farming - concurrence V B:	aline soil - nature - classification - characteristics - formation of saline quality of irrigation water: introduction - criteria - irrigation water resorbication of water. NALYSIS OF SOIL f Ca, Mg, K and nitrate soluble salt. NPK in fertilizer. ion of soil pH and electrical conductivity. of organic matter content of soil. ERMICOMPOSTING ing: Economic implications - materials - preliminary treatmenting - requirements for vermicomposting. Eco-Friendly Farming Systems	t - t	alka s - w 15 15 types orga 15	o oanid

Biofertilizers: Soil biota in sustainable agriculture - biodiversity - management strategies - comparison of chemical fertilizer and biofertilizer. Methods of applying fertilizers - application of fertilizer in solid form - liquid fertilizer - nitrogenous fertilizer - types - phosphatic fertilizers: forms - classification- potassic fertilizers: Potassium sulphate: production – properties.

Total Lecture Hours | 75 Hrs

Books for Study:

- 1. Shivanand Tolanur, Soil Chemistry, International Book Distributing Co., 1st edition, 2006. (Unit I and II)
- 2. P.K.Gupta, A Handbook of Soil, Fertilizer and Manure, Agrobios (India), 2nd edition, 2012. (Unit III and IV)
- 3. A. K. Mani, R. Santhi and M. Sellamuthu, A Handbook of Laboratory Analysis, AE Publication, Coimbatore, 2007. (Unit V

Books for References:

- 1. S. P. Majumdar and R. A. Singh, Analysis of Soil Physical Properties, Agrobios (India), 2012.
- 2. Pooja Kashyap, Agricultural Chemistry, Rajat Pubublications, New Delhi, 1st Published, 2009.

Web Resources:

- 1. https://youtu.be/iaQjEDYyWKw
- 2. https://youtu.be/brKftIwoPjw
- 3. https://youtu.be/xEvo9udghgw
- 4. https://youtu.be/oJCBVfr3Mxw

Course	e Outcomes	K Level						
On th	On the completion of the course the student will be able to							
CO1:	Ability to understand the soil components and its composition	[Up to K2]						
CO2:	Discuss the soil salinity and alkalinity and formation of saline and alkaline	[Up to K3]						
CO3:	soil Interpret the chemical composition of soil	[Up to K3]						
CO4:	Examine the vermicomposting and ecofriendly farming	[Up to K4]						
CO5:	Analyze the biofertilizers and methods of applying fertilizers	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	SOIL COMPONENTS Definition - volume, composition - uses - mineral soil - chemical ions - soil colloids - importance - nature - properties of inorganic and organic soil colloid - general characteristics - properties and importance - types - silicate clays - silicates - silicon oxygen tetrahedron.	15	Chalk, Talk & Power point
II	SOIL SALINITY AND ALKALINITY Saline and alkaline soil - nature - classification - characteristics - formation of saline and alkaline soil - effects - quality of irrigation water: introduction - criteria - irrigation water resources - water quality - classification of water.	15	Chalk, Talk & Power point
III	i) Estimation of Ca, Mg, K and nitrate ii) Analysis of soluble salt. iii) Analysis of NPK in fertilizer. iv) Determination of soil pH and electrical conductivity. v) Estimation of organic matter content of soil.	15	Chalk, Talk & Power point
IV	VERMICOMPOSTING Vermicomposting: Economic implications - materials - preliminary treatment - types of vermicomposting - requirements for vermicomposting. Eco-Friendly Farming System: organic farming - concept - options	15	Chalk, Talk & Power point
V	BIOFERTILIZERS Biofertilizers: Soil biota in sustainable agriculture - biodiversity - management strategies - comparison of chemical fertilizer and biofertilizer. Methods of applying fertilizers - application of fertilizer in solid form - liquid fertilizer - nitrogenous fertilizer - types - phosphatic fertilizers: forms - classification- potassic fertilizers: Potassium sulphate: production – properties.	15	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. A.J. Sunija

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)

		K Level	Sect	tion A	Sect	ion B		Section D	
Inte			M	CQs	Short A	Answers	Section C		
rnal	Cos		No. of.		No. of.	К-	Either or	Open	
11141			Questio	K – Level	Questi	Level	Choice	Choice	
			ns		ons	Devel			
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
Pat	estion ttern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

		Dist	ribution of	Marks with	K Level	CIA I &	CIA II	
		Section A	Section B	Section C	Section		% of	
	K	(Multiple	(Short	(Either /	D	Total	(Marks	Consolidate
	Level	Choice	Answer	Or	(Open	Marks	without	of %
		Questions)	Questions)	Choice)	Choice)		choice)	
	K 1	2	2	-	-	4	8	
	K2	2	4	10	10	26	52	60
CIA	К3	-	-	10	10	20	40	40
I	K4	-	-	•	•	•	-	-
_	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	
	K2	2	4	10	10	26	52	60
CIA	К3	-	-	10	•	10	20	20
II	K4	-	-	•	10	10	20	20
	Marks	4	6	20	20	50	100	100

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
			MCQs		Short Answers		Section C	Section D				
S.No	COs	K - Level	No. of Question	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)				
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)				
2	CO2	Up to K3	2	K1&K2	1	K 1	2 (K3&K3)	1(K3)				
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
No. of	Questions	s to be Asked	10		5		10	5				
No	No.of Questions to be answered		10		5		5	3				
Mar	Marks for each question		1		2		5	10				
Total I	Total Marks for each section				10		25	30				
	(Figures	in parenthesi	is denotes, q	uestions s	hould be asl	ked with	the given K l	evel)				

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	4	-	-	9	7.5	33				
K2	5	6	10	10	31	25.83	33				
K3	-	-	40	20	60	50	50				
K4	-	-	-	20	20	16.67	17				
Marks	10	10	50	50	120	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	Section A (Multiple Choice Questions)									
Answei	· All Q	uestions	(10x1=10 marks)							
Q.No	CO	K Level	Questions							
1	CO1	K1								
2	CO1	K2								
3	CO2	K1								
4	CO2	K2								
5	CO3	K1								
6	CO3	K2								
7	CO4	K1								
8	CO4	K2								
9	CO5	K1								
10	CO5	K2								
		ort Answei	·							
		uestions	(5x2=10 marks)							
Q.No	CO	K Level	Questions							
11	CO1	K1								
12	CO2	K1								
13	CO3	K2								
14	CO4	K2								
15	CO5	K2								
		her/Or Ty								
		uestions	$(5 \times 5 = 25 \text{ marks})$							
Q.No	CO1	K Level K2	Questions							
16) a	CO1									
16) b	CO1	K2								
17) a	CO2	K3								
17) b	CO2	К3								
18) a	CO3	K3								
18) b	CO3	K3								
19) a	CO4	К3								
19) b	CO4	K3								
20) a	CO5	K3								
20) b	CO5	K3								
			Commands of the students is to be assessed by attempting higher							
level of			formance of the students is to be assessed by attempting higher							
		en Choice)							
		Three ques								
Q.No	CO	K Level	Questions							
21	CO1	K2	- Change of the Control of the Contr							
22	CO2	K3								
23	CO3	K3								
24										
	CO4	K4								

(For those who joined in 2021-2022 and after)

Course Name	FUEL CHEMISTRY				
Course Code	21UCHE63		L	P	C
Category	CORE ELECTIVE		5	-	5
Nature of cour	se: EMPLOYABILITY SKILL ORIENTED	✓ ENTREPREN	URSI	HIP	✓
Course Object	tives:	1			
• To Recall t	he knowledge of fuel sources and its types				
	ber the types of solid fuels and its advantages and di	sadvantages			
	re the knowledge of solid, liquid, gaseous and bio fu	•			
_	the petroleum and petrochemical fuels and its refin				
	ine the manufacture of fuels and catalysts used in pe				
	NERGY SOURCES	,		15	
Renewable ene	ergy sources: solar, wind and geothermal energy -	bioenergy hydropo	wer a	and o	cear
	enewable energy sources: fossil fuels and nuclear				
	n - calorific value - determination of calorific value				
and secondary	- criterion for selection of fuel - properties: ignition	temperature - flam	e tem	perat	ure.
flash point - fir		1		•	
Unit: II SC	OLID FUELS			15	
Cint. II	LID I CEES			13	
	cial - industrial solid fuels - Coal: formation - proper	ties - classification	ı - col		
Natural - artific				cing -	- nor
Natural - artific coking and pul	cial - industrial solid fuels - Coal: formation - proper	- analysis of coal:	prox	king - imate	nor
Natural - artific coking and pul	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional	- analysis of coal:	prox	king - imate	nor
Natural - artific coking and pullultimate - advaccoal tar-based of Unit: III LI	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS	- analysis of coal: I distillation of co	prox al tar	cing - imate - use	e and
Natural - artific coking and pulultimate - advaccoal tar-based colored Unit: III LI Petroleum and	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions	- analysis of coal: al distillation of co	proxical tar	imate - use 15	- nor e and es of
Natural - artific coking and pulultimate - advaccoal tar-based of Unit: III LI Petroleum and	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS	- analysis of coal: al distillation of co	proxical tar	imate - use 15	- nor e and es of
Natural - artific coking and pull ultimate - adva coal tar-based of Unit: III LI Petroleum and fractions - crac unleaded petro	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents -	- analysis of coal: I distillation of co tion and uses of rectane rating - anti hydrocarbons from	proxival tar	imate - use 15 petrol k age	e and es of
Natural - artific coking and pull ultimate - adva coal tar-based of Unit: III LI Petroleum and fractions - crac unleaded petro	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coal.	- analysis of coal: I distillation of co tion and uses of rectane rating - anti hydrocarbons from	proxival tar	imate - use 15 petrol k age	e and es of
Natural - artific coking and pull ultimate - advaccoal tar-based (Unit: III LI Petroleum and fractions - cracunleaded petropetrochemicals)	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents -	- analysis of coal: I distillation of co tion and uses of rectane rating - anti hydrocarbons from	proxival tar	imate - use 15 petrol k age	e and es of leum ents
Natural - artific coking and pull ultimate - adva coal tar-based of Unit: III LI Petroleum and fractions - cracunleaded petrochemicals Unit: IV GA	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coal - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used	- analysis of coal: I distillation of co tion and uses of rectane rating - anti hydrocarbons from in petroleum indus	main j knoch m pet	15 petroleu	e and es or leum ents
Natural - artific coking and pull ultimate - advaccoal tar-based of the coal tar-based of t	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used ASEOUS FUELS natural - artificial gaseous fuels - examples and semi water gas - LPG - manufacture - compositions.	- analysis of coal: al distillation of coal: tion and uses of rectane rating - antihydrocarbons from in petroleum industrial	main j knoch m pet stry.	15 petroleuroleuroleuroleuroleuroleuroleuroleu	es or
Natural - artific coking and pull ultimate - advaccoal tar-based of the coal tar-based of t	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositioning - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used ASEOUS FUELS natural - artificial gaseous fuels - examples and	- analysis of coal: al distillation of coal: tion and uses of rectane rating - antihydrocarbons from in petroleum industrial	main j knoch m pet stry.	15 petroleuroleuroleuroleuroleuroleuroleuroleu	es or
Natural - artific coking and pull ultimate - adva coal tar-based of the coal tar-based of	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used ASEOUS FUELS natural - artificial gaseous fuels - examples and semi water gas - LPG - manufacture - compositions.	- analysis of coal: al distillation of coal: tion and uses of rectane rating - antihydrocarbons from in petroleum industrial	main j knoch m pet stry.	15 petroleuroleuroleuroleuroleuroleuroleuroleu	leuments -
Natural - artific coking and pull ultimate - advaccoal tar-based of the coal tar-based of tar-based of the coal tar-based of t	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - composition of the composition	- analysis of coal: al distillation of coal: tion and uses of rectane rating - anti hydrocarbons from in petroleum indust d their importance on and uses - goba	main j knoch m pet stry.	15 petroleu 15 rater 5 - bi	leuments - gas-ogas
Natural - artific coking and pull ultimate - advacced tar-based of the coal tar-based of the coal tar-based of tar-based o	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositiving - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used ASEOUS FUELS natural - artificial gaseous fuels - examples and semi water gas - LPG - manufacture - compositivantages and disadvantages. O FUELS urces and classification: biodiesel - bioethanol - hybiodiesel - advantages of biofuels.	- analysis of coal: al distillation of coal: tion and uses of rectane rating - anti- hydrocarbons from in petroleum indust d their importance on and uses - gobs ydrogen fuel from	main j knock m pet stry.	15 petroleu 15 rater 5 - bi	leuments - gas-ogas
Natural - artific coking and pull ultimate - advacced tar-based of the coal tar-based of the coal tar-based of tar-based o	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositiving - thermal - catalytic cracking - advantages - coll - cetane rating - antidiesel knock agents - direct and indirect petrochemicals - catalysts used ASEOUS FUELS natural - artificial gaseous fuels - examples and semi water gas - LPG - manufacture - compositivantages and disadvantages. O FUELS urces and classification: biodiesel - bioethanol - hybiodiesel - advantages of biofuels.	- analysis of coal: al distillation of coal: tion and uses of rectane rating - anti hydrocarbons from in petroleum indust d their importance on and uses - goba	main j knock m pet stry.	15 petroleu 15 rater 5 - bi	e and ees o
Natural - artific coking and pull ultimate - advacced tar-based of the coal tar-based of the coal tar-based of tar-based o	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - composition of the composition	- analysis of coal: al distillation of coal: tion and uses of rectane rating - anti- hydrocarbons from in petroleum indust d their importance on and uses - gobs ydrogen fuel from	main j knock m pet stry.	15 petroleu 15 vater s - bi 15	e and es o
Natural - artific coking and pull ultimate - adva coal tar-based of the Unit: III LI Petroleum and fractions - crac unleaded petropetrochemicals Unit: IV GA Classification: producer gas - generation - adv Unit: V BI Definition - so manufacture of Books for Students Books fo	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - composition of the composition	- analysis of coal: al distillation of coal: al distillation of coal: ation and uses of rectane rating - anti antihydrocarbons from in petroleum indust at their importance on and uses - gob addrogen fuel from Total Lecture Hor	main j knock m pet stry.	15 petroleu 15 vater s - bi 15	e and es o
Natural - artific coking and pull ultimate - adva coal tar-based of the coal tar-based of tar-based	cial - industrial solid fuels - Coal: formation - proper verisation of coal - role of sulphur and ash in coal antages and disadvantages of solid fuels - fractional chemicals. QUID FUELS petrochemicals - refining of petroleum - compositions of the composition	- analysis of coal: al distillation of coal: al distillation of coal: ation and uses of rectane rating - anti- hydrocarbons from in petroleum industry at their importance on and uses - gobs addrogen fuel from Total Lecture House th Edition, 2002.	main j knoch m pet stry.	15 petroleu 15 vater s - bi 15 Ass -	e andes of description of the leurn sents aim gass

3. Andrey Gorbatovskiy, Fuel Chemistry and Technology, LAMBERT Academic Publishing, 6th

Books for References:

June 2013, India.

Web R	Web Resources:						
1. http	1. https://en.m.wikipedia.org/wiki/Biofuels						
2. http	s://www.studentenergy.org/topics/biofuels						
Course Outcomes							
On th	On the completion of the course the student will be able to						
CO1:	Ability to remember the basic concepts of atoms, molecules, fuels, catalysis.	[Up to K2]					
CO2:	Discuss the composition of the solutions and mixtures and type of catalysts.	[Up to K3]					
CO3:	Interpret the knowledge of atoms, molecules, fuels and catalysts.	[Up to K3]					
CO4:	Examine the properties of metals and non-metals and role of catalysts.	[Up to K4]					
CO5:	Distinguish between pure substance and mixtures, various types of catalysts.	[Up to K4]					

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)								
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	1	2	3	1	2			
CO 2	1	3	1	1	2	3			
CO 3	2	2	3	2	3	3			
CO 4	3	1	2	2	1	2			
CO5	1	3	2	3	2	1			
Weightage	10	10	10	11	9	11			

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	ENERGY SOURCES Renewable energy sources: solar, wind and geothermal energy – bioenergy hydropower and ocean energy – non-renewable energy sources: fossil fuels and nuclear fuels - definition and examples - fuel - definition – calorific value – determination of calorific value – classification of fuels: primary and secondary - criterion for selection of fuel - properties: ignition temperature - flame temperature - flash point - fire point.	15	Chalk, Talk & Power point
п	SOLID FUELS Natural - artificial - industrial solid fuels - Coal: formation - properties - classification - coking - non coking and pulverisation of coal - role of sulphur and ash in coal - analysis of coal: proximate and ultimate - advantages and disadvantages of solid fuels - fractional distillation of coal tar - uses of coal tar-based chemicals.	15	Chalk, Talk & Power point
III	LIQUID FUELS Petroleum and petrochemicals - refining of petroleum - composition and uses of main petroleum fractions - cracking - thermal - catalytic cracking - advantages - octane rating - anti knock agents - unleaded petrol - cetane rating - antidiesel knock agents - hydrocarbons from petroleum - petrochemicals - direct and indirect petrochemicals - catalysts used in petroleum industry.	15	Chalk, Talk & Power point
IV	GASEOUS FUELS Classification: natural - artificial gaseous fuels - examples and their importance - water gas- producer gas - semi water gas - LPG - manufacture - composition and uses - gobar gas - biogas generation-advantages and disadvantages.	15	Chalk, Talk & Power point
V	BIO FUELS Definition - sources and classification: biodiesel - bioethanol - hydrogen fuel from biomass - uses manufacture of biodiesel - advantages of biofuels.	15	Chalk, Talk & Power point

Course Designed by: Dr. A. J. Sunija & Dr. K. Muthupandi

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Section	on A	Sec	tion B		Section	
Inte			MC	Qs	Short	Answers	Section C	D	
rnal Cos		K Level	No. of. Questions	K – Level	No. of. Questi ons	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
~	estion etern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2	2	-	-	4	8				
	K2	2	4	10	10	26	52	60			
CIA	К3	-	-	10	10	20	40	40			
I	K4	•	-	-	-	•	-	-			
_	Marks	4	6	20	20	50	100	100			
	K1	2	2	-	-	4	8				
	K2	2	4	10	10	26	52	60			
CIA	К3	-	-	10	-	10	20	20			
II	K4	-	-	-	10	10	20	20			
	Marks	4	6	20	20	50	100	100			

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
			MCQs		Short Answers		Section C	G. dia D			
S.No	COs	K - Level	No. of Questions	K – Level	No. of Questio n	K – Level	(Either / or Choice)	Section D (Open Choice)			
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)			
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)			
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)			
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)			
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)			
No. of	Question	s to be Asked	10		5		10	5			
No	No.of Questions to be answered		10		5		5	3			
Mai	Marks for each question		1		2		5	10			
Total Marks for each section		10		10		25	30				
	(Figures	in parenthesi	is denotes, qu	iestions sl	ould be asl	ked with	the given K	level)			

		Dis	tribution of	Marks with	K Leve	l	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	33
K2	5	6	10	10	31	25.83	33
K3	-	-	40	20	60	50	50
K4	-	-	-	20	20	16.67	17
Marks	10	10	50	50	120	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	К3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
	_	en Choice	
	CO	Three ques K Level	
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO ₂	K3	
24	CO3	K4	
25	CO ₄	K4	
43	CO3	17.4	

(For those who joined in 2021-2022 and after)

Course Name NANO CHEMISTRY										
Course Code 21UCHE64	L	P	C							
Category CORE ELECTIVE	5	-	5							
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPREN	URSI	HIP	✓							
Course Objectives:										
To Understand the basic concept of nanomaterials and its types.										
To Identify the nanoparticles and its synthetic methods of nanomaterials										
To Analyze the classical colloid theory of nanomaterials										
To Perform the optical characterization methods on prepared nanomaterials										
To Determine the application of nanomaterials and its environmental safety measures										
Unit: I INTRODUCTION TO NANOCHEMISTRY		15								
Nanomaterials - Definition - Bulk materials and Nanochemistry; Basics N										
Types(0D,1D,2D,3D), compositions, and structures (nanowire, nano rod, nanosph										
nanoparticle)- properties of nanomaterials-Optical, mechanical, magnetic, electrical	ıl and	d the	rmal							
properties-Bonding in nanostructures (Graphene, fullerene, carbon nanotubes).		1.5								
Unit: II NANOPARTICLES AND SYNTHESIS		15								
Metal and semiconductor nanocrystals, Porous inorganic nanoparticles. Basic										
Topdown approach-Ball milling, Bottom up-Chemical vapour deposition (Creduction, Sol gel method- Microwave and Sonochemical method.	۷ <i>D</i>),	Chei	incai							
Unit: III CARBON, METAL AND METAL OXIDE NANOMATERIALS		15								
Carbon based materials: Preparation, properties and uses-carbon nanotube (CNT), Gra	nhen									
black. Metal nanomaterials: preparation, properties and uses of Au, Mo nanopartic										
nanomaterial.			2							
Unit: IV CHARACTERIZATION OF NANOSTRUCTURED MATERIALS		15								
Structural characterization: Ultraviolet-Visible and DRS, Fourier Transform Infrared	Spec	etrosc	opy,							
X-ray diffraction, Scanning electron microscope (SEM), Transmis			etron							
miscroscope(TEM). Nanomechanical Characterization – Thermogravimetry analysis (TGA).								
Unit: V APPLICATIONS OF NANOMATERIALS		15								
Applications of nanomaterials- Electronics, Biosensors, Medi-			olar							
cells, Water treatment, Food, Fabric Industries, Automobile	s, (cera	mic							
industry, Batteries and Fuel cells.										
Total Lecture Hou	urs	75 H	rs							
Books for Study:										
1. M. A. Shah, Tokeer Ahmad, Principles of Nanoscience and Nanotechnology, Nar	osa P	ublis	hing							
group, 2010, ISBN-978-81-8487-072-5.										
2. N. Arumugam, Nanotechnology, Saras publication, 1 st edition, 2016, ISBN-978-9	3-848	326-9	5-6.							
Books for References:										
1. Charles P. Poole, Frank. J. Owens, Introduction to nanotechnology, Wiley I	[ndia									
Pvt.Ltd, 2019 reprint. ISBN-978-81-265-1099-3.										
2. M. A. Shah and Tokeer Ahmad, Principles of Nanoscience and Nan	notec	hnol	ogy,							

NarosaPublishing House, 2nd Reprint, 2013.

Web Resources:

- 1. https://youtu.be/BLNwNkdRiTI
- 2. https://youtu.be/LbVg58LfvJc
- 3. https://youtu.be/evE08ycZfnM
- 4. https://youtu.be/41zegz4APPs

Course	Course Outcomes									
On th	On the completion of the course the student will be able to									
CO1:	Define nanomaterials and its types of nanomaterials	[Up to K2]								
CO2:	Understand the nanoparticles and synthetic methods of nanomaterials	[Up to K3]								
CO3:	Analyze the classical colloid theory on nanomaterials	[Up to K3]								
CO4:	Interpret the optical characterization of prepared nanomaterials	[Up to K4]								
CO5:	Distinguish the application of nanomaterials	[Up to K4]								

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)									
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6				
CO 1	3	1	2	3	1	2				
CO 2	1	3	1	1	2	3				
CO 3	2	2	3	2	3	3				
CO 4	3	1	2	2	1	2				
CO5	1	3	2	3	2	1				
Weightage	10	10	10	11	9	11				

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	Nanomaterials – Definition – Bulk materials and Nanochemistry; Basics Nanomaterials -Types(0D,1D,2D,3D), compositions, and structures (nanowire, nano rod, nanosphere, nanocube, nanoparticle)-properties of nanomaterials-Optical, mechanical, magnetic, electrical and thermal properties-Bonding in nanostructures (Graphene, fullerene, carbon nanotubes)	15	Chalk, Talk & Power point
II	Metal and semiconductor nanocrystals, Porous inorganic nanoparticles. Basic synthesis - Topdown approach-Ball milling, Bottom up- Chemical vapour deposition (CVD), Chemical reduction, Sol gel method- Microwave and Sonochemical method.	15	Chalk, Talk & Power point
III	Carbon based materials: Preparation, properties and uses-carbon nanotube (CNT), Graphene, Carbon black. Metal nanomaterials: preparation ,properties and uses of Au, Mo nanoparticles and TiO ₂ - nanomaterial.	15	Chalk, Talk & Power point
IV	Structural characterization: Ultraviolet-Visible and DRS, Fourier Transform Infrared Spectroscopy, X-ray diffraction, Scanning electron microscope (SEM), Transmission electron miscroscope(TEM). Nanomechanical Characterization – Thermogravimetry analysis (TGA).	15	Chalk, Talk & Power point
v	Applications of nanomaterials- Electronics, Biosensors, Medicine, Solar cells, Water treatment, Food, Fabric Industries, Automobiles, ceramic industry, Batteries and Fuel cells.	15	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. V. Ramasamy Raja

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Secti	ion A	Secti	on B		Section
Inte			MO	CQs	Short A	nswers	Section C	D
rnal	Cos	K Level	No. of. Questions	K – Level	No. of. Question s	K - Level	Either or Choice	Open Choice
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
Pat	estion etern	No. of Questions to be answered	4		3		2	1
CIA I & II		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

			Distribution o	f Marks with	K Level CIA	I & CIA I	[
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidat e of %
	K1	2	2	-	-	4	8	
	K2	2	4	10	10	26	52	60
CIA	К3	-	-	10	10	20	40	40
I	K4	-	=	-	-	•	-	-
_	Marks	4	6	20	20	50	100	100
	K 1	2	2	-	-	4	8	
	K2	2	4	10	10	26	52	60
CIA	К3	-	-	10	-	10	20	20
II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)												
			MC		Short An	swers	Section C	Section D (Open Choice)					
S.No	COs K - Level		No. of Question	K – Level	No. of Question	K – Level	(Either / or Choice)						
1	CO1	Up to K2	2	K1,K2	1	K 1	2 (K2&K2)	1(K2)					
2	CO2	Up to K3	2	K1&K2	1	K 1	2 (K3&K3)	1(K3)					
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)					
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)					
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)					
No. of	Question	s to be Asked	10		5		10	5					
No	No.of Questions to be answered		10		5		5	3					
Mar	Marks for each question				2		5	10					
Total I	Total Marks for each section				10		25	30					
	(Figures	in parenthesi	is denotes, o	mestions s	hould be as	ked with	the given K le	vel)					

		Dis	tribution of	Marks with	K Leve	l	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	33
K2	5	6	10	10	31	25.83	33
K3	-	-	40	20	60	50	50
K4	-	-	-	20	20	16.67	17
Marks	10	10	50	50	120	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
Answe	r All Q	uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	rpe)
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
	_	_	formance of the students is to be assessed by attempting higher
level of			
		en Choice	
		Three ques	
Q.No	CO1	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO ₄	K3 K4	
24	CO4		
25	CO5	K4	

(For those who joined in 2021-2022 and after)

Course Name	C	LINICAL AND MEDICINAL CHEMISTRY										
Course Code	2	1UCH	UCHE65									C
Category	C	CORE ELECTIVE 5 -									-	5
Nature of course: EMPLOYABILITY ✓ SKILL ORIENTED					✓	ENTREPREN	URS	HIP	✓			
Course Objectives:												
To Recall the	• To Recall the definitions of health, sterilization of surgical instrument and biochemical analysis.											

- To Remember the concept of drugs and learn the manufacture of common drugs.
- To Compare the enzymes and its classification.
- To Perform the concept of blood volume, blood group and coagulation of blood.
- To Determine the knowledge on heredity and recombinant DNA and its possible hazards.

Unit: I CLINICAL HYGIENE AND BIOCHEMICAL ANALYSIS 15 Definition of health, Sterilization of surgical instruments, disinfectants, antiseptics and Sanitation. Biochemical analysis of urine, serum and fecal matter. Treatment for specific poisons-acids, alkalis, arsenic and mercury compounds.

Unit: II | COMMON TESTING OF DRUGS

15

Manufacture of drugs (e.g. quinine, reserpine, atopside and d – tubocurarine) from Indian medicinal plants. Testing of drugs: biological variation – screening and toxicity – Use of pharmacopeia and therapeutic index – Types of drugs and their modes of action – Depressant drugs (special reference to sedatives and hypnotics) – Anticonvulsant drugs (sodium valproate, hydantoins) – Acting at spinal cord alone (glyceryl guaiacolate, diazepam). Cardiovascular drugs-nitrates, beta blockers (propranolol and atenolol) and calcium channel blockers.

Unit: III | ENZYMES

15

Classification, specificity – factors influencing enzymes – Coenzymes – Cofactor, ATP, Mechanism of enzyme action and Immobilization of enzymes. Applications of enzymes.

Unit: IV | BODY FLUID

15

Blood volume, blood groups, coagulation of blood. Plasma lipoproteins. Blood pressure Arteriosclerosis, diseases affecting red cells: Hyperchromic and hypochromic anemia. Blood transfusion. Blood sugar and diabetes.

Unit: V BIOTECHNOLOGY

1;

Heredity, recombinant DNA, Genetic engineering and its possible hazards, Gene splicing, manufacture of interferon and human insulin (Humulin), Drug manufacture based on fermentation (only antibiotics)

Total Lecture Hours | 75 Hrs

Books for Study:

- 1. Jayashree Ghosh, A Textbook of Pharmaceutical Chemistry, S. Chand & Co., New Delhi, 1999.
- 2. Rastogi. S.C, Biochemistry, Tata McGraw Hill Publishing Co., 1993.
- 3. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Ltd., 1993, New Delhi.

Books for References:

- 1. Le Roy, O, Natural and Synthetic Organic Medicinal Compounds, Ealemi, 1976.
- 2. Oser, B.L, Hawk's Physiological Chemistry, 14th Edition, Tata McGraw Hill Publishing Co., 1965.

3. Kleiner. O and Martin. J, Biochemistry, Prentice-Hall of India, 1974, New Delhi.

Web Resources:

- 1. https://youtu.be/lUxkcEoGkVg
- 2. https://youtu.be/pss_sm2zaek
- 3. https://youtu.be/Z63xnlDNajE
 4. https://youtu.be/gaYBUz14B3w

4. <u>https://youtu.be/qa1b0214b3w</u>								
Course	Course Outcomes							
On th	On the completion of the course the student will be able to							
CO1:	Remember the basic definitions of clinical hygiene and biochemical analysis.	[Up to K2]						
CO2:	Discuss the manufacture of common drugs from medicinal plants and type of drugs.	[Up to K3]						
CO3:	Interpret the knowledge of enzymes and its classification	[Up to K3]						
CO4:	Examine the properties of blood volume, blood group and coagulation of blood.	[Up to K4]						
CO5:	Determine the heredity and recombinant DNA and its possible hazards.	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	CLINICAL HYGIENE AND BIOCHEMICAL ANALYSIS Definition of health, Sterilization of surgical instruments, disinfectants, antiseptics and Sanitation. Biochemical analysis of urine, serum and fecal matter. Treatment for specific poisons-acids, alkalis, arsenic and mercury compounds.	15	Chalk, Talk & Power point
II	COMMON TESTING OF DRUGS Manufacture of drugs (e.g. quinine, reserpine, atopside and d – tubocurarine) from Indian medicinal plants. Testing of drugs: biological variation – screening and toxicity – Use of pharmacopeia and therapeutic index – Types of drugs and their modes of action – Depressant drugs (special reference to sedatives and hypnotics) – Anticonvulsant drugs (sodium valproate, hydantoins) – Acting at spinal cord alone (glyceryl guaiacolate, diazepam). Cardiovascular drugsnitrates, beta blockers (propranolol and atenolol) and calcium channel blockers.	15	Chalk, Talk & Power point
III	ENZYMES Classification, specificity – factors influencing enzymes – Coenzymes – Cofactor, ATP, Mechanism of enzyme action and Immobilization of enzymes. Applications of enzymes.	15	Chalk, Talk & Power point
IV	BODY FLUID Blood volume, blood groups, coagulation of blood. Plasma lipoproteins. Blood pressure Arteriosclerosis, diseases affecting red cells: Hyperchromic and hypochromic anemia. Blood transfusion. Blood sugar and diabetes.	15	Chalk, Talk & Power point
V	BIOTECHNOLOGY Heredity, recombinant DNA, Genetic engineering and its possible hazards, Gene splicing, manufacture of interferon and human insulin (Humulin), Drug manufacture based on fermentation (only antibiotics)	15	Chalk, Talk & Power point

Course Designed by: Dr. R. Satheesh & Dr. K. Muthupandi

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Section A		Sect	ion B		Sectio	
Inte			MC	Qs	Short A	Answers	Section C	n D	
rnal		K Level	No. of. Questions	K – Level	No. of. Question s	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
_	estion ttern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Mar ks with out choic e)	Consolidate of %		
	K1	2	2	-	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	-	10	10	20	40	40		
I	K4	-	-	-	-	-	-	-		
_	Marks	4	6	20	20	50	100	100		
	K1	2	2	-	-	4	8			
	K2	2	4	10	10	26	52	60		
CIA	К3	-	-	10	-	10	20	20		
II	K4	-	-	-	10	10	20	20		
	Marks	4	6	20	20	50	100	100		

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Sumn	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
			MC	Qs	Short An	swers	Section C	Section D	
S.No	COs	K - Level	No. of	K –	No. of	K –	(Either /	(Open	
			Questions	Level	Question	Level	or Choice)	Choice)	
1	CO1	Up to K2	2	K1,K2	1	K1	2 (K2&K2)	1(K2)	
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)	
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)	
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)	
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)	
No. of	Questions	s to be Asked	10		5		10	5	
No	No.of Questions to be answered		10		5		5	3	
Ma	Marks for each question		1		2		5	10	
Total Marks for each section			10		10		25	30	
	(Figu	res in parentho	esis denotes, o	questions s	hould be ask	ed with th	ne given K lev	el)	

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	33			
K2	5	6	10	10	31	25.83	33			
К3	-	-	40	20	60	50	50			
K4	-	-	-	20	20	16.67	17			
Marks	10	10	50	50	120	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
Answe	r All Q	uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section	B (Sho	ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	pe)
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
		en Choice	
	CO	Three ques K Level	tions (3x10=30 marks) Questions
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO2	K3	
24	CO3	K3 K4	
25	CO ₄	K4 K4	
43	CO3	134	

(For those who joined in 2021-2022 and after)

Course Name	APPLIED ELECTROCHEMISTRY						
Course Code	21UCHE66	L	P	C			
Category	Category CORE ELECTIVE 5						
Nature of cour	se: EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENU	URS	HIP	✓			
Course Object	tives:						
• To Recall t	he basic concept of electrochemical cells and electrodes						
• To Remem	ber the electrolytes and determine of activity coefficients of electrolytes	S					
• To Interpre	t the electrodes and energy conservation						
-	the basic components of electroplating and metal finishing						
	ine the electrochemical properties on corrosion science						
	ECTROMOTIVE FORCE		15				
EMF and Equ	ilibrium constant (K) of a cell reaction - Nernst equation - concen	tratio	on ce	ells -			
-	centration cells without transference - electrolyte concentration						
transference -	concentration cells with transference - liquid junction potential (ELJ	P), 6	lectr	olyte			
concentrations	cells with salt bridge - application of EMF measurements.						
Unit: II EI	ECTROLYTES, ELECTRODES AND ENERGY CONSERVATION)N	15				
	Determination of activity coefficients of electrolyte - determination		_				
•	mination of pH of a solution using hydrogen electrode, quine hydrone			-			
	- potentiometric titrations. Energy Conservation: principals of energy						
	l energy conservation - thermodynamic reversibility - Gibb"s equation.						
	CTROPLATING AND FUEL CELLS		15				
Electroplating	- definition - factors affecting electroplating - components of electrop	olatin	g pro	ocess			
working pro	cess of electroplating - basic applications of electroplating - pocl	ket p	lates	and			
sintered plates	- vented and sealed maintenance free designs - fuel cells -introduction	ı, typ	es of	fue			
	es - photo electrochemical cells.						
Unit: IV EN	NDUSTRIAL METAL FINISHING		15				
Introduction -	objectives of electroplating - characteristics of electrodeposit and fa	ctors	- cc	pper			
electroplating -	alkaline and acid bath - chromium electroplating - zinc electroplating -	- gol	l plat	ing -			
anodizing and	•						
	DRROSION SCIENCE		15				
Introduction	types of corrosion - theories of corrosion - mechanism of corrosion - or						
	l corrosion - types - passivity - factors influencing rate of corrosion - n	ature	of m	netal.			
electrochemica							
electrochemica environment -	phorbaix diagram - corrosion control techniques - inhibitors - catho						
electrochemica environment -		odic j		ction			

Books for Study:

- 1. B.R. Puri, L.R. Sharma, Madan. S Pathaniya and B.S. Lark, Graduate of physical Chemistry (Volume II), Vishal Publishing Co.
- 2. Bard & Faulkner, Electrochemical Methods: Fundamentals and Applications, Second edition.

Books for References:

- 1. Fritz Scholz, Electroanalytical Methods Guide to Experiments and Applications, 2nd Ed, Springer-Verlag Berlin Heidelberg 2010.
- 2. Joseph Wang, Analytical Electrochemistry, third edition 2006, John Wiley & Sons.

Web Resources:

- 1. https://youtu.be/rHMZ1Dpk5Fc
- 2. https://youtu.be/fHfv41HmIK0
- 3. https://youtu.be/BECSYfYhJGk
- 4. https://youtu.be/fM8hwkW8bIw
- 5. https://youtu.be/tJj-ilJTo6Y
- 6. https://youtu.be/uHoKGy704jk
- 7. https://youtu.be/4swtYzEbl64
- 8. https://youtu.be/q9c3-8CE_ro

Course	Course Outcomes							
On th	On the completion of the course the student will be able to							
CO1:	Remember the basic concepts of electrochemical cells and electrodes	[Up to K2]						
CO2:	Discuss the electrolytes, electrodes and energy conservation	[Up to K3]						
CO3:	Interpret the knowledge of electroplating and fuel cells	[Up to K3]						
CO4:	Examine the objective and characteristics of metal finishing	[Up to K4]						
CO5:	Analyze the electrochemical properties on corrosion science	[Up to K4]						

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	ELECTROMOTIC FORCE EMF and Equilibrium constant (K) of a cell reaction - Nernst equation - concentration cells - electrode concentration cells without transference - electrolyte concentration cells without transference - concentration cells with transference - liquid junction potential (ELJP), electrolyte concentrations cells with salt bridge - application of EMF measurements.	15	Chalk, Talk & Power point
П	ELECTROLYTES, ELECTRODES AND ENERGY CONSERVATION Electrolytes — Determination of activity coefficients of electrolyte - determination of transport number - determination of pH of a solution using hydrogen electrode, quine hydrone electrode and glass electrode - potentiometric titrations. Energy Conservation: principals of energy conservation - electrochemical energy conservation - thermodynamic reversibility - Gibb"s equation.	15	Chalk, Talk & Power point
III	ELECTROPLATING AND FUEL CELLS Electroplating – definition – factors affecting electroplating – components of electroplating process – working process of electroplating – basic applications of electroplating – pocket plates and sintered plates - vented and sealed maintenance free designs – fuel cells -introduction, types of fuel cells, advantages - photo electrochemical cells.	15	Chalk, Talk & Power point
IV	INDUSTRIAL METAL FINISHING Introduction - objectives of electroplating - characteristics of electrodeposit and factors - copper electroplating - alkaline and acid bath - chromium electroplating - zinc electroplating - gold plating - anodizing and electroforming.	15	Chalk, Talk & Power point
v	CORROSION SCIENCE Introduction - types of corrosion - theories of corrosion - mechanism of corrosion - dry corrosion - electrochemical corrosion - types - passivity - factors influencing rate of corrosion - nature of metal, environment - phorbaix diagram - corrosion control techniques - inhibitors - cathodic protection methods - corrosion monitoring techniques.	15	Chalk, Talk & Power point

Course Designed by: Dr. K. Muthupandi & Dr. R. Satheesh

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

			Section A		Secti	ion B		Section	
Inte		K Level	MO	CQs	Short A	nswers	Section C	D	
rnal	Cos		No. of. Question S K - Level		No. of. Questions	K - Level	Either or Choice	Open Choice	
CI	CO1	Up to K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
ΑI	CO2	Up to K3	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K3)	
CI	CO3	Up to K3	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AII	CO4	Up to K4	2	K1 & K2	2	K2 & K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
_	estion ttern	No. of Questions to be answered	4		3		2	1	
CIA I & II		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

			Distribution o	f Marks with	K Level Cl	A I & CIA	II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Mark s withou t choice)	Consolidate of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	UU
CIA	К3	-	-	10	10	20	40	40
I	K4	-	-	-	-	-	-	-
•	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	
	K2	2	4	10	10	26	52	60
CIA II	К3	-	-	10	-	10	20	20
	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

- **K1** Remembering and recalling facts with specific answers
- **K2** Basic understanding of facts and stating main ideas with general answers
- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Sumn	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
			MC	Qs	Short An	swers	Section C	Section D				
S.No	COs	K - Level	No. of	K –	No. of	K –	(Either / or	(Open				
			Questions	Level	Question	Level	Choice)	Choice)				
1	CO1	Up to K2	2	K1,K2	1	K 1	2 (K2&K2)	1(K2)				
2	CO2	Up to K3	2	K1&K2	1	K 1	2 (K3&K3)	1(K3)				
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
5	CO5	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)				
No. of	Questions	s to be Asked	10		5		10	5				
No	No.of Questions to be answered		10		5		5	3				
Mar	Marks for each question				2		5	10				
Total I	Total Marks for each section				10		25	30				
	(Figu	res in parenthe	esis denotes, o	Total Marks for each section 10 10 25 30 (Figures in parenthesis denotes, questions should be asked with the given K level)								

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	33			
K2	5	6	10	10	31	25.83	33			
К3	-	-	40	20	60	50	50			
K4	-	-	-	20	20	16.67	17			
Marks	10	10	50	50	120	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section	A (Mu	ıltiple Cho	ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		ort Answei	rs)
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		her/Or Ty	pe)
		uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			formance of the students is to be assessed by attempting higher
level of			
		en Choice	
	CO	Three ques K Level	
Q.No 21	CO1	K Level K2	Questions
22	CO2	K2 K3	
23	CO2	K3	
24	CO3	K4	
25	CO ₄	K4	
43	CO3	17.4	

(For those who joined in 2021-2022 and after)

Course Name POLYM	MER CHEMIS	ΤR	Y					
Course Code 21UCH	21UCHS61							
Category SKILL	SKILL							
Nature of course: EMPI	LOYABILITY	✓	SKILL ORIENTED	✓	ENTREPREN	URS	HIP	✓
Course Objectives:	•							
To Recall the concept	t of polymerizat	ion	and its classification a	ınd	stereochemistry	7		
			ons and its techniques					
• To Compare the glas	s transition temp	era	ature and its associated	pro	operties			
To Determine the mo	lecular weight n	net	hods of polymers					
To Analyze the polyn								
	NCEPT OF PO						06	
Definition – Polymerizat			1		•			
polymers -Stereochemis	• •				o regular poly	mers	- C	hain
polymerization, free radi			<u> </u>					
Unit: II TYPES OF	POLYMERIZA POLYMERIZA	ΑT	IONS				06)
Different Types of Polyr	nerizations - Co	ord	lination polymerization	1 - Z	Ziegler Natta ca	ıtalysı	And	Co-
Polymerization -Randon	n, Alternate, Blo	ock	and Graft Polymeriz	atio	n. Polymerizat	ion te	chnic	ques;
bulk, solution, suspensio	n and emulsion p	pol	ymerization.					
Unit: III GLASS TR	ANSITION TE	Ml	PERATURE				06)
Glass transition tempera	ture and its ass	soc	eiated properties- i) M	lech	nanical Properti	les ii)	The	rmal
Stability- iii) Flame	Resistance iv)	\mathbf{C}	hemical Resistance	v)	Degradability	vi)	Elect	rical
Conductivity.								
			LECULAR WEIGHT				06	
Molecular Weight of Po	ymers-Number	Av	verage and Weight Ave	erag	ge Molecular W	eight	Meth	ods.
Number Average Molecu	_		• · · · · · · · · · · · · · · · · · · ·		•			
Weight Average Molecu	lar Weight Meth	od	s-1. Light scattering 2.	Ult	tra-centrifugation	n		
Unit: V TYPES OF	POLYMERS A	N	D POLYMER DEGR	AD	ATION		06)
Synthetic resins and pla			1.1		•			
styrene, polymethylmeth	acrylate, poly ui	reth	nane, phenol – formald	lehy	yde resins, urea	- forn	nalde	hyde
resins and epoxy polyme	rs.							
				To	tal Lecture Ho	urs	30 H	rs
Books for Study:								
1. R.V. Gowariker, Poly	mer Science, Ne	ew	Age International Publ	ica	tion, 2006.			
Books for References:								
1. R.J. Young and P.A.	Powell, Introduc	tio	n to Polymers, 3rd Edit	tion	, CRC Press, 19	991.		
2. A. Ravve, Principles	of Polymer Cher	nis	try, 3rd Edition, Spring	ger,	New York, 201	2.		
3. Fred W. Billmeyer, T	extbook of Polyi	me	r Science, 3rd Edition,	Joh	nn Wiley & Son	s, 200	7.	
Web Resources:								
1. https://youtu.be/jSN	lmOwpxYg				·	· <u></u>	· <u></u>	
2. https://youtu.be/d8G								

- 3. https://youtu.be/2KDPGQ4Gg_0
- 4. https://youtu.be/IagyR3ayOPA
- 5. https://youtu.be/xacD9zJCqZ4
- 6. https://youtu.be/f7550UvWnLg
- 7. https://youtu.be/OPJAvbF6xMs

Course	Course Outcomes					
On the completion of the course the student will be able to						
CO1:	Ability to understand the concept of polymers and types of polymerizations	[Up to K2]				
CO2:	Discuss the types of polymerizations and glass transition temperature	[Up to K3]				
CO3:	Interpret the associated properties of glass transition temperature and	[Up to K3]				
CO3:	molecular weight of polymers	[Op to K3]				
CO4:	Examine the two types of average molecular weight methods	[Up to K4]				
CO5:	Analyze the polymers and its applications.	[Up to K4]				

CO & PO Mapping:

Course Outcomes	Programme Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	3	1	2	3	1	2		
CO 2	1	3	1	1	2	3		
CO 3	2	2	3	2	3	3		
CO 4	3	1	2	2	1	2		
CO5	1	3	2	3	2	1		
Weightage	10	10	10	11	9	11		

^{*3 –} Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Unit	Course Name	Hrs	Pedagogy
I	BASIC CONCEPT OF POLYMERS Definition – Polymerization - Monomer - Repeat unit - degree of polymerization - Classification of polymers - Stereochemistry of polymer - Nomenclature of stereo regular polymers - Chain polymerization, free radical polymerization - Ionic polymerization.	06	Chalk, Talk & Power point
II	TYPES OF POLYMERIZATIONS Different Types of Polymerizations - Coordination polymerization - Ziegler Natta catalyst And Co-Polymerization -Random, Alternate, Block and Graft Polymerization. Polymerization techniques; bulk, solution, suspension and emulsion polymerization.	06	Chalk, Talk & Power point
III	GLASS TRANSITION TEMPERATURE Glass transition temperature and its associated properties- i) Mechanical Properties ii) Thermal Stability- iii) Flame Resistance iv) Chemical Resistance v) Degradability vi) Electrical Conductivity.	06	Chalk, Talk & Power point
IV	DETERMINATION OF MOLECULAR WEIGHT METHODS Molecular Weight of Polymers-Number Average and Weight Average Molecular Weight Methods. Number Average Molecular Weight Methods-1. Osmometry (Vapour) 2. Viscometry. Weight Average Molecular Weight Methods-1. Light scattering 2. Ultracentrifugation	06	Chalk, Talk & Power point
v	TYPES OF POLYMERS AND POLYMER DEGRADATION Synthetic resins and plastics - Manufacture and applications of polyethylene, PVC, Teflon, poly styrene, polymethylmethacrylate, poly urethane, phenol – formaldehyde resins, urea- formaldehyde resins and epoxy polymers.	06	Chalk, Talk & Power point

Course Designed by: Dr. R. Satheesh & Dr. A.J. Sunija