M.Sc., PHYSICS

Program Code: PPH

2023 - Onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

GUIDLINESS FOR OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

(FOR PG PROGRAM FROM 2023 -2024 ONWARDS)

ELIGIBILITY CONDITION FOR ADMISSION

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years degree course (under 10 + 2 + 3 pattern) recognized by the university as equivalent there to.

DURATION

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

ATTENDANCE

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

EVALUATION PROCEDURE:

A mark Statement with $CGPA = \sum(MarksXcredits)$ $\sum(Credits)$

Where the summations are over all paper appeared up to the current semester. Examinations: 3 hours duration.

Total marks 100 for all papers

External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives (NME)
- 4. Skill Enhancement course

CBCS COURSE STRUCTURE - PG COURSES

M.A. (Tamil) - M.A. (English) – M.Com. – M.Com (CA) – M.S.W. M.Sc. (Mathematics) - M.Sc. (CS) - M.Sc. (CS&IT)

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credit
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VII	4	4.1. Core-X	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-VII	4	4.2 Core-XI	4
1.3 Core – III	4	2.3 Core – VI	4	3.3 Core – IX	4	4.3 Core – XII	4
1.4 Elective (Generic / Discipline Centric)- I	3	2.4 Elective (Generic / Discipline Centric) – III	3	3.4 Elective (Generic / Discipline Centric) – V	3	4.4 Elective (Generic / Discipline Centric) – VI	3
1.5 Elective (Generic / Discipline Centric)-II	3	2.5 Elective (Generic / Discipline Centric)-IV	3	3.5 Core Industry Module	3	4.5 Project with Viva-Voce	3
1.6Ability Enhancement Course- Soft Skill -1	2	2.6 Ability Enhancement Course - Soft Skill -2	2	3.6 Ability Enhancement Course- Soft Skill -3	2	4.6 Ability Enhancement Course- Soft Skill -4	2
Skill Enhancement Course SEC 1	2	2.7 Skill Enhancement Course SEC 2	2	3.7 Skill Enhancement Course – Term Paper and Seminar Presentation SEC 3	2	4.7 Skill Enhancement Course - Professional Competency Skill	2
				3.8 Internship/ Industrial Activity	2	4.8 Extension Activity	1
	22		22		24		23
					To	tal Credit Points	91

QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL ASSESSMENT

Note: Duration – 1 hour 30 minutes The components for continuous internal assessment are:

Part -AFour multiple choice questions (answer all) $4 \times 01 = 04$ MarksPart -B $2 \times 05 = 10$ MarksTwo questions ('either or 'type) $2 \times 05 = 10$ MarksPart -C $2 \times 08 = 16$ Marks

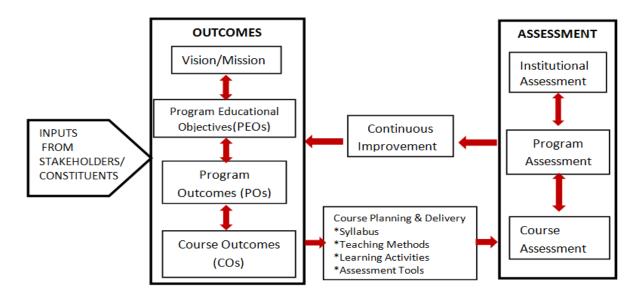
Total 40 Marks -----The components for continuous internal assessment are: (40 Marks of two continuous internal assessments will be converted to 15 marks) Two tests and their average --15 marks Seminar /Group discussion --5 marks

Assignment --5 marks Total 25 Marks

OUTCOME BASED EDUCATION

1. Course is defined as a theory, practical or theory cum practical subject studied in a semester. For e.g. Computer Applications Management

2. Course Outcome (CO) Course outcomes are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course. Outcomes may be specified for each course based on its weightage.


3. Program is defined as the specialization or discipline of a Degree. It is the interconnected arrangement of courses, co-curricular and extracurricular activities to accomplish predetermined objectives leading to the awarding of a degree.

4. Program Outcomes (POs) Program outcomes are narrower statements that describe what students are expected to be able to do by the time of graduation. POs are expected to be Guidelines for Outcome Based Education System 4 aligned closely with Graduate Attributes.

5. Program Educational Objectives (PEOs) of a program are the statements that describe the expected achievements of graduates in their career, and also in particular, what the graduates are expected to perform and achieve during the first few years after graduation.

6. Program Specific Outcomes (PSO) are what the students should be able to do at the time of graduation with reference to a specific discipline. Usually there are two to four PSOs for a Program.

7. Graduate Attributes (GA): The graduation attributes, are exemplars of the attributes expected of a graduate from a Program

INSTITUTIONAL VISION

To Mould the learners into accomplished individuals by providing them with a stimulus for social change through character, confidence and competence.

INSTITUTIONAL MISSION

1. Enlightening the learners on the ethical and environmental issues.

2. Extending holistic training to shape the learners in to committed and competent citizens.

3. Equipping them with soft skills for facing the competitive world.

4. Enriching their employability through career oriented courses.

5. Ensuring accessibility and opportunity to make education affordable to the underprivileged.

Highlights of the Revamped Curriculum:

- Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.

- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004 M. SC PHYSICS CURRICULUM

(For the student admitted during the academic year 2023-2024 onwards)

Course Code	Title of the Course	Hrs	Cuadita	Maxii	num M	larks
Course Code	The of the Course	пг	Credits	Int	Ext	Total
	FIRST SEMEST	ER				
Part – III	Core Courses					
23PPHCC11	MATHEMATICAL PHYSICS	6	5	25	75	100
23PPHCC12	CLASSICAL MECHANICS	6	5	25	75	100
23PPHCP11	PRACTICAL - I	6	4	25	75	100
Part – III	Elective Courses					
23PPHEC11	PHYSICS OF NANO SCIENCE	6	3	25	75	100
	AND TECHNOLOGY				_	
23PPHEC12	LINEAR AND DIGITAL ICS AND APPLICATIONS	6	3	25	75	100
	Total	30	20	125	375	500
	SECOND SEMEST	ER				
Part – III	Core Courses					
23PPHCC21	STATISTICAL MECHANICS	6	5	25	75	100
23PPHCC22	QUANTUM MECHANICS – I	6	5	25	75	100
23PPHCP21	PRACTICAL – II	6	4	25	75	100
Part – III	Elective Courses					
23PPHEC21	ADVANCED OPTICS	5	3	25	75	100
23PPHEC22	MEDICAL PHYSICS	5	3	25	75	100
Part – IV	Skill Enhancement course					
23PPHSC21	SEWAGE AND WASTE WATER TREATMENT AND REUSE	2	2	25	75	100
	Total	30	22	150	450	600

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	MATHEMATICAL PHYSICS						
Course Code	23PPHCC11	L	Р	С			
Category	CORE	6	-	5			
COURSE OBJE	CTIVES:						

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program.
- > To extend their manipulative skills to apply mathematical techniques in their fields.
- > To help students apply Mathematics in solving problems of Physics.

UNIT - I LINEARVECTOR SPACE

Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product-Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation.

UNIT - II COMPLEXANALYSIS

Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems -Parallel plates and coaxial cylinders.

UNIT - III MATRICES

Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix -Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices -Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization.

17

17

19

UNIT - IV FOURIERTRANSFORMS & LAPLACETRANSFORMS

Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions -Application - Laplace equation: Potential problem in a semi - infinite strip.

UNIT - V DIFFERENTIAL EQUATIONS

Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples -Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function-One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.

Total Lecture Hours 90

BOOKS FOR STUDY:

- George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press.
- > P.K. Chattopadhyay, 2013, *Mathematical Physics* (2nd edition), New Age, New Delhi
- A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt. Ltd., India.
- B. D. Gupta, 2009, *Mathematical Physics* (4th edition), Vikas Publishing House, New Delhi.
- H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.

BOOKS FOR REFERENCES:

- E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- > D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
- P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi
- C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York

WEB RESOURCES:

- www.khanacademy.org
- https://youtu.be/LZnRlOA1_2I
- http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
- https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27v S_SIED56gNjVJGO2qa

19

18

https://archive.nptel.ac.in/courses/115/106/115106086/

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		~	ENTRE	PRENEURSHIP)
Curriculum Relevance	LOCAL REGI		ONAL	NATIONA		AL		GLOBAL	\checkmark
Changes Made in the Course	Percentage of Change		60	No Char	ges Made			New Course	

***Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.**

COURS	E OU	TCOM	ES:									K LEVEL	
After stu	ıdying	this cou	rse, th	e stud	lents wi	ill be able	e to:						
CO1							-	n the mea and be ab	0	-		K1 to K5	
CO2		al Formu		•			-	tegration, ls and infi		0	•	K1 to K5	
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.										K1 to K5		
CO4	differe their in	ent functi mportanc	on, gra e in te	asp ho chnolo	w these ogy	transform	nations c	the Fouri an speed u	ıp analysi	s and cor	relate	K1 to K5	
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems										K1 to K5		
MAPPI	NG W	ITH PR	OGR	AM C	DUTCC	OMES:							
CO/PO	PO	01 P	02	PO	3 I	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3		3	3		3	3	3	3	2	3	2	
CO2	2		3	3		3	3	3	3	2	2	2	
CO3	3		3	3		2	2	3	3	2	3	2	
CO4	3		3	3		3	2	3	3	2	2	2	
CO5	3		2	3		3	2	3	3	2	2	3	
	3- S	TRONG	ł				2 – ME	DIUM			1 - 1	LOW	
CO / P	O MA	PPING											
COS	5	PSO1	PSC)2 F	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
СО	1	3	3	3 3 3 3 3 3 2 3 2								2	
CO	2	2	3	3	3	3	3	3	3	2	2	2	
	3	3	3		3	2	2	3	3	2	3	2	

CO	4	3	3	3	3	2	3	3	2	2	2		
CO	5	3	2	3	3	2	3	3	2	2	3		
WEIG1	TAGE												
WEIG D PERCH GE COUI CONTR ION PO	ENTA OF RSE RIBUT TO	NTA F SE BUT O S N PLAN:											
LESSO	ON PLA	N:											
UNIT			Mat	themat	ical Ph	ysics			HR	S P	EDAGOGY		
I	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation									7	Chalk &Talk, PPT, Seminar		
п	 Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and 								19)	Chalk &Talk, PPT		
III	 coaxial cylinders Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley– Hemilton theorem Diagonalization 								17		Chalk &Talk, ssignment		
IV	 Hamilton theorem –Diagonalization. Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives Cosine and sine transforms - Convolution theorem. Application Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta 									ð	Chalk &Talk, Group iscussion		

	functions - Application - Laplace equation: Potential problem in a semi - infinite strip.		
v	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.	18	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal Cos		K Level	Section MCQs		Section B Either or	Section C Either or					
	COS		No. of. Questions	K - Level	Choice	Choice					
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)					
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)					
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
	1	No. of Questions to be asked	4		4	4					
Questi		No. of Questions to be answered	4		2	2					
Pattern CIA I & II		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	
	K2	2	10	16	28	50	
CIA	K3		10	16	26	46.43	53.57
I	K4						
	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2	10		12	21.43	
CIA	K3		10	16	26	46.43	25
II	K4			16	16	28.57	71.43
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summativ	ve Exami	ination – Blu	ue Print Artic	ulation Map	ping – K Level with Co	urse Outcomes (COs)
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	COs	K - Level	No. of	K – Level	or Choice) With	Choice) With
		Levei	Questions	K – Level	K - LEVEL	K - LEVEL
1	1 CO1 K1 to K5		2	2 K1, K2 2 (K2, K2)		2 (K2, K2)
2	2 CO2 K1 to K5		2	K1, K2	2 (K3, K3)	2 (K3, K3)
3	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
5	CO5	K1 to K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)
No. of Qu	estions to	o be Asked	10		10	10
	No. of Questions to be answered				5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57	-			
K2	5	20	16	41	29.29				
K3		20	32	52	37.14	32.86			
K4		10	16	26	18.57	70			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the quest	ions	PART – A	(10 x 1 =	10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2	
				OR
11. b)	Unit - I	CO1	K2	
12. a)	Unit - II	CO2	K3	
				OR
12. b)	Unit - II	CO2	K3	
13. a)	Unit - III	CO3	K2	
				OR
13. b)	Unit - III	CO3	K2	
14. a)	Unit - IV	CO4	K3	
				OR
14. b)	Unit - IV	CO4	K3	
15. a)	Unit - V	CO5	K4	
				OR
15. b)	Unit - V	CO5	K4	

Answer A	Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$								
16. a)	Unit - I	CO1	K2						
	OR								
16. b)	Unit - I	CO1	K2						
17. a)	Unit - II	CO2	K3						
				OR					
17. b)	Unit - II	CO2	K3						
18. a)	Unit - III	CO3	K3						
				OR					
18. b)	Unit - III	CO3	K3						
19. a)	Unit - IV	CO4	K4						
				OR					
19. b)	Unit - IV	CO4	K4						
20. a)	Unit - V	CO5	K5						
				OR					
20. b)	Unit - V	CO5	K5						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	CLASSICAL MECHANICS			
Course Code	23PPHCC12	L	Р	С
Category	CORE	6	-	5
COURSE OBJE	CTIVES:			
To understa	nd fundamentals of classical mechanics.			
To understa	nd Lagrangian formulation of mechanics and apply it to solve equ	uation of	motion	
To understa	nd Hamiltonian formulation of mechanics and apply it to solve ec	quation of	f motion	1.
To discuss t	he theory of small oscillations of a system.			
\succ To learn the	relativistic formulation of mechanics of a system.			
UNIT - I PRIN	CIPLES OFCLASSICAL MECHANICS		17	
Mechanics of a sir	ngle particle – mechanics of a system of particles – conservation	n laws fo	r a syst	em of
particles – constrai	nts - holonomic& non-holonomic constraints - generalized coord	dinates –	configu	ration
space – transforma	tion equations – principle of virtual work.			
UNIT - II LAG	RANGIAN FORMULATION		17	
	RANGIAN FORMULATION ciple – Lagrangian equations of motion for conservative syste	ms – apj		
D'Alembert's prin		ms – apj		
D'Alembert's prin simple pendulum (ciple – Lagrangian equations of motion for conservative syste	ms – apj		ns: (i)
D'Alembert's prin simple pendulum (UNIT - III HAM	ciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion.		plication	ns: (i)
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl	ciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION	- Hamilto	plication 19 n's can	ns: (i) onical
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motic	ciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function –	- Hamilto	plication 19 n's can	ns: (i) onical
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part	aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simp	- Hamilto	plication 19 n's can	ns: (i) onical illator
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motic (iii) motion of part UNIT - IV SMA	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. ILITONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simp icle in a central force field. 	- Hamilto ble harmo	plicatio 19 n's can onic osc 17	ns: (i) onical illator
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motic (iii) motion of part UNIT - IV SMA	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplication in a central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of 	- Hamilto ble harmo	plicatio 19 n's can onic osc 17	ns: (i) onical illator
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part UNIT - IV SMA Formulation of the triatomic molecule	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplication in a central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of 	- Hamilto ble harmo	plicatio 19 n's can onic osc 17	ns: (i) onical illator - linea
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part UNIT - IV SMA Formulation of the triatomic molecule UNIT - V CAN	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. ILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplication in a central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of a second secon	- Hamilto ble harmo	plication 19 n's can onic osc 17 modes - 20	ns: (i) onical illator - linea
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part UNIT - IV SMA Formulation of the triatomic molecule UNIT - V CAN The equations o	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplication is central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of the construction o	- Hamilto ble harmo f normal n mations-T	plication 19 n's can onic osc 17 modes - 20 The ha	ns: (i) onical illator - linea
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part UNIT - IV SMA Formulation of the triatomic molecule UNIT - V CAN The equations of oscillator-The sim	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. ILTONIAN FORMULATION bic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplication is central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of c. ONICAL TRANSFORMATIONS f canonical transformation-Examples of canonical transformation 	- Hamilto ble harmo f normal n mations-T	plication 19 n's can onic osc 17 modes - 20 The ha ther can	ns: (i) onical illator - linea rmonic
D'Alembert's prin simple pendulum (UNIT - III HAM Phase space – cycl equations of motio (iii) motion of part UNIT - IV SMA Formulation of the triatomic molecule UNIT - V CAN The equations of oscillator-The sim invariants-Equation	 aciple – Lagrangian equations of motion for conservative syste ii) Atwood's machine (iii) projectile motion. IILTONIAN FORMULATION lic coordinates – conjugate momentum – Hamiltonian function – on – applications: (i) simple pendulum (ii) one dimensional simplicle in a central force field. LL OSCILLATIONS problem – transformation to normal coordinates – frequencies of . ONICAL TRANSFORMATIONS f canonical transformation-Examples of canonical transformation provides approach to canonical transformations-Poisson bracket 	Hamilto ble harmo f normal f mations-T s and ot rvation th	plication 19 n's can onic osc 17 modes - 20 The ha ther can neorems	ns: (i) onical illator - linea rmonica s in the

Total Lecture Hours 90

BOOKS FOR STUDY:

- > H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
- > J. C. Upadhyaya, Classical Mechanics, Himalaya Publshing. Co. New Delhi.
- > R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi.
- R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics Tata McGraw Hill, New Delhi, 1980.
- N. C. Rana and P.S. Joag, Classical Mechanics Tata McGraw Hill, 2001.

BOOKS FOR REFERENCES:

- K. R. Symon, 1971, Mechanics, Addison Wesley, London.
- S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
- Supta and Kumar, Classical Mechanics, KedarNath.
- > T.W.B. Kibble, Classical Mechanics, ELBS.
- > Greenwood, Classical Dynamics, PHI, New Delhi.

WEB RESOURCES:

- http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Classical _Mechanics_optimized.pdf
- https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdfpdf-free.html
- https://nptel.ac.in/courses/122/106/122106027/
- https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-notes/
- https://www.britannica.com/science/relativistic-mechanics

Nature of Course	EMPLOYABILITY				SKILL OR	~	ENTRE	PRENEURSHI)	
Curriculum Relevance	LOCAL REGIO		ONAL	<i>,</i>	NATIONA			GLOBAL	\checkmark	
Changes Made in the Course	Percentage of Change		60	No Char	nges Made			New Course		
*Treat 2	0% as eacl	h unit	(20*5=1	00%)	and calcula	ate the perce	ntage	e of chan	ge for the cou	rse.

COURS	E OUT	COMES:	OUTCOMES:								
After stu	ıdying th	is course, tl	he students	will be abl	e to:						
CO1	Understa	and the fund	lamentals of	classical m	nechanics.				K	1 to K5	
CO2		ne principles on of physics	s of Lagrang al systems.	ian and Ha	miltonian	mechanic	s to solve th	he equatio	ns K	1 to K5	
CO3	of motio	on of physica						_	ns K	1 to K5	
CO4	Analyze oscillatio		scillations in	n systems a	nd determ	ine their r	ormal mod	les of	K	1 to K5	
CO5	Understa systems.	Understand and apply the principles of relativistic kinematics to the mechanical ystems. K1 to K5									
MAPPI	NG WIT	H PROGR	RAM OUT	COMES:				Ji Ji			
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	
CO1	2	3	3	3	2	2	2	3	2	2	
CO2	2	3	3	3	2	2	2	3	2	2	
CO3	2	3	3	3	2	2	2	3	2	2	
CO4	2	3	3	3	2	2	2	3	2	2	
CO5	2	3	3	3	2	2	2	3	2	2	
;	3- <mark>STRC</mark>	ONG		2	2 – MED	IUM			1 - LO	N	
CO / P	O MAPI	PING:									
COS	PSC	D1 PSO	2 PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
CO 1	3	3	3	3	3	3	3	2	3	2	
CO 2	2	3	3	3	3	3	3	2	2	2	
CO 3	3		3	2	2	3	3	2	3	2	
CO 4			3	3	2	3	3	2	2	2	
CO 5		2	3	3	2	3	3	2	2	2	
WEIGT GE	`A										
WEIGH ED PERCE TAGE OF COURS CONTE BUTIO TO PO	HT EN										
LESSO	N PLAN	:									
UNIT			CLASSIC					HRS	חתת	AGOGY	

I	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic& non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.	17	Chalk &Talk, PPT, Seminar
II	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.	17	Chalk &Talk, PPT
III	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.	19	Chalk &Talk, Assignment
IV	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.	17	Chalk & Talk, Assignment
v	The equations of canonical transformation-Examples of canonical transformations-The harmonic oscillator-The simplistic approach to canonical transformations-Poisson brackets and other canonical invariants-Equation of motion, infinitesimal canonical transformations, and conservation theorems in the Poisson Bracket formulation- The angular momentum Poisson bracket relations, symmetry groups in mechanical systems-Liouville's theorem.	20	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal	Cos	K Level	Section MCQs	Α	Section B Either or	Section C Either or Choice		
Internar	Internal Cos	K Lever	No. of. Questions	K - Level	Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)		
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)		
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)		
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
	1	No. of Questions to be asked	4		4	4		
Questi Patter		No. of Questions to be answered	4		2	2		
CIA I &		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2			2	3.57				
	K2	2	10	16	28	50				
CIA	K3		10	16	26	46.43	53.57			
I	K4									
-	Marks	4	20	32	56	100	100			
	K1	2			2	3.57				
	K2	2	10		12	21.43				
CIA	K3		10	16	26	46.43	25			
II	K4			16	16	28.57	71.43			
	Marks	4	20	32	56	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)		
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or		
S. No	COs			Level	No. of	K – Level	or Choice) With	Choice) With
			Questions		K - LEVEL	K - LEVEL		
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)		
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)		
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)		
5	CO5	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)		
No. of Qu	estions to	o be Asked	10		10	10		
	No. of Questions to be answered				5	5		
Marks f	Marks for each question		1		5	8		
Total Mar	Total Marks for each section				25	40		
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)		

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57				
K2	5	20	16	41	29.29				
K3		30	32	62	44.28	32.86			
K4			16	16	11.43	77.14			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer A	LL the questi	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	• ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2	
				OR
11. b)	Unit - I	CO1	K2	
12. a)	Unit - II	CO2	K3	
				OR
12. b)	Unit - II	CO2	K3	
13. a)	Unit - III	CO3	K3	
				OR
13. b)	Unit - III	CO3	K3	
14. a)	Unit - IV	CO4	K3	
				OR
14. b)	Unit - IV	CO4	K3	
15. a)	Unit - V	CO5	K2	
				OR
15. b)	Unit - V	CO5	K2	

Answer A	Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$							
16. a)	Unit - I	CO1	K2					
	OR							
16. b)	Unit - I	CO1	K2					
17. a)	Unit - II	CO2	K3					
				OR				
17. b)	Unit - II	CO2	K3					
18. a)	Unit - III	CO3	K4					
				OR				
18. b)	Unit - III	CO3	K4					
19. a)	Unit - IV	CO4	K5					
				OR				
19. b)	Unit - IV	CO4	K5					
20. a)	Unit - V	CO5	K3					
				OR				
20. b)	Unit - V	CO5	K3					

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PRACTICAL - I						
Course Code	23PPHCP11	L	Р	С			
Category	CORE	-	6	4			
COURSE OBJECTIVES:							

- > To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.

- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 23. Construction of relaxation oscillator using UJT
- 24. FET CS amplifier- Frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741.
- 26. V- I Characteristics of different colours of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Constructions of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

BOOKS FOR STUDY:

- > Practical Physics, Gupta and Kumar, PragatiPrakasan.
- Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
- Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi.
- > Electronic lab manual Vol I, K ANavas, Rajath Publishing.
- Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition.

BOOKS FOR REFERENCES:

- > Advanced Practical Physics, S.P Singh, PragatiPrakasan.
- An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- > Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- > A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

WEB RESOURCES:

- https://unacademy.com/content/upsc/study-material/physics/shapes-ofinterference-fringes-in-youngs-double-slit-experiment/
- https://www.teachspin.com/diode-laser-spectroscopy
- https://vikramlearning.com/jntuh/notes/electronic-circuits-and-pulse-circuitslab/ujt-relaxation-oscillator/280
- https://www.geeksforgeeks.org/4-bit-binary-adder-subtractor/
- https://he-coep.vlabs.ac.in/exp/decoders-encodersmultiplexerdemultiplexer/theory.html

Nature of Course	EMPLOYABILITY		✓	SKILL ORIENTED			ENTREPRENEURSHIP)	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	✓
Changes Made in the Course			ange	90	No Char	nges Made			New Course	
*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.										

00115		011700	0367	20									
COUR							211 h e e h l e	4					K LEVEL
	•	0					ill be able using You		41				
CO1				U			0	U		-			K1 to K5
CO2 CO3	-	•		•		-	um and ap	•			ouita usin		K1 to K5 K1 to K5
CO3			_				to operation			logical cir			K1 to K5
C04		•		-			ion ability	-		ments			K1 to K5
	-			-			MES:	III I IIysi	es Experi	incints			II to Ro
CO/P		PO1		02	POS		PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1		2		2	2		3	2	2	2	1	2	3
CO2		2		2	3		3	3	3	3	3	3	3
CO3	;	3		3	3		3	3	3	3	3	3	3
CO4	<u> </u>	3		2	3		3	3	3	3	3	3	3
CO5	5	3		3	3		3	3	3	2	2	2	2
	3-	STRO	ONG				2	- MED	IUM			1 - LC	W
CO /	PO I	MAPP	ING:										
cc)S	PS	601	PSO	2 P	SO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CC	01		2	2		2	3	2	2	2	1	2	3
CC)2		2	2		3	3	3	3	3	3	3	3
CC)3		3	3		3	3	3	3	3	3	3	3
cc)4		3	2		3	3	3	3	3	3	3	3
CC)5		3	3		3	3	3	3	2	2	2	2
WEIG E		ż											
WEIG PERC AGE COU CONT TION	HTE ENT OF RSE RIBU	r ; J											
LESS	ON I	PLAN:											
Expe	rime	ents				PI	RACTIC	AL - I			HRS	PEI	DAGOGY
1	Determination of Young's modulus and Poisson's ratio by						halk & Talk, PPT						

	Measurement of Conductivity - Four probe method. Construction of relaxation oscillator using UJT.		
5 to 8	 Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type). 	30	Chalk & Talk, PPT
9 to 12	 Study of Binary to Gray and Gray to Binary code conversion. Study of R-S, clocked R-S and D-Flip flop using NAND gates. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Construction of Encoder and Decoder circuits using ICs. 	30	Chalk & Talk, PPT

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark

Total CIA - 25 mark

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal	Cos	K Level No. of. Questions K -					
CIA-I	CO1 – CO5	K1 – K5 1 Question for Each Student		K1 – K5			
		No. of Questions to be asked	1 Question for Each Student				
Questi	on Pattern	No. of Questions to be answered	1				
C	IA - I	Marks for each question	30				
		Total Marks for each section	30				

	Distribution of Marks with COs &K Level for Correction of CIA I								
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS				
	CO1	K1 to K5	Aim and apparatus	K1	2.0				
	CO2	K1 to K5	Formula and Tabular Column	K3	5.0				
	CO3	K1 to K5	Understanding and Observation	K5	10.0				
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0				
	CO5	K1 to K5	Interpretation of result	K2	3.0				
	Total				30				
	Marks								

	Distribution of Marks with K Level CIA I									
	K Level	Level Distribution of the work of the experiment		% of (Marks without choice)	Consolidate of %					
	K1	Aim and apparatus	2	6.67						
	K3	Formula and Tabular Column	5	16.67	-					
	K5	Understanding and Observation	10	33.33	23.34					
CIA I	K4	Calculation and Graph	10	33.33	56.67					
	K2	Interpretation of result	3	10.00	90.00					
	Marks		30	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

Summative Exam	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)					
COs	COs K - Level No. of Questions		K – Level			
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5			
No. of Question	ons to be Asked	1 Question for Each Student				
No. of Question	ns to be answered	1				
Marks for e	each question	75				
Total Marks f	for each section	75				

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)						
COs	K - Level	No. of Questions	K – Level			
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5			
No. of Question	ons to be Asked	1 Question for Each Student				
No. of Question	ns to be answered	1				
Marks for e	each question	75				
Total Marks f	for each section	75				

Distribution of Marks with K Level								
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %				
K1	Aim and apparatus	10	13.33	13				
K3	Formula and Tabular Column	15	20	20				
K5	Understanding and Observation	30	40	40				
K4	Calculation and Graph	15	20	20				
K2	Interpretation of result	5	6.67	7				
Marks		75	100	100				

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS OF NANOSCIENCE AND TECHNOLOGY							
Course Code	23PPHEC11	L	Р	С				
Category	ELECTIVE	6	-	3				

COURSE OBJECTIVES:

- > Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- To provide the basic knowledge about nanoscience and technology. \succ
- > To learn the structures and properties of nanomaterials.
- \succ To acquire the knowledge about synthesis methods and characterization techniques and its applications.

FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY $\mathbf{UNIT} - \mathbf{I}$

Fundamentals of NANO - Historical Perspective on Nanomaterial and Nanotechnology -- Classification of Nanomaterials - Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials -Quantum dots - Quantum wires - Quantum wells - Surface effects of nanomaterials.

UNIT - II PROPERTIES OF NANOMATERIALS

Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant -Mechanical behavior: Elastic properties - strength - ductility - superplastic behavior - Optical properties: -Surface Plasmon Resonance - Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties - super para magnetism - Diluted magnetic semiconductor (DMS).

UNIT - III SYNTHESIS AND FABRICATION

Physical vapour deposition - Chemical vapour deposition - sol-gel - Wet deposition techniques electrochemical deposition method - Plasma arching - Electrospinning method - ball milling technique pulsed laser deposition - Nanolithography: photolithography –Nanomanipulator.

UNIT - IV CHARACTERIZATION TECHNIQUES

Powder X-ray diffraction - X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy -Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) -Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) - Vibrating sample Magnetometer.

UNIT - V APPLICATIONS OF NANOMATERIALS

Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors - Nanobiosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters –Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells - biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries supercapacitors-photovoltaics.

Total Lecture Hours 90

18

19

17

17

19

BOOKS FOR STUDY:

- A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012).
- Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010).
- Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
- > Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).
- Nanotechnology and Nanoelectronics, D.P. Kothari, V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018).

BOOKS FOR REFERENCES:

- E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- > D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
- P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi.
- C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York

WEB RESOURCES:

- **www.khanacademy.org**
- https://youtu.be/LZnRlOA1_2I
- http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
- https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27v S_SIED56gNjVJGO2qa
- https://archive.nptel.ac.in/courses/115/106/115106086/

Nature of Course	EMPLOYABILITY				SKILL OR	IENTED		ENTRE	PRENEURSHI	> ✓
Curriculum Relevance	LOCAL		REGI	ONAL	L NATIONAL		AL		GLOBAL	\checkmark
Changes Made in the Course	in the Percentage of Change		60	No Char	nges Made			New Course		

*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTO	COMES	:								K LEV	EL
After stu	udying thi	is course	e, the stu	dents wi	ll be able	e to:						
CO1	Understand and should					+		• 1	f nanoma	terial's	K1 to	K5
CO2		Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterial's.										
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterial's.											K5
CO4	Analyze the various characterizations of Nano-products through diffraction, spectroscopic, microscopic and other techniques.											K5
CO5	Apply the purificati	-				0.		d of sens	ors, robo	tics,	K1 to	K5
MAPPI	NG WIT	H PRO	GRAM	OUTCO	MES:					1		
CO/PO	PO1	PO2	2 PC)3 F	PO4	PO5	PO6	PO7	PO	8 PC	9 PO	10
CO1	3	3	3	3	2	1	1	3	3	3	3 3	;
CO2	3	3	3	3	2	1	1	3	3	3	3 3	;
CO3	3	3	2	2	2	1	1	3	3	3	3	5
CO4	3	3	3		2	1	1	3	3	3	-	
CO5	3	3	2		2	1	1	3	3	3	3 3	\$
3- STR	ONG			2	$- \mathbf{MED}$	IUM			1 ·	- LOW		
CO / P	O MAPP	ING:										
C	os	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO	10
CC) 1	3	3	3	2	1	1	3	3	3	3	
CC	2	3	3	3	2	1	1	3	3	3	3	
CC	3	3	3	2	2	1	1	3	3	3	3	
cc) 4	3	3	3	2	1	1	3	3	3	3	
CC) 5	3	3	2	2	1	1	3	3	3	3	
WEIG	TAGE											
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS												
LESSON PLAN:												
UNIT	PH	YSICS	OF NAI	NOSCIE	ENCE A	ND TEC	CHNOL	OGY	H	RS F	EDAGO	GY
 Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - 17 Quantum dots – Quantum wires – Quantum wells - Surface effects of 									Chalk &Talk, PPT, Seminar	,		

II	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).	19	Chalk &Talk, PPT
III	Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator.	17	Chalk &Talk, Assignment
IV	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.	18	Chalk & Talk, Assignment
v	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries - supercapacitors - photovoltaics.	19	Chalk & Talk, Seminar

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
Internal C	Cos	K Level		Section A MCQs		Section C			
	005		No. of. Questions	K - Level	Either or Choice	Either or Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
		No. of Questions to be asked	4		4	4			
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2			
		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	
	K2	2	10		12	21.43	-
CIA	K3		10	16	26	46.43	25
I	K4			16	16	28.57	71.43
-	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2	10		12	21.43	-
CIA	K3		10	16	26	46.43	25
II	K4			16	16	28.57	71.43
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or			
S. No	COs	Level	No. of	K – Level	or Choice) With	Choice) With			
			Questions		K - LEVEL	K – LEVEL			
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
3	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
5	CO5	K1 to K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)			
No. of Qu	No. of Questions to be Asked				10	10			
No. of Questions to be answered		10		5	5				
Marks for each question		1		5	8				
Total Ma	Total Marks for each section				25	40			
	(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57	-			
K2	5	20		25	17.86	-			
K3		20	32	52	37.14	21.43			
K4		10	32	42	30	58.57			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AI	L the questio	ns		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	• ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)						
11. a)	Unit - I	CO1	K2							
	OR									
11. b)	Unit - I	CO1	K2							
12. a)	Unit - II	CO2	K3							
				OR						
12. b)	Unit - II	CO2	K3							
13. a)	Unit - III	CO3	K2							
				OR						
13. b)	Unit - III	CO3	K2							
14. a)	Unit - IV	CO4	K3							
				OR						
14. b)	Unit - IV	CO4	K3							
15. a)	Unit - V	CO5	K4							
	· · · · ·			OR						
15. b)	Unit - V	CO5	K4							

Answer A	ALL the quest	ions PA	RT – C (5 x 8 = 40 Marks)						
16. a)	Unit - I	CO1	K3							
	OR									
16. b)	Unit - I	CO1	K3							
17. a)	Unit - II	CO2	K4							
				OR						
17. b)	Unit - II	CO2	K4							
18. a)	Unit - III	CO3	K3							
				OR						
18. b)	Unit - III	CO3	K3							
19. a)	Unit - IV	CO4	K4							
				OR						
19. b)	Unit - IV	CO4	K4							
20. a)	Unit - V	CO5	K5							
				OR						
20. b)	Unit - V	CO5	K5							

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	LINEAR AND DIGITAL ICS AND APPLICATIONS			
Course Code	23PPHEC12	L	Р	С
Category	ELECTIVE	6	-	3
COURSE OBJEC	TIVES:			1
> To introduce	the basic building blocks of linear integrated circuits.			
> To teach the	linear and non-linear applications of operational amplifiers.			
> To introduce	the theory and applications of PLL.			
> To introduce	the concepts of waveform generation and introduce one special func-	ction	ICs.	
> Exposure to				
UNIT - I INTE	GRATED CIRCUITS AND OPERATIONAL AMPLIFIER		1	6
Introduction, Class	ification of IC's, basic information of Op-Amp 741 and its for	eatur	es, the	ideal
	er, Op-Amp internal circuit and Op-Amp. Characteristics.			
UNIT - II APPL	ICATIONS OF OP-AMP		1	8
LINEAR APPLICA	TIONS OF OP-AMP: Solution to simultaneous equations and different	erent	ial equa	tions,
	plifiers, V to I and I to V converters.		1	,
	PLICATIONS OF OP-AMP:Sample and Hold circuit, Log and	Antil	og amp	lifier,
	der, Comparators, Schmitt trigger, Multivibrators, Triangular and		U 1	
generators.		1		
UNIT - III ACTI	VE FILTERS & TIMER AND PHASE LOCKED LOOPS		1	9
ACTIVE FILTERS	: Introduction, Butterworth filters – 1st order, 2nd order low pass an	d hig	h pass f	ïlters,
	-	U	1	,
Danu pass, Danu reje	ect and all pass filters.			
1 0	ect and all pass filters. ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip	otion	of func	tional
TIMER AND PHA	ect and all pass filters. ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip le and astable operations and applications, Schmitt trigger, PLL - i			
TIMER AND PHA diagram, monostabl	ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip le and astable operations and applications, Schmitt trigger, PLL - i	introc	luction,	basic
TIMER AND PHA diagram, monostabl	ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip le and astable operations and applications, Schmitt trigger, PLL - i rector/comparator, voltage controlled oscillator (IC 566), low pass	introc	luction,	basic
TIMER AND PHA diagram, monostabl principle, phase det PLL and application	ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip le and astable operations and applications, Schmitt trigger, PLL - i rector/comparator, voltage controlled oscillator (IC 566), low pass	introc s filte	luction, r, mono	basic
TIMER AND PHA diagram, monostabl principle, phase det PLL and application	ASE LOCKED LOOPS: Introduction to IC 555 timer, descrip le and astable operations and applications, Schmitt trigger, PLL - i ector/comparator, voltage controlled oscillator (IC 566), low pass hs of PLL	introc s filte 2 S	luction, r, mono 1	basic blithic 7

D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

UNIT - V CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & 20 SEQUENTIAL CIRCUITS USING TTL 74XX ICs

CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).

Total Lecture Hours 90

BOOKS FOR STUDY:

- D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India
- Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi.
- > B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.
- > V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
- V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.

BOOKS FOR REFERENCES:

- Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.
- Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi
- > Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
- > Integrated Electronics, Millman&Halkias, Tata McGraw Hill, 17th Reprint (2000).

WEB RESOURCES:

- https://nptel.ac.in/course.html/digital circuits/
- https://nptel.ac.in/course.html/electronics/operational amplifier/
- https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/fieldeffect-controlled-thyristors/
- https://www.electrical4u.com/applications-of-op-amp/
- https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Nature of Course	EMPLC	IPLOYABILITY			SKILL ORIENTED		~	ENTREPRENEURSHIP		2
Curriculum Relevance	LOCAL		REGI	ONAL	,	NATIONAL			GLOBAL	\checkmark
Changes Made in the Course	Percentage	e of Ch	ange	60	No Char	iges Made			New Course	

*****Treat 20% as each unit (20*****5=100%) and calculate the percentage of change for the course.

COURS	E OUI	COME	S:								K LEVEL
After stu	dying t	his cour	se, the st	udents	will be al	ble to:					
CO1	Learn	about the	e basic co	oncepts	for the cir	rcuit config	uration for	r the desi	gn of line	ar	K1 to K5
COI	-			-		olve proble					AI to AS
CO2		-	-			inear applic	cations cire	cuits usin	g Op-Am	ip and	K1 to K5
	U	the activ				.1 1.11	1 • 41	• 1	•••,		
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.										K1 to K5
CO4				-		op A/D and	D/A conv	ortors			K1 to K5
C04 C05				-		logic, com			untial cir		K1 to K5
MAPPIN	-		-			-	omational	and sequ		cuits	KI to KS
CO/PO	PO1	PO		03	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO/PO	3	3	-	3	3	2	2	3	3	3	2
CO1 CO2	3	3		3	3	1	3	3	3	2	1
CO2 CO3	3	3		3	3	1	3	3	3	2	1
	3	3				1			3		
CO4	3	3		3 3	3 2	1	3 1	3	3	2	1
CO5	_	3		3			Ł	4			L
3- STR					2 – ME				1	LOW	
CO / PO	O MAP	PING:		1							
CO	s	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
СО	1	3	3	3	3	2	2	3	3	3	2
со	2	3	3	3	3	1	3	3	3	2	1
со	3	3	3	3	3	1	3	3	3	2	1
со	4	3	3 3		3	1	3	3	3	2	1
СО	5 3 3 3			3	2	1	1	2	3	2	1
WEIGT	AGE										
WEIGH PERCE GE (NTA										

CONT ION T			
	ON PLAN:		
UNIT	LINEAR AND DIGITAL ICS AND APPLICATIONS	HRS	PEDAGOGY
I	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-Amp. Characteristics.	16	Chalk &Talk, PPT, Seminar
II	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.	18	Chalk &Talk, PPT
ш	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL	19	Chalk &Talk, Assignment
IV	 VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications. 	17	Chalk & Talk, Assignment
V	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR- AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).	20	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
			Section		Section B Either or	Section C				
Internal	Cos	K Level	No. of. Questions	K - Level	Choice	Either or Choice				
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
	1	No. of Questions to be asked	4		4	4				
Quest Patte		No. of Questions to be answered	4		2	2				
CIA I		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
CIA	K3		10	16	26	46.43	53.57				
I	K4										
-	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	ue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	COs	K - Level	No. of	K – Level	or Choice) With	Choice) With
		Levei	Questions	K – Level	K - LEVEL	K - LEVEL
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)
No. of Qu	estions to	o be Asked	10		10	10
	No. of Questions to be answered		10		5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	jiven K level)

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57	-			
K2	5	20	16	41	29.29	-			
K3		30	32	62	44.28	32.86			
K4			16	16	11.43	77.14			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			
К5	-		16	16 140	11.43	88.57			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	СО	K-level		
Answer A	LL the questi	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answei	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2	
	· · ·			OR
11. b)	Unit - I	CO1	K2	
12. a)	Unit - II	CO2	K3	
				OR
12. b)	Unit - II	CO2	K3	
13. a)	Unit - III	CO3	K3	
				OR
13. b)	Unit - III	CO3	K3	
14. a)	Unit - IV	CO4	K2	
				OR
14. b)	Unit - IV	CO4	K2	
15. a)	Unit - V	CO5	K3	
	÷		·	OR
15. b)	Unit - V	CO5	K3	

Answer A	ALL the quest	ions PA	RT – C (5 x 8 = 40 Marks)					
16. a)	Unit - I	CO1	K2						
	OR								
16. b)	Unit - I	CO1	K2						
17. a)	Unit - II	CO2	K3						
				OR					
17. b)	Unit - II	CO2	K3						
18. a)	Unit - III	CO3	K3						
				OR					
18. b)	Unit - III	CO3	K3						
19. a)	Unit - IV	CO4	K4						
				OR					
19. b)	Unit - IV	CO4	K4						
20. a)	Unit - V	CO5	K5						
				OR					
20. b)	Unit - V	CO5	K5						

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	STATISTICAL MECHANICS			
Course Code	23PPHCC21	L	Р	С
Category	CORE	6	-	5

COURSE OBJECTIVES:

- > To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- > To grasp the fundamental knowledge about the three types of
- \succ statistics
- > To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties thatvary with time.

UNIT - I PHASE TRANSITIONS

Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications - Third law of Thermodynamics. Order parameters - Landau's theory of phase transition -Critical indices - Scale transformations and dimensional analysis.

UNIT - II STATISTICAL MECHANICS AND THERMODYNAMICS

Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble -Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.

UNIT - III CANONICAL AND GRAND CANONICAL ENSEMBLES

Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles -Partition function - Calculation of statistical quantities - Energy and density fluctuations.

UNIT - IV CLASSICAL AND QUANTUM STATISTICS

Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.

UNIT - V **REAL GAS, ISING MODEL AND FLUCTUATIONS**

Cluster expansion for a classical gas - Virial equation of state - Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space-time dependent fluctuations -Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation.

Total Lecture Hours 90

18

18

18

16

20

BOOKS FOR STUDY:

- > S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
- B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition New Age International, New Delhi.
- J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied Publication, New Delhi.
- > F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New York.
- M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, McGraw-Hill New York.

BOOKS FOR REFERENCES:

- R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter WorthHeinemann, New Delhi.
- > L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford.
- K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
- W. Greiner, L. Neise and H. Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York.
- > A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.

WEB RESOURCES:

- https://byjus.com/chemistry/third-law-of-thermodynamics/
- https://web.stanford.edu/~peastman/statmech/thermodynamics.html
- https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
- https://en.wikipedia.org/wiki/Grand_canonical_ensemble
- https://en.wikipedia.org/wiki/Ising_model

Nature of Course	EMPLOYABILITY				SKILL ORIENTED			✓ ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REGI	ONAL	<i>i</i>	NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentag	e of Ch	ange	70	No Char	iges Made			New Course	

COURS	E OUI	COME	S:								K LEVEL	
After stu	dying t	his cour:	se, the st	udents v	vill be al	ole to:						
CO1	To exa	amine an	d elabora	te the ef	fect of cl	nanges in t	thermody	namic qu	antities on	the	K1 to K5	
COI		of matter									MI to MS	
		-			-	-		-	perature, s	-		
000				U	-	ic properti	ies like in	termolecu	lar forces		TZ 1 4 - TZ C	
CO2		cal bondi	0	•		trony by i	mixino tu	IN GASES			K1 to K5	
		scribe the peculiar behaviour of the entropy by mixing two gases tify the connection between statistics and thermodynamic quantities										
~ ~~								-	o interpret	the		
CO3	relatio	n betwee	en thermo	odynamic	cal quant	ities and p	artition f	unction	-		K1 to K5	
	To rec	all and a	pply the	different	statistica	al concept	s to analy	ze the bel	naviour of	ideal		
CO4		-		se gas an	d also to	compare	and distin	iguish bet	ween the t	hree	K1 to K5	
	• 1	of statisti		.1 .1					<u> </u>			
CO5	To discuss and examine the thermodynamicalbehaviour of gases under fluctuation and also using Ising model						on and	K1 to K5				
MAPPII		0	-	OUTC	OMES:							
CO/PO	PO1				PO4	PO5	P06	PO7	POS	8 PO9	PO10	
CO1	3	3		3	1	1	2	3	1	1	3	
CO2	3	3	;	3	1	1	2	3	1	1	3	
CO3	3	3	;	3	1	1	2	3	2	1	3	
CO4	3	3	;	3	1	1	2	3	2	1	3	
CO5	3	3	;	3	1	1	2	3	1	1	3	
3- STR	ONG				2 – ME	DIUM			1 -	LOW		
CO / P	O MAP	PING:										
со	s	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
со	1	3	3	3	1	1	2	3	1	1	3	
СО	2	3	3	3	1	1	2	3	1	1	3	
СО	3	3	3	3	1	1	2	3	2	1	3	
со	4	3	3	3	1	1	2	3	2	1	3	
СО	5 3 3 3 1 1 2 3 1 1				3							
WEIGT	AGE											
WEIGH PERCE E O COUF CONTR ON TO	NTAG F RSE IBUTI											

LESSO	ON PLAN:		
UNIT	STATISTICAL MECHANICS	HRS	PEDAGOGY
I	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.	18	Chalk &Talk, PPT, Seminar
п	Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.	18	Chalk &Talk, PPT
III	Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.	16	Chalk &Talk, Assignment
IV	Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.	18	Chalk &Talk, Group discussion
v	Cluster expansion for a classical gas - Virial equation of state – Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space- time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation	20	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Intonnol	nal Cos K Level MCQs			Section B Either or	Section C				
Internal	Cos	K Levei	No. of. Questions	K - Level	Choice	Either or Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
CI	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
	L	No. of Questions to be asked	4		4	4			
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2			
		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	
	K2	2			2	3.57	
CIA	K3		20		20	35.71	7.14
I	K4			32	32	57.14	42.86
	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2			2	3.57	
CIA	K3		20		20	35.71	7.14
II	K4			32	32	57.14	42.86
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

Summati	ive Exam	ination – B	ue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	COs	Level	No. of Questions	K – Level	or Choice) With K - LEVEL	Choice) With K - LEVEL
1	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K5, K5)
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
No. of Qu	estions to	o be Asked	10		10	10
	Question answere		10		5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

		Distri	bution of Mar	ks with K	Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.57	-
K2	5	10		15	10.71	3.57
K3		40	16	56	40.00	14.28
K4			48	48	34.29	54.28
K5			16	16	11.43	88.57
Marks	10	50	80	140	100	100
NR• Higher le	vel of performs	nce of the stu	dents is to be	assessed l	hv attemntin	g higher level of K

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	СО	K-level		
Answer Al	LL the question	ns		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	• ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K3	
				OR
11. b)	Unit - I	CO1	K3	
12. a)	Unit - II	CO2	K3	
				OR
12. b)	Unit - II	CO2	K3	
13. a)	Unit - III	CO3	K3	
				OR
13. b)	Unit - III	CO3	K3	
14. a)	Unit - IV	CO4	K2	
				OR
14. b)	Unit - IV	CO4	K2	
15. a)	Unit - V	CO5	K3	
				OR
15. b)	Unit - V	CO5	K3	

Answer	ALL the quest	ions PA	RT – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K4	
				OR
16. b)	Unit - I	CO1	K4	
17. a)	Unit - II	CO2	K4	
				OR
17. b)	Unit - II	CO2	K4	
18. a)	Unit - III	CO3	K4	
				OR
18. b)	Unit - III	CO3	K4	
19. a)	Unit - IV	CO4	K5	
				OR
19. b)	Unit - IV	CO4	K5	
20. a)	Unit - V	CO5	K3	
	·			OR
20. b)	Unit - V	CO5	K3	

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	QUANTUM MECHANICS – I								
Course Code	23PPHCC22	L	Р	С					
Category CORE 6 - 5									
COURSE OBJE	CTIVES:								

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- > To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- > To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods fo solving the Schrödinger equation.

UNIT - I BASIC FORMALISM

Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation

UNIT - II DIMENSIONAL AND THREE-DIMENSIONAL ENERGY EIGEN VALUE 18 PROBLEMS

Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator

UNIT - III GENERAL FORMALISM

Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal

UNIT - IV APPROXIMATION METHODS

Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.

UNIT - V ANGULAR MOMENTUM

Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.

Total Lecture Hours 90

17

18

19

18

BOOKS FOR STUDY:

- P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.
- ▶ G. Aruldhas, Quantum Mechanics, 2ndedition, Prentice Hall of India, New Delhi, 2009.
- > David J Griffiths, Introduction to Quantum Mechanics. 4thedition, Pearson, 2011.
- SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982.
- A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.

BOOKS FOR REFERENCES:

- E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.
- V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985.
- L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976.
- S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
- V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.

WEB RESOURCES:

- http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf
- http://www.feynmanlectures.caltech.edu/III_20.html
- http://web.mit.edu/8.05/handouts/jaffe1.pdf
- https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/
- https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		~	ENTREPRENEURSHIP			
Curriculum Relevance			ONAL		NATIONAL			GLOBAL	\checkmark	
Changes Made in the Course	Percentage	e of Ch	ange	60	No Char	iges Made			New Course	
	0% 25 020	h unit ((20*5-1	00%)	and calcule	to the porce	ntag	o of chan	ge for the cou	•60

COURS	SE OUTC	OMES	•								K	K LEVEL
After stu	udying thi	is course	, the stu	dents wi	ll be able	e to:						
CO1					0	basic pos um Mecł		f quantum	n mecha	anics	K	K1 to K5
CO2		o apply a and the				er equation	on to solv	e one din	nension	al	K	K1 to K5
соз	Can dise		various r	epresenta	ations, sp	ace time	symmetri	ies and fo	rmulati	ions of	K	1 to K5
CO4		mulate aı ical prob	-	the app	proximat	ion metho	ods for va	arious qua	antum		K	1 to K5
CO5	To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.								K	1 to K5		
MAPPI	NG WIT	H PROG	GRAM (OUTCO	MES:							
CO/PO	PO1	PO2	; PC)3 F	PO4	PO5	P06	PO7	P	D 8	PO9	PO10
CO1	3	3	3	}	3	3	2	3	2	2	2	3
CO2	3	3	3	}	3	3	S	3	1	2	2	3
CO3	2	3	3		2	3	2	3	2	2	2	3
CO4	3	3	3	}	3	3	2	3		3	2	3
CO5	3	3	3		2	3	S	3	3 3 2			3
3	- STRON	IG			2 -	- MEDI	UM			1	- LOW	7
CO / P	O MAPP	ING:										
C	os	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	B PS	09	PSO10
CC) 1	3	3	3	3	3	2	3	2	:	2	3
cc	2	3	3	3	3	3	S	3	2	:	2	3
cc) 3	2	3	3	2	3	2	3	2		2	3
СС) 4	3	3	3	3	3	2	3	3		2	3
CC	5	3	3	3	2	3	3	3	3		2	3
WEIG	TAGE											
OF CC CONTR	NTAGE											
LESSO	N PLAN	:										
UNIT	QUANTUM MECHANICS – I H								HRS PEDAG		AGOGY	
I	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen								රී]	balk Talk, PPT, minar		

II	Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relationSquare – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator	18	Chalk &Talk, PPT
III	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal	17	Chalk &Talk, Assignment
IV	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.	18	Chalk & Talk, Assignment
v	Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.	19	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
Internal	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice				
Internar	COS	IX LEVEL	No. of. Questions	K - Level	Choice					
CI	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
CI	CO3	K1 to K5	2	K1, K1	2 (K3, K3)	2 (K4, K4)				
AII	CO4	K1 to K5	2	K2, K2	2 (K3, K3)	2 (K4, K4)				
	1	No. of Questions to be asked	4		4	4				
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2				
		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	
	K2	2			2	3.57	
CIA	K3		20		20	35.71	7.14
I	K4			32	32	57.14	42.86
-	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2			2	3.57	
CIA	K3		20		20	35.71	7.14
II	K4			32	32	57.14	42.86
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	oping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	S. No COs	K - Level	No. of	K – Level	Choice) With	Choice) With
			Questions	K – Levei	K - LEVEL	K - LEVEL
1	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K5, K5)
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
No. of Qu	estions to	be Asked	10		10	10
	No. of Questions to be answered				5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5			5	3.57	-				
K2	5	10		15	10.71	3.57				
K3		40	16	56	40.00	14.28				
K4			48	48	34.29	54.28				
K5			16	16	11.43	88.57				
Marks	10	50	80	140	100	100				
NB: Higher le	NB: Higher level of performance of the students is to be assessed by attempting higher level of K									

levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the questi	ons	·	PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	• ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K3		
				OR	
11. b)	Unit - I	CO1	K3		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K3		
				OR	
13. b)	Unit - III	CO3	K3		
14. a)	Unit - IV	CO4	K2		
				OR	
14. b)	Unit - IV	CO4	K2		
15. a)	Unit - V	CO5	K3		
	· · · ·			OR	
15. b)	Unit - V	CO5	K3		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K4		
				OR	
16. b)	Unit - I	CO1	K4		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K5		
				OR	
19. b)	Unit - IV	CO4	K5		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PRACTICAL - II							
Course Code	23PPHCP21	L	Р	С				
Category	CORE	-	6	4				
COUDSE OD IEC								

COURSE OBJECTIVES:

- > To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. Measurement of Susceptibility of liquid Quincke's method
- 5. B-H curve using CRO
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. LG Plate
- 8. Arc spectrum: Copper
- 9. Determination of Solar constant
- 10. Determination of e/m Millikan's method
- 11. Miscibility measurements using ultrasonic diffraction method
- 12. Determination of Thickness of thin film. Michelson Interferometer
- 13. GM counter Feather's analysis: Range of Beta rays
- 14. Iodine absorption spectra
- 15. Molecular spectra CN bands
- 16. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 17. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 18. Measurement of Dielectricity Microwave test bench
- 19. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility

- 20. Interpretation of vibrational spectra of a given material.
- 21. Determination of I-V Characteristics and efficiency of solar cell.
- 22. IC 7490 as scalar and seven segment display using IC7447
- 23. Solving simultaneous equations IC 741 / IC LM324
- 24. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 25. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 26. Construction of second order butter worth multiple feedback narrow band pass filter
- 27. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 28. Construction of square wave generator using IC 555 Study of VCO
- 29. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer
- 30. Construction of pulse generator using the IC 555 Application as frequency divider
- 31. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 32. Study of binary up / down counters IC 7476 / IC7473
- 33. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
- 34. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 35. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 36. Study of Modulus Counter
- 37. Construction of Multiplexer and Demultiplexer using ICs.

BOOKS FOR STUDY:

- > Practical Physics, Gupta and Kumar, PragatiPrakasan
- Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences
- > Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- Electronic lab manual Vol I, K ANavas, Rajath Publishing
- Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition.

BOOKS FOR REFERENCES:

- An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- Advanced Practical Physics, S.P Singh, PragatiPrakasan
- A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd
- Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing
- Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi

WEB RESOURCES:

- https://www.niser.ac.in/sps/sites/default/files/basic_page/Young's%20modulus%20by%20Cornu's%20method.pdf
- https://www.mdpi.com/2075-1702/9/12/336
- https://www.electronics-tutorials.ws/filter/second-order-filters.html
- https://acschandwadcollege.com/up-images/downloads/FY_Asynchronous-Up-Down-counter.pdf
- https://www.engineersgarage.com/building-multiplexer-and-demultiplexerusing-sn-7400-series-ics-de-part-16/

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		\checkmark	ENTRE	PRENEURSHIP)	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentag	e of Ch	nange	90	No Char	iges Made			New Course	

*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COUR	SE	OUTCOI	MES:								K LEVEL
After s	tudy	ing this co	ourse, the	students wi	ill be able	to:					
CO 1	Understand the strength of material using Young's modulus and Poisson's ratio by Elliptical fringes										K1 to K5
CO2	Ace	quire know	ledge on Co	pefficient of	linear exp	pansion					K1 to K5
CO3			eoretical pri ng materia	inciples of ca	arrier conc	entration	and carrie	er mobilit	y of		K1 to K5
CO4	Sol	lving simu	ltaneous e	quations usi	ng OPAM	IP and IC	8				K1 to K5
CO5	Imp	prove the a	nalytical and	d observatior	n ability in	Physics Ex	periments				K1 to K5
MAPP	ING	WITH F	ROGRA	м оитсс	MES:						
CO/F	o	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	8 PO	PO10
COI	L	2	2	2	S	S	2	2	2	3	3
CO2	2	2	2	S	S	S	2	2	3	3	3
COS	3	3	3	3	3	3	3	3	3	3	3
CO4	ŀ	3	2	3	3	3	3	2	3	3	3
COS	5	3	3	3	3	3	3	3	3	3	3
3- STI	RON	ſG		2	2 – MED	IUM			1 - L	,OW	
CO /]	PO I	MAPPIN	G:								
CC	COS PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 PSO9		PSO9	PSO10							
cc	CO1 2 2 2 3 3 2 2 2 3						3				
CC)2	2	2	3	3	3	2	2	3	3	3

Academic Council Meeting Held On 20.04.2023

CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
C05	3	3	3	3	3	3	3	3	3	3
WEIGTAGE										
WEIGHTED PERCENTA GE OF COURSE CONTRIBU TION TO POS										

LESSON PLAN:

Experiments	PRACTICAL - II	HRS	PEDAGOGY
1 to 4	Determination of Young's modulus and Poisson's ratio by Elliptical fringes - Cornu's Method. Measurement of Coefficient of linear expansion- Air wedge Method. Determination of Refractive index of liquids using diode Laser/ He – Ne Laser. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility.	30	Demonstrat ion & Video
5 to 8	IC 7490 as scalar and seven segment display using IC7447. Solving simultaneous equations – IC 741 / IC LM324. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.	30	Chalk & Talk, PPT
9 to 12	Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 Construction of square wave generator using IC 555 – Study of VCO Study of binary up / down counters - IC 7476 / IC7473 Construction of Multiplexer and Demultiplexer using ICs.	30	Chalk & Talk, PPT

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark **Total CIA - 25 mark**

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
Internal	Cos	K Level	No. of. Questions	K - Level					
CIA-I CO1 – CO5		K1 – K5	1 Question for Each Student	K1 – K5					
		No. of Questions to be asked	1 Question for Each Student						
Questi	Question PatternNo. of Questions to be answered		1						
CIA - I		Marks for each question	30						
		Total Marks for each section	30						

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

	Distribution of Marks with COs &K Level for Correction of CIA I									
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS					
	CO1	K1 to K5	Aim and apparatus	K1	2.0					
	CO2	K1 to K5	Formula and Tabular Column	K3	5.0					
	CO3	K1 to K5	Understanding and Observation	K5	10.0					
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0					
	CO5	K1 to K5	Interpretation of result	K2	3.0					
	Total				30					
	Marks				30					

	Distribution of Marks with K Level CIA I										
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %						
	K1	Aim and apparatus	2	6.67							
	K3	Formula and Tabular Column	5	16.67	-						
	K5	Understanding and Observation	10	33.33	23.34						
CIA I	K4	Calculation and Graph	10	33.33	56.67						
	K2	Interpretation of result	3	10.00	90.00						
	Marks		30	100	100						

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

COs	K - Level	No. of Questions	K – Level
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5
No. of Questic	ons to be Asked	1 Question for Each Student	
No. of Question	s to be answered	1	
Marks for e	each question	75	
Total Marks f	or each section	75	

Distri	Distribution of Marks with COs &K Level for Correction of the Summative								
	Exam								
COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS					
CO1	K1 to K5	Aim and apparatus	K1	10					
CO2	K1 to K5	Formula and Tabular Column	K3	15					
CO3	K1 to K5	Understanding and Observation	K5	30					
CO4	K1 to K5	Calculation and Graph	K4	15					
CO5	K1 to K5	Interpretation of result	K2	5					
Total Marks				75					

Distribution of Marks with K Level									
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %					
K1	Aim and apparatus	10	13.33	13					
К3	Formula and Tabular Column	15	20	20					
K5	Understanding and Observation	30	40	40					
K4	Calculation and Graph	15	20	20					
K2	Interpretation of result	5	6.67	7					
Marks		75	100	100					

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ADVANCED OPTICS						
Course Code	23PPHEC21	L	Р	С			
Category	Elective	5	-	3			
COURSE OBJECTIVES:							

- > To know the concepts behind polarization and could pursue research work on application aspects of laser
- To impart an extensive understanding of fiber and non-linear optics \succ
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

UNIT - I POLARIZATION AND DOUBLE REFRACTION

Classification of polarization - Transverse character of light waves - Polarizer and analyzer - Malu's law - Production of polarized light - Wire grid polarizer and the polaroid - Polarization by reflection -Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence - Interference of polarized light: Quarter and half wave plates - Analysis of polarized light – Optical activity

UNIT - II LASERS

Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd: YAG laser – gas lasers – He-Ne laser - CO2 laser - Chemical lasers - HCl laser - Semiconductor laser

UNIT - III FIBER OPTICS

Introduction - Total internal reflection - The optical fiber - Glass fibers - The coherent bundle - The numerical aperture - Attenuation in optical fibers - Single and multi-mode fibers - Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiberoptic sensors: precision displacement sensor - Precision vibration sensor

UNIT - IV NON-LINEAR OPTICS

Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light

UNIT - V **MAGNETO-OPTICS AND ELECTRO-OPTICS**

Magneto-optical effects - Zeeman effect - Inverse Zeeman effect - Faraday effect - Voigt effect - Cottonmouton effect - Kerr magneto-optic effect - Electro-optical effects - Stark effect - Inverse stark effect -Electric double refraction – Kerr electro-optic effect – Pockels electro-optic effect.

Total Lecture Hours 90

18

16

18

18

20

BOOKS FOR STUDY:

- > B. B. Laud, 2017, Lasers and Non Linear Optics, 3rd Edition, New Age International (P) Ltd.
- > AjoyGhatak, 2017, Optics, 6th Edition, McGraw Hill Education Pvt. Ltd.
- William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York
- > J. Peatros, Physics of Light and Optics, a good (and free!) electronic book
- > B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,

BOOKS FOR REFERENCES:

- F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th Edition), McGraw Hill International Edition.
- > Dieter Meschede, 2004, Optics, Light and Lasers, Wiley VCH, Varley GmbH.
- Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4th Edition, Cambridge University Press, New Delhi, 2011.
- Y. B. Band, Light and Matter, Wiley and Sons (2006)
- R. Guenther, Modern Optics, Wiley and Sons (1990)

WEB RESOURCES:

- https://www.youtube.com/watch?v=WgzynezPiyc
- https://www.youtube.com/watch?v=ShQWwobpW60
- https://www.ukessays.com/essays/physics/fiber-optics-and-itapplications.php
- https://www.youtube.com/watch?v=0kEvr4DKGRI
- http://optics.byu.edu/textbook.aspx

Nature of Course	EMPLC	YABII	LITY		SKILL OR	IENTED		ENTRE	• •	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentage	e of Ch	lange	55	No Char	iges Made				

COURS	SE OUI	COME	S:								F	K LEVEL
After stu	udying t	his cours	se, the s	tudents v	vill be ab	ole to:						
CO1		Discuss the transverse character of light waves and different polarization phenomenon K1 to K5										
CO2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices										e I	K1 to K5
CO3	Demonstrate the basic configuration of a fiber optic – communication system and advantages K1 to K5											
CO4	Identify the properties of nonlinear interactions of light and matterK1 to K5Interpret the group of experiments which depend for their action on an applied magneticsK1 to K5											
CO5	and elec	ctric field	!	-		epend for	their acti	ion on an a	applied	magnet	ICS	K1 to K5
	1			I OUTC								
CO/PO					PO4	P05	P06	PO7			P09	PO10
CO1	3	3		3	2	3	3	3		3	3	3
CO2	3	3		3	2	3	3	3		3	3	3
CO3	3	3		3 3	2 3	3	3	3		3	3 3	3
CO4 CO5	3	3		3	3	3	3	3		3	3	3
3- STR		3			3 2 – ME	-	3	3		- LOW	-	3
CO / P		PING:			2 - MD	DIOM			-	- 10 4		
co	s	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PS	09	PSO10
CO	1	3	3	3	2	3	3	3	3		3	3
СО	2	3	3	3	2	3	3	3	3		3	3
со	3	3	3	3	2	3	3	3	3	:	3	3
со	4	3	3	3	3	3	3	3	3	3	3	3
CO	5	3	3	3	3	3	3	3	3	:	3	3
WEIG	ſAGE											
WEIGH PERCE E C COUI CONTR ON TO	NTAG DF RSE IBUTI											
LESSO	N PLA	N:										
UNIT				ADVAN	CED OP	TICS			F	IRS	PEI	DAGOGY
I	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The								8	Chalk Talk, PPT, eminar		

	Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity		
п	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO_2 laser – Chemical lasers – HCl laser – Semiconductor laser	18	Chalk &Talk, PPT
III	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor	18	Chalk &Talk, Assignment
IV	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light	16	Chalk & Talk, Assignment
v	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto- optic effect – Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction – Kerr electro-optic effect – Pockels electro- optic effect	18	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice					
mernar		K Level	No. of. Questions	K - Level	Choice						
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)					
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)					
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
		No. of Questions to be asked	4		4	4					
Quest Patte		No. of Questions to be answered	4		2	2					
CIA I		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
CIA	K3		10	16	26	46.43	53.57				
I	K4										
-	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or				
S. No	COs	Level	No. of	K – Level	or Choice) With	Choice) With				
		Level	Questions	K – Level	K - LEVEL	K - LEVEL				
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)				
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)				
No. of Qu	estions to	o be Asked	10		10	10				
	Question answere		10		5	5				
Marks	for each	question	1		5	8				
Total Ma	Total Marks for each section				25	40				
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	jiven K level)				

Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5			5	3.57	-					
K2	5	20	16	41	29.29	3.57					
K3		30	32	62	44.28	32.86					
K4			16	16	11.43	77.14					
K5			16	16	11.43	88.57					
Marks	10	50	80	140	100	100					
NB: Higher le	NB: Higher level of performance of the students is to be assessed by attempting higher level of K										

levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the questi	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	• ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2	
				OR
11. b)	Unit - I	CO1	K2	
12. a)	Unit - II	CO2	K3	
				OR
12. b)	Unit - II	CO2	K3	
13. a)	Unit - III	CO3	K3	
				OR
13. b)	Unit - III	CO3	K3	
14. a)	Unit - IV	CO4	K2	
				OR
14. b)	Unit - IV	CO4	K2	
15. a)	Unit - V	CO5	K3	
				OR
15. b)	Unit - V	CO5	K3	

Answer A	ALL the quest	ions PA	RT - C(5)	x 8 = 40 Marks)						
16. a)	Unit - I	CO1	K2							
	OR									
16. b)	Unit - I	CO1	K2							
17. a)	Unit - II	CO2	K3							
				OR						
17. b)	Unit - II	CO2	K3							
18. a)	Unit - III	CO3	K3							
				OR						
18. b)	Unit - III	CO3	K3							
19. a)	Unit - IV	CO4	K4							
				OR						
19. b)	Unit - IV	CO4	K4							
20. a)	Unit - V	CO5	K5							
			<u> </u>	OR						
20. b)	Unit - V	CO5	K5							

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	MEDICAL PHYSICS			
Course Code	23PPHEC22	L	Р	С
Category	ELECTIVE	5	-	3
COUDER OD IE				

COURSE OBJECTIVES:

- > To understand the major applications of Physics to Medicine
- To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- > To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNIT - I X-RAYS AND TRANSDUCERS

Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum –Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells – piezoelectric transducer

UNIT - II BLOOD PRESSURE MEASUREMENTS

Introduction – sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electro-neurography (ENG) – Basic principles of magnetic resonance imaging (MRI).

UNIT - III RADIATION PHYSICS

Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness – Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter.

UNIT - IV MEDICAL IMAGING PHYSICS

Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNIT - V RADIATION PROTECTION

Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter

Total Lecture Hours

19

18

17

90

18

18

BOOKS FOR STUDY:

- Dr. K. Thayalan, Basic Radiological Physics, Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003.
- Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology: -LippincotWilliams and Wilkins, 1990.
- > FM Khan, Physics of Radiation Therapy, William and Wilkins, 3rd ed, 2003.
- > D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed, Elsevier Science, 2014.
- R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG, New Delhi, 2005.

BOOKS FOR REFERENCES:

- Muhammad Maqbool, An Introduction to Medical Physics, 1st ed, Springer International Publishing, 2017.
- Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st ed, Charles University, Karolinum Press, 2018
- > Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed, Elsevier Science, 2014.
- K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed, Galgotia Publications, New Delhi, 2001.
- John R. Cameron and James G. Skofronick, 2009, Medical Physics, John Wiley Interscience Publication, Canada, 2nd edition.

WEB RESOURCES:

- https:nptel.ac.in/courses/108/103/108103157/
- https://www.studocu.com/en/course/university-of-technologysydney/medical-devices-and-diagnostics/225692
- https://www.technicalsymposium.com/alllecturenotes_biomed.html
- https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentationbi-by-deepraj-adhikary/78
- https://www.modulight.com/applications-medical/

Nature of Course	EMPLC	YABII	LITY		SKILL OR	IENTED		ENTRE	ENTREPRENEURSHIP	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL	GLOBAL		\checkmark
Changes Made in the Course	Percentage	e of Ch	ange		No Chan	iges Made		New Course		~
*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course										

COURS	SE OUT	COME	S:							K	LEVEL
After st	udying tl	his cour	se, the	student	s will be al	ole to:					
CO1	Learn th	ne fundar	mental	s, produc	tion and ap	plications	of X-rays.			K	1 to K5
CO2					pressure m s of MRI.	easurement	s. Learn a	bout sphyg	gmomanon	neter, K	1 to K5
CO3	Apply k	nowledg	ge on F	Radiation	Physics					K	1 to K5
CO4	Analyse	Radiolo	ogical i	maging a	and filters					K	1 to K5
CO5	Assess t	he princ	iples c	f radiatio	on protectio	n				K	1 to K5
MAPPI	NG WI	TH PRO	DGRA	M OUT	COMES:						
CO/PO	PO1	PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	1	1	2	3	3	1	3
CO2	3	3		3	2	1	2	3	3	1	3
CO3	3	3		3	2	1	2	3	3	1	3
CO4	3	3		3	2	1	2	3	3	1	3
C05	3	3	6	3	1	1	2	3	3	1	3
	3- STR					2 – MED	IUM			1 - LO	W
CO / P	O MAP	PING:									
cc	DS	PSO1	PSO	2 PS0	D3 PSO	4 PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	1	3	3	3	1	1	2	3	3	1	3
CO	2	3	3	3	2	1	2	3	3	1	3
CO	3	3	3	3	2	1	2	3	3	1	3
CO	4	3	3	3	2	1	2	3	3	1	3
CO	5	3	3	3	1	1	2	3	3	1	3
WEIG	ГAGE										
WEIGH PERCE E (COU CONTR ON TO	NTAG DF RSE LIBUTI										
LESSO	N PLAI	۷:									
UNIT	MEDICAL PHYSICS HRS								HRS	PED	AGOGY
I	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer								38 I	Chalk &Talk, PPT, Seminar	

II	Introduction –sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electro- neurography (ENG) – Basic principles of magnetic resonance imaging (MRI).	18	Chalk &Talk, PPT
III	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter	19	Chalk &Talk, Assignment
IV	Radiological Imaging – Radiography – Filters – Grids – Cassette – X- Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)	18	Chalk & Talk, Assignment
v	Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter	17	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
Internal	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice				
Internur		I Level	No. of. Questions	K - Level	Choice					
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
	L	No. of Questions to be asked	4		4	4				
Quest Patte		No. of Questions to be answered	4		2	2				
CIA I		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
CIA	K3		10	16	26	46.43	53.57				
I	K4										
-	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
~ • •		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	COs	Level	No. of Questions	K – Level	or Choice) With K - LEVEL	Choice) With K - LEVEL
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)
No. of Qu	estions to	o be Asked	10		10	10
	No. of Questions to be answered		10		5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5			5	3.57		
K2	5	20	16	41	29.29	3.57	
K3		30	32	62	44.28	32.86	
K4			16	16	11.43	77.14	
K5			16	16	11.43	88.57	
Marks	10	50	80	140	100	100	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer AI	LL the questio	ns	PA	RT – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)				
11. a)	Unit - I	CO1	K2						
	OR								
11. b)	Unit - I	CO1	K2						
12. a)	Unit - II	CO2	K3						
				OR					
12. b)	Unit - II	CO2	K3						
13. a)	Unit - III	CO3	K3						
				OR					
13. b)	Unit - III	CO3	K3						
14. a)	Unit - IV	CO4	K2						
				OR					
14. b)	Unit - IV	CO4	K2						
15. a)	Unit - V	CO5	K3						
	÷			OR					
15. b)	Unit - V	CO5	K3						

Answer A	Answer ALL the questions			PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K2		
				OR	
16. b)	Unit - I	CO1	K2		
17. a)	Unit - II	CO2	K3		
				OR	
17. b)	Unit - II	CO2	K3		
18. a)	Unit - III	CO3	K3		
			· · ·	OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K5		
				OR	
20. b)	Unit - V	CO5	K5		

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name SEWAGE AND WASTE WATER TREATMENT AND REUSE									
Course Code	23PPHSC21 L	Р	С						
Category	SKILL ENHANCEMENT COURSE 2	-	2						
COURSE OBJEC To gain basis To gain indu To harness of To analyze to To sensitize UNIT - I RECO Recovery & Reuse	ic knowledge in sewage and waste water Treatment procedures ustry exposure and be equipped to take up job. entrepreneurial skills. the status of sewage and waste water management in the nearby areas. e the importance of healthy practices in waste water management. OVERY & REUSE OF WATER of water from Sewage and Waste water: Methods of recovery: Flocculatio		06						
	limentation with coagulation - Filtration - sand filters - pressure filters - ho rol measures in industries - chemical and biological methods of vector erac INFECTION								
Disinfection: Introd	luction to disinfection and sterilization: Disinfectant - UV radiation - Chlor								
Antisepsis - Sterilar	nt - Aseptic and sterile -Bacteriostatic and Bactericidal - factors affecting d	lisinfect	10n.						
	mt - Aseptic and sterile -Bacteriostatic and Bactericidal - factors affecting d	lisinfect	06						
UNIT - III CHE Chemical Disinfect Methods - Chemica		Chemic	06 al						
UNIT - III CHE Chemical Disinfect Methods - Chemica Pretreatment - Disin	MICAL DISINFECTION ion: Introduction - Theory of Chemical Disinfection - Chlorination Other Cal Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation	Chemic	06 al						
UNIT - III CHE Chemical Disinfect Methods - Chemica Pretreatment - Disin UNIT - IV PHY Physical Disinfection	CMICAL DISINFECTION ion: Introduction - Theory of Chemical Disinfection - Chlorination Other C al Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation infection By-Products(DBPs).	Chemic on Agen ent -	06 al nts as 06						
UNIT - III CHE Chemical Disinfect Methods - Chemica Pretreatment - Disin UNIT - IV PHY Physical Disinfection	EMICAL DISINFECTION tion: Introduction - Theory of Chemical Disinfection - Chlorination Other C al Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation fection By-Products(DBPs). SICAL DISINFECTION on: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatmed - Distillation - Electrochemical Oxidation Water Disinfection by Microwar	Chemic on Agen ent -	06 al nts as 06						
 UNIT - III CHE Chemical Disinfect Methods - Chemica Pretreatment - Disin UNIT - IV PHY Physical Disinfection Filtration Methods UNIT - V INDU 	EMICAL DISINFECTION tion: Introduction - Theory of Chemical Disinfection - Chlorination Other C al Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation fection By-Products(DBPs). SICAL DISINFECTION on: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatmed - Distillation - Electrochemical Oxidation Water Disinfection by Microwar	Chemic on Agen ent -	06 al nts as 06 ing.						

BOOKS FOR STUDY:

- > Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013).
- Design of Water and Wastewater Treatment Systems (CV-424/434), ShashiBushan, Jain Bros (2015).
- > Integrated Water Resources Management, Sarbhukan M M, CBS PUBLICATION (2013).
- C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007.
- S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.

BOOKS FOR REFERENCES:

- Handbook of Water and Wastewater Treatment Plant Operations, Frank. R Spellman, CRC Press, 2020
- Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
- Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu., 2002.
- W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn., McGraw Hill Inc., 1989
- Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.

WEB RESOURCES:

- https://www.google.co.in/books/edition/Drinking_Water_DisinfectionTechni ques/HVbNBQAAQBAJ?hl=en
- https://www.meripustak.com/Integrated-Solid-Waste-Management-Engineering-Principles-And-Management-Issues-125648?
- https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsACgM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFs EALw_wB
- https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsACgM0iVpismAJN93CHA1sX6NuNeOKLXfQJ jxHC0VH3QXjJ1iACq30KofoaAmFsEALw wcB

Course	EMPLOYABILITY				SKI	LL ORI	ENTED	\checkmark	ENTRE	PRENEURSH	IP
Curriculum Relevance	OCAL		REG	IONAL			NATION	4L		GLOBAL	\checkmark
Changes Made in the Per Course	ercentage	of Ch	ange		N	o Chang	ges Made	١		New Course	\checkmark

COURS	SE OUTC	OMES:								k	K LEVEL
After st	udying this	course,	the stud	lents wi	ll be abl	e to:					
CO1	Gained kn	owledge	in solid	waste m	anageme	ent				F	K1 to K5
CO2	Equipped (to take up	o related	job by g	gaining i	ndustry e	xposure			F	K1 to K5
CO3	Develop er	ntreprene	urial ski	ills						ł	K1 to K5
CO4	Will be ab	le to anal	yze and	manage	the state	us of the	solid waste	s in the ne	earby areas	s F	K1 to K5
CO5	Adequatel	y sensitiz	ed in ma	anaging	solid wa	stes in an	nd around h	is/her loc	ality	ł	K1 to K5
MAPPI	NG WITH	PROG	RAM C	OUTCO	MES:						
CO/PC	D PO1	PO2	PO	93 F	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3		3	3	2	3	2	3	2
CO2	2	3	2		2	3	3	2	3	2	2
CO3	2	2	2		2	2	3	3	3	3	2
CO4	3	2	3		3	2	3	3	3	3	2
CO 5	2	2	2		2	3	3	2	2	2	2
	3- STRONG 2 – MEDIUM 1 - I									1 - LO	W
CO / PO MAPPING:											
cos		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO 1		3	2	3	3	3	2	3	2	3	2
CO 2		2	3	2	2	3	3	2	3	2	2
CO 3		2	2	2	2	2	3	3	3	3	2
CO 4		3	2	3	3	2	3	3	3	3	2
CO 5		2	2	2	2	3	3	2	2	2	2
WEIGH	ITAGE										
OF CO	ENTAGE URSE EIBUTIO										
LESSO	N PLAN:										
UNIT	SEWAGE		VASTE	WATE	ER TRI	CATME	NT AND	REUSE	HRS	PED	AGOGY
I	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication.							06	8	Chalk Talk, PPT, eminar	

п	Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile -Bacteriostatic and Bactericidal - factors affecting disinfection.	06	Chalk &Talk, PPT, Seminar
ш	Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs).	06	Chalk &Talk, PPT, Seminar
IV	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.	06	Chalk &Talk, PPT, Seminar
v	Industrial visit – data collection and analysis – presentation.	06	Chalk &Talk, PPT, Seminar

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	Section A MCQs			
CI	CO1	K1 – K2	No. of. Questions	K - Level K1,K2		
AI	CO2	K1 – K2				
CI	CO3	K1 – K2	25 K1,K2 25 K1,K2			
AII	CO4	K1 – K2				
		No. of Questions to be asked	50			
Question	Pattern	No. of Questions to be answered	50			
CIA I & II		Marks for each question	1			
		Total Marks for each section	50			

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

		Distribution	of Marks	with K Level CIA I &	CIA II
	K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	30	30	60	100
	K2	20	20	40	100
	K3				
CIA I	K4				
	Marks	50	50	100	100
	K1	30	30	60	100
	K2	20	20	40	100
CIA II	K3				
	K4				
	Marks	50	50	100	100

K1- Remembering and recalling facts with specific answers

- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summativ	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)						
S. No	COs	K - Level	Section A (MCQs)				
5. INU	COS	K - Level	No. of Questions	K – Level			
1	CO1	K1-K2	15	K1,K2			
2	CO2	K1-K2	15	K1,K2			
3	CO3	K1-K2	15	K1,K2			
4	CO4	K1-K2	15	K1,K2			
5	CO5	K1-K2	15	K1,K2			
No. o	f Questions t	o be Asked	75				
		be answered	75				
Ma	rks for each	question	1				
	Marks for e	-	75				
(Figu	res in parent	hesis denotes, questi	ons should be asked	with the given K level)			

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %						
K1	40	40	53	100						
K2	35	35	47	100						
K3										
K4										
Marks		75	100	100						
NB: Higher level of performance of the students is to be assessed by attempting higher										
level of K levels.										

M.Sc., PHYSICS

Program Code: PPH

2023 - Onwards

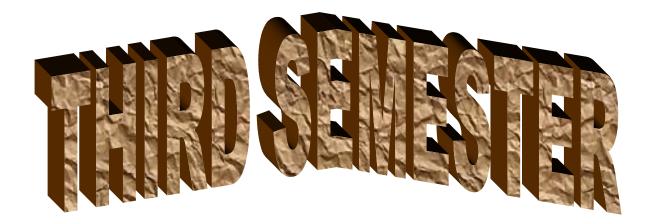
MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS)

Re-accredited with "A" Grade by NAAC

PASUMALAI, MADURAI – 625 004

Academic Council Meeting Held On 17.05.2024


MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004

M. SC PHYSICS CURRICULUM

(For the students admitted from the academic year 2023-2024 onwards)

Course Code	Title of the Course	Hrs	Credits	Maximum M Int Ext 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75	larks	
Course Code	The of the Course	пг	Creans	Int	Ext	Total
	FIRST SEMEST	ER				
Part – III	Core courses					
23PPHCC11	MATHEMATICAL PHYSICS	6	5	25	75	100
23PPHCC12	CLASSICAL MECHANICS	6	5	25	75	100
23PPHCP11	PRACTICAL - I	6	4	25	75	100
Part – III	Elective courses					
23PPHEC11	PHYSICS OF NANO SCIENCE AND TECHNOLOGY	6	3	25	75	100
23PPHEC12	LINEAR AND DIGITAL ICS AND APPLICATIONS	6	3	25	75	100
	Total	30	20	125	375	500
	SECOND SEMEST	ER				
Part – III	Core courses					
23PPHCC21	STATISTICAL MECHANICS	6	5	25	75	100
23PPHCC22	QUANTUM MECHANICS – I	6	5	25	75	100
23PPHCP21	PRACTICAL – II	6	4	25	75	100
Part – III	Elective courses					
23PPHEC21	ADVANCED OPTICS	5	3	25	75	100
23PPHEC22	MEDICAL PHYSICS	5	3	25	75	100
Part – IV	Skill Enhancement course					
23PPHSC21	SEWAGE AND WASTE WATER TREATMENT AND REUSE	2 2		25	75	100
	Total	30	22	150	450	600

Course Code	Title of the Course	Hrs	Credits	Maxi Int 25 25 25 25 25 25 25 25 25 40 190	num Ma	rks
Course Coue	The of the Course	1115	Creuits	Int	Ext	Total
	THIRD SEMES	TER				
Part – III	Core courses					
23PPHCC31	QUANTUM MECHANICS - II	6	5	25	75	100
23PPHCC32	CONDENSED MATTER PHYSICS	6	5	25	75	100
23PPHCP31	PRACTICAL –III	6	4	25	75	100
Part – III	Elective course					
23PPHEC31	ELECTROMAGNETIC THEORY	6	3	25	75	100
Part - IV	Skill Enhancement course					
23PPHSC31	COMMUNICATION ELECTRONICS	2	2	25	75	100
Part - IV	Non Major Elective course					
23PPHNM31	SOLAR ENERGY UTILIZATION	AR ENERGY UTILIZATION 4 3				100
23PPHINT1	INTERNSHIP REPORT	-	2	40	60	100
	Total	30	24	190	510	700
	FOURTH SEME	STER				
Part – III	Core courses					
23PPHCC41	NUCLEAR AND PARTICLE PHYSICS	6	5	25	75	100
23PPHCC42	SPECTROSCOPY	6	5	25	75	100
23PPHCP41	PRACTICAL – IV	6	4	25	75	100
23PPHPRJ1	PROJECT AND VIVA VOCE	6	4	25	75	100
Part – III	Elective course					
23PPHEC41	NUMERICAL METHODS AND COMPUTER PROGRAMMING	4	3	25	75	100
Part – IV	Skill Enhancement course					
23PPHSC41	PHYSICS FOR NET/SET	2	2	25	75	100
Part - V	Extension Activities					
23PEXTG41	EXTENSION ACTIVITY	-	1	40	60	100
	Total	30	24	190	510	700
	Grand Total	120	90	655	1845	2500

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	QUANTUM MECHANICS – II			
Course Code	23PPHCC31	L	Р	С
Category	CORE	6	-	5
COUDED OD ID				

COURSE OBJECTIVES:

- > Formal development of the theory and the properties of angular momenta, both orbital and spin
- > To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- > Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- > To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- > To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNIT - I SCATTERING THEORY

Scattering amplitude – Cross sections – Born approximation and its validity – Scattering by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length and Effective range theory for s wave – Optical theorem – Transformation from centre of mass to laboratory frame.

UNIT - II PERTURBATION THEORY

Time dependent perturbation theory - Constant and harmonic perturbations - Fermi Golden rule -Transition probability Einstein's A and B Coefficients – Adiabatic approximation – Sudden approximation - Semi - classical treatment of an atom with electromagnetic radiation - Selection rules for dipole radiation.

UNIT - III RELATISTIC QUANTUM MECHANICS

Klein - Gordon Equation - Charge And Current Densities - Dirac Matrices - Dirac Equation - Plane Wave Solutions – Interpretation Of Negative Energy States – Antiparticles – Spin of Electron – Magnetic Moment Of An Electron Due To Spin.

UNIT - IV DIRAC EQUATION

Covariant form of Dirac Equation - Properties of the gamma matrices - Traces - Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear covariant – Feynman's theory of positron (Elementary ideas only without propagation formalism).

UNIT - V **CLASSICAL FIELDS AND SECOND QUANTIZATION**

Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether's theorem – Quantization of real and complex scalar fields - Creation, Annihilation and Number operators - Fock states - Second Ouantization of K-G field.

> **Total Lecture Hours** 90

19

17

17

19

18

BOOKS FOR STUDY:

P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2nd Edition, Tata McGraw-Hill, New Delhi, 2010.

BOOKS FOR REFERENCES:

- ▶ G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi, 2009.
- L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968.
- V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005.
- Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017
- P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, London, 1973.
- B. K. Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009.
- Deep Chandra Joshi, Quantum Electrodynamics and Particle Physics,1st Edition, I.K.International Publishing house Pvt. Ltd., 2006
- Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan India, New Delhi.
- E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970.

WEB RESOURCES:

- https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture notes/MIT8_05F13_Chap_09.pdf – Quantum Mechanics - II
- http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf General Properties in Quantum Mechanics
- http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf Scattering Theory
- https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf -Relativistic Quantum Mechanics
- https://web.mit.edu/dikaiser/www/FdsAmSci.pdf Application of Quantum Mechanics

Nature of Course	EMPLOYABILITY			Sŀ	SKILL ORIENTED		✓	ENTREPRENEURSHIP		•	
Curriculum Relevance	LOCAL		REC	REGIONAL NATIONAL			GLOBAL	~			
Changes Made in the Course	Percentage of Change			70%		No Chang	ges Made			New Course	
*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.											

dying		OUTCOMES:								
After studying this course, the students will be able to:										
Fami	liarize the	e concep	t of sca	ttering theo	ory such as	partial				K1 to K5
	-									NI LU NS
				lativistic q	uantum m	echanics,	with emp	ohasis on	Dirac	K1 to K5
Discu	uss the re	elativisti	c quan	tum mecha	anical equ	ations nar	nely, Kle	ein-Gordo	on and	
Dirac	equatio	ns and	the ph	enomena a	accounted	by them	like ele	ctron spi	in and	K1 to K5
magr	netic morr	nent								
Introduce the concept of covariance and the use of Feynman graphs for depicting K1 to K5										
									of the	K1 to K5
	-		ι ουτ	COMES:						
1				PO4	PO5	PO6	PO7	PO8	PO9	PO10
3	3	3	3	3	3	3	3	3	3	3
3	3	3	2	3	3	3	3	3	3	3
3	2	2	2	3	3	2	3	3	3	3
2	1		1	3	3	1	2	2	3	3
2	1	<u> </u>	1	3	3	2	2	2	3	3
3- S'	FRONG				2 – ME	DIUM			1 - 3	LOW
D MA	PPING:							1		l
5	PSO1	PSO2	PSO	93 PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
L	3	3	3	3	3	3	3	3	3	3
2	3	3	2	3	3	3	3	3	3	3
3	3	2	2	3	3	2	3	3	3	3
ł	2	1	1	. 3	3	1	2	2	3	3
5	2	1	1	3	3	2	2	2	3	3
AGE										
TE										
SE										
	wave Give equal Disc Dirac magr Intro diffe Scatto PO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	wave analysisGive a firm gGive a firm gDiscuss the restDirac equationmagnetic momIntroduce thedifferent interaDemonstrate ascattering mathPOIPOIPOIPOIPOIAGEColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Scattering mathOther Colspan="2"Other Colspan="2"Scattering mathPOIPOIOther Colspan="2"Other Colspan	wave analysis and bornGive a firm groundingGive a firm groundingclass the relativistiDirac equations and related to the conceptDirac equations with any product of the conceptState of the conceptToto of the concept	wave analysis and Born approGive a firm grounding in re equation and related conceptsDiscuss the relativistic quan Dirac equations and the phymagnetic momentIntroduce the concept of conditionation of the phymagnetic momentIntroduce the concept of conditionation of the phymagnetic momentIntroduce the concept of conditionation of the phymagnetic momentIntroduce the concept of conditionationDemonstrate an understandiscuttring matrix.Introduce the concept of conditionation of the phymagnetic momentIntroduce the concept of the phymagnetic momentIntroduce the phymagnetic momentIntroduce the phymagnetic moment<	wave analysis and Born approximationGive a firm grounding in relativistic quantum metated conceptsDiscuss the relativistic quantum metatedDiscuss the concept of covariance anddifferent interactionsDemonstrate an understanding of fieldscattering matrix. G WITH PROCRAM OUTCOMES:PO1PO2PO4 3333 333BO1PO3PO4333333BO1PO3PO4333BO1PO3PO1PO433333BO1PSO2PSO3PSO43	wave analysis and Born approximationGive a firm grounding in relativistic quantum mechanical equDiscuss the relativistic quantum mechanical equDiscuss the relativistic quantum mechanical equDiscuss the relativistic quantum mechanical equDiscuss and the phenomena accountedmagnetic momentIntroduce the concept of covariance and the usedifferent interactionsDemonstrate an understanding of field quantizascattering matrix.GWITH PROCRAM OUTCOMES:PO1PO2PO3PO4PO5333QUITH PROCRAM OUTCOMES:PO1PO2PO3PO4PO5333QUITH PROCRAM OUTCOMES:PO1PO2PO3PO4PO5333QUITH PROCRAM OUTCOMES:PO1PO2PO3PO4PO5QUITH PROCRAM OUTCOMES:QUITH PROCRAM OUTCOMES:QUITH IT3QUITH PROCRAM OUTCOMES:QUITH I3QUITH I3QUITH IQUITH IQUITH IQUITH IQUI	Give a firm grounding in relativistic quantum mechanics, equation and related conceptsDiscuss the relativistic quantum mechanical equations nat Dirac equations and the phenomena accounted by them magnetic momentIntroduce the concept of covariance and the use of Feyn different interactionsDemonstrate an understanding of field quantization and scattering matrix.CUTEVENENPO1PO2PO3PO4PO5PO6333333332233333323333322333332233322113333333333333233333223334PSO1PSO2PSO3PSO4PSO5	wave analysis and Born approximationGive a firm grounding in relativistic quantum mechanics, with empequation and related conceptsDiscuss the relativistic quantum mechanical equations namely, Kle Dirac equations and the phenomena accounted by them like ele magnetic momentIntroduce the concept of covariance and the use of Feynman graph different interactionsDemonstrate an understanding of field quantization and the explicate scattering matrix. COVINCE:PO1PO2PO3PO4PO5PO6PO7 333333332233333333333322333333333333332233333333333333333333332233411333<	wave analysis and Born approximationGive a firm grounding in relativistic quantum mechanics, with emphasis on equation and related conceptsDiscuss the relativistic quantum mechanical equations namely, Klein-Gordo Dirac equations and the phenomena accounted by them like electron spimagnetic momentIntroduce the concept of covariance and the use of Feynman graphs for de different interactionsDemonstrate an understanding of field quantization and the explanation scattering matrix.COMESTPO1PO2PO3PO4PO5PO6PO7PO83333333333333333333GWITH PROCENENTPO1PO2PO3PO4PO5PO6PO7PO83333333333333333333233333333333333333333333223333GWITH PROCENTPO1PO2PO3PO4PO5PO6PO7PO83333333333A <th>wave analysis and Born approximationGive a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related conceptsDiscuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic momentIntroduce the concept of covariance and the use of Feynman graphs for depicting different interactionsDemonstrate an understanding of field quantization and the explanation of the scattering matrix.COVENES:PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO3PO6PO7PO8PO1PO2PO4PO5PO6PO7PO8PO1PO2PO4PO5PO6PO7PO8PO1PO2PO3PO4PO5PO6PO7PO8<!--</th--></th>	wave analysis and Born approximationGive a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related conceptsDiscuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic momentIntroduce the concept of covariance and the use of Feynman graphs for depicting different interactionsDemonstrate an understanding of field quantization and the explanation of the scattering matrix.COVENES:PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO4PO6PO7PO8PO1PO2PO3PO6PO7PO8PO1PO2PO4PO5PO6PO7PO8PO1PO2PO4PO5PO6PO7PO8PO1PO2PO3PO4PO5PO6PO7PO8 </th

CONTE ION PO	ΤΟ									
LESSC	LESSON PLAN:									
UNIT	QUANTUM MECHANICS – II	HRS	PEDAGOGY							
I	I Scattering amplitude – Cross sections – Born approximation and its validity – Scattering by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length and Effective range theory for s wave – Optical theorem – Transformation from centre of mass to laboratory frame									
п	Time dependent perturbation theory – Constant and harmonic perturbations – Fermi Golden rule – Transition probability Einstein's AChalk									
III	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices – Dirac Equation – Plane Wave Solutions – Interpretation Of Negative Energy States – Antiparticles – Spin of Electron – Magnetic Moment Of An Electron Due To Spin.	17	Chalk &Talk, Assignment							
IV	Moment Of An Election Due To Spin.Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear covariant – Feynman's theory of positron (Elementary ideas only without propagation formalism).19Chalk &Talk, Group discussion									
v	Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether's theorem – Quantization of real and complex scalar fields – Creation, Annihilation and Number operators – Fock states – Second Quantization of K-G field.	18	Seminar, PPT, Chalk &Talk							

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
	Articulation Mapping – K Levels with Course Outcomes (COs)									
			Section	Α	Section B	Section C				
Internal	Cos	K Level	MCQs	5	Either or	Either or				
Internar	CUS	K Level	No. of.	K -	Choice	Choice				
			Questions	Level	Choice	Choice				
CI	CO1	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
AI	CO2	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
CI	CO3	K3	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
AII	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
		No. of Questions to be asked	4		4	4				
Quest		No. of Questions to be answered	4		2	2				
Pattern CIA I & II		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

Academic Council Meeting Held On 17.05.2024

		Dist	ribution of 1	Marks with	K Level	CIA I & CIA I	[
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2			2	3.57	= 4	
	K2	2	10	16	28	50	54	
CIA I	K3		10	16	26	46.43	46	
	K4							
	Marks	4	20	32	56	100	100	
	K1	2			2	3.57	25	
	K2	2	10		12	21.43	- 25	
CIA	K3		10	16	26	46.43	46	
II	K4			16	16	28.57	29	
	Marks	4	20	32	56	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summat	ive Exam	ination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or
S. No	COs	K - Level	No. of Questions	K – Level	Choice) With K - LEVEL	Choice) With K - LEVEL
1	CO1	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)
2	CO2	К3	2	K1, K2	2 (K3, K3)	2 (K3, K3)
3	CO3	К3	2	K1, K2	2 (K2, K2)	2 (K3, K3)
4	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)
5	CO5	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)
No. of Q	uestions to	be Asked	10		10	10
No. of Que	estions to b	be answered	10		5	5
Marks	Marks for each question				5	8
Total Ma	Total Marks for each section				25	40
	(Figr	res in paren	thesis denotes, o	questions show	uld be asked with the give	en K level)

(Figures in parentnesis denotes, questions should be asked with the given K level)

		Distri	bution of Mar	ks with K	Level			
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5			5	3.57	4		
K2	5	20	16	41	29.29	29		
K3		20	32	52	37.14	37		
K4		10	16	26	18.57	19		
K5			16	16	11.43	11		
Marks	10	50	80	140	100	100		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
	LL the quest	ions	PART – A	(10 x 1 =	10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 17.05.2024

Answer	• ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
	· · ·			OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K4		
				OR	
15. b)	Unit - V	CO5	K4		

Answer A	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K2		
				OR	
16. b)	Unit - I	CO1	K2		
17. a)	Unit - II	CO2	K3		
				OR	
17. b)	Unit - II	CO2	K3		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K5		
				OR	
20. b)	Unit - V	CO5	K5		

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	CONDENSED MATTER PHYSICS			
Course Code	23PPHCC32	L	Р	С
Category	CORE	6	-	5

COURSE OBJECTIVES:

- > To describe various crystal structures, symmetry and to differentiate different types of bonding.
- > To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat
- > To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNIT - I **CRYSTAL PHYSICS**

Types of lattices - Miller indices - Symmetry elements and allowed rotations - Simple crystal structures -Atomic Packing Factor- Crystal diffraction - Bragg's law - Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals -Madelung constant - Types of crystal binding (general ideas).

UNIT - II LATTICE DYNAMICS

Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.

UNIT - III THEORY OF METALS AND SEMICONDUCTORS

Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration - Temperature Dependence - Mobility - Impurity conductivity - Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hass-van Alphen effect.

UNIT - IV MAGNETISM

Diamagnetism - Quantum theory of paramagnetism - Rare earth ion -Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point -Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.

19

17

19

17

UNIT - V SUPERCONDUCTIVITY

Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect – Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors.

Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS.

Total Lecture H	ours 90
------------------------	---------

BOOKS FOR STUDY:

> C. Kittel, Introduction to Solid State Physics, 7th Edition, Wiley, New York, 1996.

BOOKS FOR REFERENCES:

- > Rita John, Solid State Physics, Tata Mc-Graw Hill Publication.
- > J. Dekker, Solid State Physics, Macmillan India, New Delhi.
- M. Ali Omar, Elementary Solid State Physics Principles and Applications, Addison Wesley, 1974.
- ▶ H. P. Myers, Introductory Solid State Physics, 2nd Edition, Viva Book, New Delhi, 1998.
- ▶ J. S. Blakemore, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia, 1974.
- ▶ H. M. Rosenburg, The Solid State, 3rd Edition, Oxford University Press, Oxford, 1993.
- > J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, London, 1971.
- C. Ross-Innes and E. H. Rhoderick, Introduction to Superconductivity, Pergamon, Oxford, 1976.
- J. P. Srivastava, Elements of Solid State Physics, Prentice-Hall of India, New Delhi, 2001.

WEB RESOURCES:

- http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html
 Crystal Structure
- http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html Condensed Matter Physics
- https://www.britannica.com/science/crystal Crystal Defects, Structure and its types
- https://www.nationalgeographic.org/encyclopedia/magnetism/ Magnetism
- https://www.brainkart.com/article/Super-Conductors_6824/ -Superconductivity

Nature of Course	EMPLOYABILITY				SF	SKILL ORIENTED			ENTRE	>	
Curriculum Relevance	LOCAL REC		IONAL	_	NATION		AL		GLOBAL	~	
Changes Made in the Course	Percentage of Change		50%		No Changes Made				New Course		
*Treat	20% as ea	ch unit	t (20*5 =	100%)	and	d calculat	e the percen	tage	of chang	e for the cour	se.

COURS	SE OU	тсом	ES:									K	LEVEL
After stu	ıdying	this cou	urse, ti	he stu	udents	s will be a	ble to:						
CO1								ems, symm stal structu	etries allow	wed in a	system	K	1 to K5
CO2						alize the of solids.	idea of r	eciprocal s	spaces, Bril	llouin Zo	one and	K	1 to K5
CO3	Stud	ent will	be abl	e to c	ompre	ehend the	heat cond	luction in s	solids			K	1 to K5
CO4	Stud	ent will	be abl	e to g	eneral	ize the ele	ectronic 1	nature of so	olids from b	and theo	ries.	K	1 to K5
CO5		ent can dea of su	-			trast the v	various t	ypes of ma	ignetism an	nd concep	otualize	K	1 to K5
MAPPI	NG W	ITH PI	ROGF	RAM	OUT	COMES	:						
СО/РО	PO	1 F	PO2	P	03	PO4	PO5	P06	PO7	POS	8 PC)9	PO10
CO1	3		2		3	2	2	2	2	2	2	2	2
CO2	3		2		3	2	3	2	3	3	2	2	3
CO3	3	,	3		3	2	3	2	3	3	2	2	3
CO4	2		2		2	2	2	2	2	2	2	2	3
CO5	2	,	2		2	2	2	2	2	2	2	2	3
	3- S	TRON	3				2 - N	IEDIUM			1	- LC	w
со / р	O MA	PPING	:										
CO	S	PSO1	PS	02	PSO	3 PSO	4 PSO	5 PSO6	PSO7	PSO8	PSO9	F	SO10
СО	1	3		2	3	2	2	2	2	2	2		2
CO	2	3		2	3	2	3	2	3	3	2		3
CO	3	3		3	3	2	3	2	3	3	2		3
CO	4	2		2	2	2	2	2	2	2	2		3
CO	5	2		2	2	2	2	2	2	2	2		3
WEIGT	AGE												
WEIGI D PERCE GE (COUR CONTR ION 7 PO:	NTA DF RSE IBUT FO												
LESSO	N PLA	AN:											
UNIT			CON	IDE	NSEL	MATT	ER PHY	SICS		HF	RS I	PED	AGOGY
I	• •	Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal										halk Falk,	

Academic Council Meeting Held On 17.05.2024

	Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).		Seminar
II	Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.	19	Chalk &Talk, PPT
III	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hass- van Alphen effect.	17	Chalk &Talk, Assignment
IV	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.	19	Chalk &Talk, Group discussion
v	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect – Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS. 	18	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
	Articulation Mapping –]		– K Levels w Section MC(n A	Section B	S)				
Internal	Internal Cos	K Level	No. of. Questions	K - Level	Either or Choice	Either or Choice				
CI	CO1	K4	2	K1,K2	2 (K3, K3)	2 (K4, K4)				
AI	CO2	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
CI	CO3	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
AII	CO4	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)				
		No. of Questions to be asked	4		4	4				
Quest		No. of Questions to be answered	4		2	2				
Pattern CIA I & II		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

		D	istribution of	Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	7
	K2	2			2	3.57	/
CIA	K3		20		20	35.71	36
I	K4			32	32	57.14	57
L	Marks	4	20	32	56	100	100
	K1	2			2	3.57	7
	K2	2			2	3.57	/
CIA	K3		10		10	17.86	18
CIA II	K4		10	16	26	46.43	46
11	K5			16	16	28.57	29
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	ue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)	
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or	
S. No	Cos	Level	No. of	K – Level	or Choice) With	Choice) With	
		Levei	Questions		K - LEVEL	K - LEVEL	
1	CO1	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)	
2	CO2	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)	
3	CO3	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)	
4	CO4	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)	
5	CO5	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)	
No. of Qu	estions to	o be Asked	10		10	10	
	No. of Questions to be answered		10		5	5	
Marks	Marks for each question		1		5	8	
Total Ma	Total Marks for each section		10		25	40	

(Figures in parenthesis denotes, questions should be asked with the given K level)

		Distri	bution of Mar	ks with K	Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.57	7
K2	5			5	3.57	
К3		30		30	21.43	21
K4		20	48	68	48.57	49
K5			32	32	22.86	23
Marks	10	50	80	140	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	CO	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer ALL the questions				PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K3		
				OR	
11. b)	Unit - I	CO1	K3		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K3		
				OR	
13. b)	Unit - III	CO3	K3		
14. a)	Unit - IV	CO4	K4		
				OR	
14. b)	Unit - IV	CO4	K4		
15. a)	Unit - V	CO5	K4		
	· · ·			OR	
15. b)	Unit - V	CO5	K4		

Answer ALL the questions				PART – C	(5 x 8 = 40 Marks)		
16. a)	Unit - I	CO1	K4				
				OR			
16. b)	Unit - I	CO1	K4				
17. a)	Unit - II	CO2	K4				
				OR			
17. b)	Unit - II	CO2	K4				
18. a)	Unit - III	CO3	K4				
				OR			
18. b)	Unit - III	CO3	K4				
19. a)	Unit - IV	CO4	K5				
			· · · · ·	OR			
19. b)	Unit - IV	CO4	K5				
20. a)	Unit - V	CO5	K5				
				OR			
20. b)	Unit - V	CO5	K5				

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name PRACTICAL - III								
Course Code	23PPHCP31	L	Р	С				
Category	CORE	-	6	4				
COURSE OD IECTIVES.								

COURSE OBJECTIVES:

- > To understand the theory and working of Microprocessor, Microcontroller and their applications
- > To use microprocessor and Microcontroller in different applications.

COURSE DETAILS

(Any Twelve Experiments)

- 1. 8-bit addition and subtraction, multiplication and division
- 2. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending order
- 3. Code conversion (8-bit number): a) Binary to BCD b) BCD to binary
- 4. Addition of multi byte numbers, Factorial
- 5. Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters
- 6. Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter
- 7. Interfacing of seven segment display
- 8. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves
- 9. DAC 0800/ DAC 1048 interface and wave form generation (Unipolar/ Bipolar output)
- 10. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action
- 11. Key board Interface
- 12. Addition, Subtraction, Multiplication and Division of 8-bit numbers.
- 13. Sum of a series of 8-bit numbers
- 14. Average of N numbers
- 15. Factorial of number
- 16. Construct the half adder and full adder circuits using ICs
- 17. Construct the different logic gates using IC7400 (NAND) and IC7402 (NOR)
- 18. Study the law of Boolean function and Demorgan's theorem by using ICs
- 19. Simplify a given Boolean expression using Karnaugh map method and implement the expression using logic circuit.
- 20. Voltage regulator using ICs

BOOKS FOR STUDY:

- Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata McGraw Hill Publications, 2008.
- K. Udaya Kumar, S. Uma Shankar, The 8085 Microprocessor, Architecture, Programming and Interfacing, Pearson.

BOOKS FOR REFERENCES:

- Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education, 2008.
- ▶ V. Vijayendran, Fundamentals of Microprocessor-8085", 3rd Edition S. VisvanathanPvt., Ltd., 2005.
- > B. Ram, Fundamentals of Microprocessors and Microcontrollers, DhanpatRai Publications.
- W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.
- S. Malarvizhi, Microprocessor and Its Application, Anuradha Agencies Publications
- R.S. Gaonkar, Microprocessor Architecture, Program And Its Application With 8085, New Age International (P) Ltd
- Barry B. Brey, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi, 1995.
- ➢ J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.

Nature of Course	EMPLC	YABII	LITY	~	SK	XILL ORIE	ENTED	✓	ENTRE	PRENEURSHIP	•	√
Curriculum Relevance	LOCAL REG		JIONAL	,		NATIONAL			GLOBAL	١	1	
Changes Made in the Course	Percentage of Change		80%		No Chang	ges Made			New Course			
*Treat	*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.											

COURS	E OU	TCOME	S:								ł	K LEVEL
After stu	dying	this cou	rse, the	student	s will be at	ole to:						
CO1	Deve	Develop the programming skills of Microprocessor									ŀ	K1 to K5
CO2	App	Appreciate the applications of Microprocessor programming							ł	K1 to K5		
CO3	Unde	erstand th	e struct	ure and v	working of	8085 micr	oprocesso	r and app	ly it.		ŀ	K1 to K5
CO4	Acqu	uire know	ledge a	bout the	interfacing	peripheral	ls with 808	85 microp	rocess	or.	ł	K1 to K5
CO5	-	uire kno ⁻ herals.	wledge	about	the interf	acing 80:	51 micro	controller	with	variou	IS F	K1 to K5
MAPPII	NG W	ITH PR	OGRA	M OUT	COMES:							
CO/PO	PO	91 PC	02	PO3	PO4	PO5	PO6	PO7	PC	08	PO9	PO10
CO1	2		2	2	3	3	2	2	2	2	3	3
CO2	2		2	3	3	3	2	2		3	3	3
CO3	3		3	3	3	3	3	3		3	3	3
CO4	3		2	3	3	3	3	2		3	3	3
CO 5	3		3	3	3	3	3	3		3	3	3
		TRONG				2 – ME	DIUM				1 - L	OW
CO / P	O MA	PPING:										
COS	5	PSO1	PSO	2 PSO	93 PSO4	PSO5	PSO6	PSO7	PSO	8 PSC	9	PSO10
СО	1	2	2	2	3	3	2	2	2		3	3
CO	2	2	2	3	3	3	2	2	3		3	3
CO	3	3	3	3	3	3	3	3	3	4	3	3
CO	4	3	2	3	3	3	3	2	3	4	3	3
CO	5	3	3	3	3	3	3	3	3		3	3
WEIGT	AGE											
WEIGH D PERCE GE C COUR CONTR TION 4 POS	NTA)F SE 1BU TO											
LESSO	N PL	AN:										
EXPER MENT				F	PRACTIC	AL - III				HRS	PEI	DAGOGY
1 to 4	-	 8-bit addition and subtraction, multiplication and division Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending 						,	halk & Falk, PPT			

	order Code conversion (8-bit number): a) Binary to BCD b) BCD to binary Addition of multi byte numbers, Factorial		
5 to 8	Addition, Subtraction, Multiplication and Division of 8-bit numbers. Sum of a series of 8-bit numbers Average of N numbers Factorial of number	30	Chalk & Talk, PPT
9 to 12	Construct the half adder and full adder circuits using ICs and Voltage regulator using ICs Construct the different logic gates using IC7400 (NAND) and IC7402 (NOR) Study the law of Boolean function and Demorgan's theorem by using ICs Simplify a given Boolean expression using Karnaugh map method and implement the expression using logic circuit.	30	Chalk & Talk, PPT

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark **Total CIA - 25 mark**

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	No. of. Questions	K - Level					
CIA-I	CO1 – CO5	K1 – K5	5 1 Question for Each Student						
		No. of Questions to be asked	1 Question for Each Student						
Question Pattern CIA - I		No. of Questions to be answered	1						
		Marks for each question	30						
		Total Marks for each section	30						

	Distribution of Marks with COs &K Level for
<u></u>	1

			Correction of CIA I					
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS			
	CO1	K1 to K5	Aim and apparatus	K1	2.0			
	CO2	K1 to K5	Formula and Tabular Column	K3	5.0			
	CO3	K1 to K5	Understanding and Observation	K5	10.0			
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0			
	CO5	K1 to K5	Interpretation of result	K2	3.0			
	Total				30			
	Marks				30			

	Distribution of Marks with K Level CIA I									
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	Aim and apparatus	2	6.67						
	K3	Formula and Tabular Column	5	16.67	-					
	K5	Understanding and Observation	10	33.33	23.34					
CIA I	K4	Calculation and Graph	10	33.33	56.67					
	K2	Interpretation of result	3	10.00	90.00					
	Marks		30	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

Summative Exam	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
COs	COs K - Level No. of Questions		K – Level					
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5					
No. of Question	ons to be Asked	1 Question for Each Student						
No. of Question	ns to be answered	1						
Marks for each question		75						
Total Marks for each section		75						

Distribution of Marks with COs &K Level for Correction of the Summative Exam

COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS
CO1	K1 to K5	Aim and apparatus	K1	10
CO2	K1 to K5	Formula and Tabular Column	K3	15
CO3	K1 to K5	Understanding and Observation	K5	30
CO4	K1 to K5	Calculation and Graph	K4	15
CO5	K1 to K5	Interpretation of result	K2	5
Total				75
Marks				15

	Distribution of Marks with K Level									
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %						
K1	Aim and apparatus	10	13.33	13						
K3	Formula and Tabular Column	15	20	20						
K5	Understanding and Observation	30	40	40						
K4	Calculation and Graph	15	20	20						
K2	Interpretation of result	5	6.67	7						
Marks		75	100	100						

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ELECTROMAGNETIC THEORY			
Course Code	23PPHEC31	L	Р	С
Category	ELECTIVE	6	-	3

COURSE OBJECTIVES:

- > To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- > To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNIT - I **ELECTROSTATICS**

Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in one, two, three dimension – Work and energy in electrostatistics.

Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field -Molecular polarizability and electrical susceptibility - Electrostatic energy in the presence of dielectric -Multipole expansion.

UNIT - II MAGNETOSTATICS

Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions -Uniformly magnetized sphere.

UNIT - III MAXWELL EQUATIONS

Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges -Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.

UNIT - IV WAVE PROPAGATION

Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole.

19

17

17

19

UNIT - V RELATIVISTIC MECHANICS AND ELECTRODYNAMICS

Proper time and proper velocity – Relativistic Energy and momentum – Relativistic kinematics – Relativistic Dynamics – Magnetism as a relativistic phenomenon – How the fields transform – The field tensor – Electrodynamic in tensor notation – Relativistic Potentials.

BOOKS FOR STUDY:

- D. J. Griffiths, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi, 2002.
 BOOKS FOR REFERENCES:
- ➢ J. R. Reitz, F. J. Milford and R. W. Christy, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi, 1986.
- > J. D. Jackson, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi, 1975.
- J. A. Bittencourt, Fundamentals of Plasma Physics, Pergamon Press, Oxford, 1988.
- > Gupta, Kumar and Singh, Electrodynamics, S. Chand & Co., New Delhi
- > W. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison Wesley, London, 1962.
- J. D. Kraus and D. A. Fleisch, Electromagnetics with Applications, 5th Edition, WCB McGraw-Hill, New York, 1999.
- > B. Chakraborty, Principles of Electrodynamics, Books and Allied, Kolkata, 2002.
- P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi, 1998.
- > Andrew Zangwill, Modern Electrodynamics, Cambridge University Press, USA, 2013.

WEB RESOURCES:

- http://www.plasma.uu.se/CED/Book/index.html Electromagnetic Field <u>Theory</u>
- http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html -Electrodynamics
- http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html Electrodynamics and relativistic
- http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutorials/ -Electromagnetism
 - https://www.cliffsnotes.com/study-guides/physics/electricity-andmagnetism/electrostatics - electricity-and-magnetism

Nature of Course	EMPLC	EMPLOYABILITY				SKILL ORIENTED			ENTRE	PRENEURSHII	2	\checkmark
Curriculum Relevance	LOCAL	LOCAL					NATI	ONAL		GLOBAL		\checkmark
Changes Made in the Course	Percentag	Percentage of Change				o Change	s Made	New Cours				
*Treat 20% as	s each unit	(20*5=	=100%)	and cal	cul	ate the pe	ercentag	e of chan	ge for th	e course.		

90

Total Lecture Hours

COURS	SE OU	TCOME	S:								K LEVEL
After st	udying	this cour	se, the st	udents w	ill be abl	e to:					
CO 1			erential e problems	-	using L	aplace e	quation a	nd to fi	nd solut	ions for	K1 to K5
CO2				and Amp for vario			to find tl ms	he magne	etic indu	ction &	K1 to K5
CO3	-		-			-	omagnetic	field beh	aves in	different	K1 to K5
CO4	comm	unication	s and also	10	installati		rough wa ulate the tr	ē			K1 to K5
C05	fields					with self-o	consistent	electric a	nd magn	etic	K1 to K5
				OUTCO							
CO/PO					204	P05	P06	PO7	PO8		
CO1	3	3		3	1	2	2	3	3	1	3
CO2	3	3		3	1	2	2	3	3	1	3
CO3	3	3		3	1	2	2	3	3	1	3
CO4	3	3		3	1	2	2	3	3	1	3
C05	3	3	3	3	1	2	2	3	3	1	3
CO / P		<mark>FRONG</mark> PPING:				2 – ME	DIUM			1-	LOW
СО	s	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	1	3	3	3	1	2	2	3	3	1	3
СО	2	3	3	3	1	2	2	3	3	1	3
CO	3	3	3	3	1	2	2	3	3	1	3
CO	4	3	3	3	1	2	2	3	3	1	3
CO		3	3	3	1	2	2	3	3	1	3
WEIG1	AGE										
WEIGI D PERCE GE (COUF CONTR ION ' PO	NTA OF RSE IBUT FO										
LESSO	N PLA	N:									

UNIT	ELECTROMAGNETIC THEORY	HRS	PEDAGOGY
I	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.	17	Chalk &Talk, PPT, Seminar
п	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.	19	Chalk &Talk, PPT
III	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.	17	Chalk &Talk, Assignment
IV	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole.	19	Chalk &Talk, Group discussion
v	The Boltzmann Equation - Simplified magneto-hydrodynamic equations - Electron plasma oscillations - The Debye shielding problem - Plasma confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven waves and magnetosonic waves.	18	Seminar, PPT, Chalk &Talk

	,		ve Examinati	on - Blue l	Print						
Articulation Mapping – K Levels with Course Outcomes (COs) Internal Cos K Level Section A Section B Section C Internal Cos K Level No. of K Fither or Fither or											
memai	CUS	K Level	No. of. Questions	K - Level	Choice	Either or Choice					
CI	CO1	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)					
AI	CO2	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
CI	CO3	K3	2	K1, K2	2 (K2, K2)	2 (K3, K3)					
AII	CO4	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)					
		No. of Questions to be asked	4		4	4					
Quest		No. of Questions to be answered	4		2	2					
Patte CIA I		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	f Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	54
	K2	2	10	16	28	50	54
CIA	K3		10	16	26	46.43	46
	K4						
1	Marks	4	20	32	56	100	100
	K1	2			2	3.57	71
	K2	2	20	16	38	67.86	/1
CIA	K3			16	16	28.57	29
II	K4						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summat	ive Exam	ination – B	ue Print Artic	culation Map	pping – K Level with Co	ourse Outcomes (COs)	
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or	
S. No	No COs K - Level	K - Level	No. of	V. Land	Choice) With	Choice) With	
			Questions K – Level		K - LEVEL	K - LEVEL	
1	CO1	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)	
2	CO2	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
3	CO3	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
4	CO4	K2	2	K1, K2	2 (K2, K2)	2 (K2, K2)	
5	CO5	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)	
No. of Q	uestions to	be Asked	10		10	10	
No. of Que	No. of Questions to be answered		10		5	5	
Marks	Marks for each question		1		5	8	
Total Ma	arks for ea	ch section	10		25	40	
	(Figr	ires in parent	thesis denotes.	questions show	ıld be asked with the give	n K level)	

(Figures in parenthesis denotes, questions should be asked with the given K level)

		Distrib	ution of Mar	ks with l	K Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.57	4
K2	5	20	32	57	40.72	41
K3		30	32	62	44.28	44
K4			16	16	11.43	11
Marks	10	50	80	140	100	100
NB: Higher levels.	vel of performa	nce of the stu	idents is to be	assessed I	by attemptin	g higher level of K

Q. No.	Unit	CO	K-level		
-	LL the questi	ions	-	PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	• ALL the qu	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K3		
				OR	
13. b)	Unit - III	CO3	K3		
14. a)	Unit - IV	CO4	K2		
				OR	
14. b)	Unit - IV	CO4	K2		
15. a)	Unit - V	CO5	K3		
			I	OR	
15. b)	Unit - V	CO5	K3		

Answer	ALL the ques	tions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K2		
				OR	
16. b)	Unit - I	CO1	K2		
17. a)	Unit - II	CO2	K3		
				OR	
17. b)	Unit - II	CO2	K3		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K2		
				OR	
19. b)	Unit - IV	CO4	K2		
20. a)	Unit - V	CO5	K4		
			_,I	OR	
20. b)	Unit - V	CO5	K4		

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course NameCOMMUNICATION ELECTRONICSCourse Code23PPHSC31LPCCategorySKILL ENHANCEMENT COURSE2-2					
	Category	SKILL ENHANCEMENT COURSE	2	-	2
Course Name COMMUNICATION ELECTRONICS	Course Code	23PPHSC31	L	Р	С
	Course Name	COMMUNICATION ELECTRONICS			

COURSE OBJECTIVES:

- To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth.
- > To gain knowledge in the generation and propagation of microwaves.
- > To acquire knowledge about radar systems and its applications and also the working principle of colour television.
- > To learn the working principle of fiber optics and its use in telecommunication.
- > To understand the general theory and operation of satellite communication systems

UNIT - I ANTENNAS AND WAVE PROPAGATION

Radiation field and radiation resistance of short dipole antenna-grounded antenna-ungrounded antennaantenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky waveionosphere- Ecles and Larmor theory- Magnento ionic theory-ground wave propagation

UNIT - II MICROWAVES

Microwave generation—multi cavity Klystron-reflex klystron-magnetron travelling wave tubes (TWT) and other microwave tubes-MASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)

UNIT - III RADAR AND TELEVISION

Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers-radar receivers and indicators-pulsed systems-other radar systems- colour TV transmission and reception-colour mixing principle-colour picture tubes- Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV

UNIT - IV OPTICAL FIBER

Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibresoptical fibres as a cylindrical wave guide-wave guide equations-wave guide equations in step index fibres fibre losses and dispersion-applications

UNIT - V SATELLITE COMMUNICATION

Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites

Total Lecture Hours

06

06

06

06

06

30

BOOKS FOR STUDY:

> Handbook of Electronics by Gupta and Kumar, 2008 edition.

BOOKS FOR REFERENCES:

- Electronic communication systems George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988.
- > Taub and Schilling, principles of communication systems, second edition, Tata McGraw Hill, 1991.
- M. Kulkarani, Microwave and radar engineering, Umesh Publications, 1998.
- **R**. R. Ghulathi, Mono Chrome and colour television.
- Electronic communications Dennis Roody and Coolen, Prentice Hall of India, 4th edition, 1995.
- Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998
- > Dennis Roddy and Coolen, Electronics communications, Prentice Hall of India, 4th Edition, 1995.
- Wayne Tomasi, Advanced Electronics communication System, 4th edition, Prentice Hall of India, 1998.
- S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition, 2009.

WEB RESOURCES:

- https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/ -Digital Electronics
- https://www.polytechnichub.com/difference-analog-instruments-digitalinstruments/ - Analog and Digital Electronics
- http://nptel.iitm.ac.in/ Electronics Communication
- http://web.ewu.edu/ Communication Electronics
- http://nptel.iitm.ac.in/- Communication Systems

Nature of Course	EMPLOYABILITY				SKILL OF	IENTED)	~	ENTRE	PRENEURSHII	
Curriculum Relevance	LOCAL		REG	IONAL	,	NA	TION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentag	e of Ch	nange	50%	No Cha	nges Ma	ıde			New Course	

COURS	E OU	тсоме	S:								K LEVEI
After stu	ıdying	this cour	se, the st	udents w	vill be abl	e to:					
CO1			-				agnetic weed by the o				K1 to K5
CO2	propag		microwa	ves throu	igh wave		ation of discuss a				K1 to K5
CO3	radar consid	assify and compare the working of different radar systems- apply the principle of dar in detecting locating, tracking, and recognizing objects of various kinds at insiderable distances – discuss the importance of radar in military- elaborate and ompare the working of different picture tube									
CO4	Classif need o	eed of it-discover the use of optical fiber as wave guide									K1 to K5
CO5	orbital	Explain the importance of satellite communication in our daily life-distinguish between rbital and geostationary satellites elaborate the linking of satellites with ground station n the earth K1 to K5									
MAPPI	NG WI	TH PRO	DGRAM	OUTC	OMES:						
CO/PO	PO	1 PC	92 P	03	PO4	PO5	PO6	PO7	PO8	8 PO9	PO10
CO 1	3	3	3	3	1	2	2	3	2	1	3
CO2	3	3	6	3	1	2	2	3	2	1	3
CO3	3	3	;	3	1	2	2	3	2	1	3
CO4	3	3	;	3	1	2	2	3	2	1	3
CO5	3	3	6	3	1	2	2	3	2	1	3
	3- S1	rong				2 – ME	DIUM			1 -	LOW
CO / P	O MA	PPING:									
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	1	3	3	3	1	2	2	3	2	1	3
со	2	3	3	3	1	2	2	3	2	1	3
CO	3	3	3	3	1	2	2	3	2	1	3
CO	4	3	3	3	1	2	2	3	2	1	3
CO	5 3 3		3	1	2	2	3	2	1	3	
WEIGT	AGE										
WEIGI D PERCE GE (NTA										

COURSE CONTRIBUT ION TO POS

LESSON PLAN:									
UNIT	COMMUNICATION ELECTRONICS	HRS	PEDAGOGY						
I	Radiation field and radiation resistance of short dipole antenna- grounded antenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave-ionosphere- Ecles and Larmor theory- Magnento ionic theory- ground wave propagation	06	Chalk &Talk, PPT, Seminar						
II	Microwave generation—multi cavity Klystron-reflex klystron- magnetron travelling wave tubes (TWT) and other microwave tubes- MASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)	06	Chalk &Talk, PPT, Seminar						
III	Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers-radar receivers and indicators-pulsed systems-other radar systems- colour TV transmission and reception-colour mixing principle-colour picture tubes- Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV	06	Chalk &Talk, PPT, Seminar						
IV	Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibres-optical fibres as a cylindrical wave guide-wave guide equations-wave guide equations in step index fibres - fibre losses and dispersion-applications	06	Chalk &Talk, PPT, Seminar						
v	Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites	06	Chalk &Talk, PPT, Seminar						

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
Articulation Mapping – K Levels with Course Outcomes (COs)										
	•		Section	,						
Internal	Cos	K Level	MCQ	S						
			No. of. Questions	K - Level						
CI	CO1	K1 – K2	25	K1,K2						
AI	CO2	K1 – K2	25	K1,K2						
CI	CO3	K1 – K2	25	K1,K2						
AII	CO4	K1 – K2	25	K1,K2						
		No. of Questions to	50							
		be asked	50							
		No. of Questions to	50							
Question 2	Pattern	be answered	50							
CIAI	& II	Marks for each	1							
		question	1							
		Total Marks for	50							
		each section	50							

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

		Distribution	of Marks	with K Level CIA I &	CIA II	
	K Level Section A (Multiple Choice Questions)		Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	30	30	60	100	
	K2	20	20	40	100	
	K3					
CIA I	K4					
	Marks	50	50	100	100	
	K1	30	30	60	100	
	K2	20	20	40	100	
CIA II	К3					
	K4					
	Marks	50	50	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summativ	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
S. No	COs	K - Level	Section A (MCQs)								
5. NU	COS	K - Level	No. of Questions	K – Level							
1	CO1	K1-K2	15	K1,K2							
2	CO2	K1-K2	15	K1,K2							
3	CO3	K1-K2	15	K1,K2							
4	CO4	K1-K2	15	K1,K2							
5	CO5	K1-K2	15	K1,K2							
No. o	f Questions t	o be Asked		75							
No. of	Questions to	be answered		75							
Ma	rks for each	question	1								
Total	Marks for e	ach section	75								
(Figu	res in parent	hesis denotes, questi	ions should be asked	with the given K level)							

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %						
K1	40	40	53	100						
K2	35	35	47	100						
K3										
K4										
Marks		75	100	100						
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.										

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	SOLAR ENERGY UTILIZATION			
Course Code	23PPHNM31	L	Р	С
Category	NON-MAJOR ELECTIVE	4	-	3
COURSE OBJE	CTIVES:			1
🕨 To impart fu	indamental aspects of solar energy utilization.			
-	quate exposure to solar energy related industries			
	entrepreneurship skills			
To understa society	nd the different types of solar cells and channelizing them to the diffe	rent s	ectors	of
To develop	an industrialist mindset by utilizing renewable source of energy			
UNIT - I HEA	T TRANSFER & RADIATION ANALYSIS			12
Conduction, Conve	ction and Radiation – Solar Radiation at the earth's surface – Determined to the earth's surface – Determined at the earth's surface – Det	ermin	ation o	f sola
time – Solar energy	measuring instruments.			
UNIT - II SOL	AR COLLECTORS			12
	of conversion of solar radiation into heat flat plate collectors - Gene systems – Thermal performance evaluation of optical loss.	eral ch	aracter	istics -
UNIT - III SOL	AR HEATERS			10
Types of solar wat cooling systems.	er heater - Solar heating system – Collectors and storage tanks – S	olar p	onds –	- Solar
UNIT - IV SOL	AR ENERGY CONVERSION			13
Photo Voltaic prin	ciples – Types of solar cells – Crystalline silicon/amorphous sili	con a	nd Th	ermo -
	- process flow of silicon solar cells- different approaches on the process contings, metallization.)cess-	texturi	zation
UNIT - V NAN	OMATERIALS IN FUEL CELL APPLICATIONS			13
Use of nanostructu	ares and nanomaterials in fuel cell technology - high and low tem	iperati	ire fue	l cells
	reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of I	Nano	technol	logy in
cathode and anode hydrogen productio	on and storage.			

BOOKS FOR STUDY:

▶ G.D. Rai, Solar energy utilization, Khanna publishers, Delhi, 1987.

BOOKS FOR REFERENCES:

- Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications", McGraw-Hill, 2010.
- Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems", Academic Press, London, 2009.
- Tiwari G.N, "Solar Energy Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002.
- Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- ▶ R.H.Romer, W.H.Freeman, Energy An Introduction to Physics, 1976.
- > John A.Drife and William, Solar energy thermal processes, 1974.
- > John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources, 2005.
- John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013.
- > Duffie, J.A., Beckman, W.A. "Solar Energy Thermal Process", John Wiley and Sons, 2007.

WEB RESOURCES:

- https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4
 fb Solar Energy Conservation
- https://books.google.vg/books?id=1-XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read - Solar Energy - Principles of Thermal Collection and Storage.
- www.nptel.ac.in/courses/112105051 Energy and Dependence on External Sources
- www.freevideolectures.com Solar Energy
- http://www.e-booksdirectory.com Solar Energy e-book

Nature of Course	EMPLOYABILITY				SKII ORIEN		1	ENTREPRENEURSHIP		•
Curriculum Relevance	LOCAL		REC	GIONAL		NATI	ONAL	GLOBAL		\checkmark
Changes Made in the Course	Percentag	ge of C	hange		No Cha Mac	-		New Course		~
*Treat	20% as ea	ch unit	(20*5-	-100%) an	d calculat	e the ne	rcentage	of chang	e for the cours	`

COURS	SE OU	TCO	OME	S:									K LEVEL
After st	udying	this	cours	se, the	e stud	ents wi	ll be abl	e to:					
CO1	Gaine	d kno	owled	ge in :	fundaı	mental a	aspects o	of solar er	ergy utiliz	zation			K1 to K5
CO2	Equip	ped t	o take	e up re	elated	job by g	gaining i	ndustry e	xposure				K1 to K5
CO3	Devel	op en	trepre	eneuri	al skil	lls							K1 to K5
CO4	Skille	d to a	approa	ach th	e need	ly socie	ty with c	lifferent t	ypes of so	lar cells			K1 to K5
CO5	Gaine	d ind	ustria	list m	indset	by util	izing ren	ewable so	ource of en	nergy			K1 to K5
MAPPI	NG W	ITH	PRC)GR/		UTCO	MES:						
CO/PO	PO	1	PO	2	PO	3 P	04	PO5	PO6	PO7	PO8	8 PO9	PO10
CO1	3		2		3		3	3	2	2	2	3	2
CO2	2		3		2		2	3	3	2	3	2	2
CO3	2		3		2		2	2	2	3	3	3	2
CO4	2		2		2		3	2	3	2	3	3	2
CO5	2		2		3		2	3	3	3	3	3	3
	3- S	TRC	NG					2 – ME	DIUM			1 -	LOW
CO / P	O MA	PPI	NG:										
CO	s	PS	01	PSO	2 P	SO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
СО	1		3	2		3	3	3	2	2	2	3	2
СО	2	2	2	3		2	2	3	3	2	3	2	2
СО	3	2	2	3		2	2	2	2	3	3	3	2
СО	4	1	2	2		2	3	2	3	2	3	3	2
СО	5	2	2	2		3	2	3	3	3	3	3	3
WEIG1	AGE												
WEIGHTE D PERCENTA GE OF COURSE CONTRIBUT ION TO POS													

LESSO	ON PLAN:		
UNIT	SOLAR ENERGY UTILIZATION	HRS	PEDAGOGY
I	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.	12	Chalk &Talk, PPT, Seminar
II	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.	12	Chalk &Talk, PPT
III	Types of solar water heater - Solar heating system – Collectors and storage tanks – Solar ponds – Solar cooling systems.	10	Chalk &Talk, Assignment
IV	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process-texturization, diffusion, Antireflective coatings, metallization.	13	Chalk &Talk, Group discussion
v	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis – presentation.	13	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
	F		Section	n A	Section B	Section C Either or Choice					
Internal	Cos	K Level	MC(No. of. Questions	2s K - Level	Either or Choice						
CI	CO1	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)					
AI	CO2	K2	2	K2, K2	2 (K2, K2)	2 (K2, K2)					
CI	CO3	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
AII	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
	1	No. of Questions to be asked	4		4	4					
Quest Patte		No. of Questions to be answered	4		2	2					
CIA I		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	(Either / Total % of (Marks Marks without choice)		Consolidate of %						
	K1	2	10	16	28	50	50					
	K2	2	10	16	28	50	50					
CIA I	Marks	4	20	32	56	100	100					
	K1	2			2	3.57	-					
	K2	2			2	3.57	7					
CIA II	K3		20	16	36	64.29	64					
	K4			16	16	28.57	29					
	Marks	4	20	32	56	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or					
S. No	. No COs	K - Level	No. of	K – Level	Choice) With	Choice) With					
			Questions	K – Levei	K - LEVEL	K - LEVEL					
1	CO1	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)					
2	CO2	K2	2	K2, K2	2 (K2, K2)	2 (K2, K2)					
3	CO3	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
4	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
5	CO5	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)					
No. of Qu	uestions to	be Asked	10		10	10					
No. of Que	stions to l	be answered	10		5	5					
Marks	Marks for each question				5	8					
Total Ma	Total Marks for each section				25	40					
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)					

Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	10	16	31	22.14	22				
K2	5	10	16	31	22.14	22				
K3		20	16	36	25.72	26				
K4		10	16	26	18.57	19				
K5			16	16	11.43	11				
Marks	10	50	80	140	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K1		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Answer	ALL the qu	estions		PART – B	(5 x 5 = 25 Marks)					
11. a)	Unit - I	CO1	K1							
OR										
11. b)	Unit - I	CO1	K1							
12. a)	Unit - II	CO2	K2							
				OR						
12. b)	Unit - II	CO2	K2							
13. a)	Unit - III	CO3	K3							
				OR						
13. b)	Unit - III	CO3	K3							
14. a)	Unit - IV	CO4	K3							
				OR						
14. b)	Unit - IV	CO4	K3							
15. a)	Unit - V	CO5	K4							
	OR									
15. b)	Unit - V	CO5	K4							

Answer	ALL the ques	tions		PART – C	(5 x 8 = 40 Marks)					
16. a)	Unit - I	CO1	K1							
OR										
16. b)	Unit - I	CO1	K1							
17. a)	Unit - II	CO2	K2							
			·	OR						
17. b)	Unit - II	CO2	K2							
18. a)	Unit - III	CO3	K3							
	I.			OR						
18. b)	Unit - III	CO3	K3							
19. a)	Unit - IV	CO4	K4							
	I.			OR						
19. b)	Unit - IV	CO4	K4							
20. a)	Unit - V	CO5	K5							
	1			OR						
20. b)	Unit - V	CO5	K5							

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	NUCLEAR AND PARTICLE PHYSICS							
Course Code	23PPHCC41	L	Р	С				
Category	CORE	6	_	5				

COURSE OBJECTIVES:

- > Introduces students to the different models of the nucleus in a chronological order
- Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles
- > Provides students with details of nuclear decay with relevant theories
- > Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNIT - I NUCLEAR MODELS

Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.

UNIT - II NUCLEAR FORCES

Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.

UNIT - III NUCLEAR REACTIONS

Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.

UNIT - IV NUCLEAR DECAY

Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity– Parity violation – Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.

UNIT - V ELEMENTARY PARTICLES

Classification of elementary particles – Fundamental interactions (Gravitational, electromagnetic, strong, weak) – Conservation laws – Invariance under charge, parity, C.P., time and CPT –Electron and positron – Proton and anti- proton – Neutron and anti- neutron – Neutrino and antineutrino Photon and Gluon – Meson: muons, Tauons, Pions, K- meson, η - mesons, Hyperons: Λ -, Ξ , Σ , Ω - hyperons. Quarks.

Total Lecture Hours90

17

18

19

19

17

BOOKS FOR STUDY:

- S. B. Patel Nuclear Physics An introduction New Age International Pvt Ltd Publishers, 2011.
- > D. C. Tayal Nuclear Physics Himalaya Publishing House, 2011.

BOOKS FOR REFERENCES:

- M.L.Pandya, R.P.S.Yadav and Amiya Dash, Elements of Nuclear Physics, Eighth Edition, Kedarnath Ram nath, Meerut, 2018.
- K. S. Krane, Introductory Nuclear Physics, John Wiley & Sons, 2008.
- R. Roy and P. Nigam, Nuclear Physics, New Age Publishers, 1996.
- S. Glasstone, Source Book of Atomic Energy, Van Nostrand Reinhold Inc., U.S., 3rd Revised edition, 1968.
- L. J. Tassie, The Physics of elementary particles, Prentice Hall Press, 1973.
- H. A. Enge, Introduction to Nuclear Physics, Addison Wesley, Publishing Company. Inc. Reading. New York, 1974.
- ▶ Kaplan, Nuclear Physics, 2nd Ed., Narosa, 2002.
- L. C. Bernard, Concepts of Nuclear Physics, McGraw Hill Education (India) Private Limited; 1st edition, 2001.
- > B.L. Cohen, Concepts of Nuclear Physics, TMCH, New Delhi, 1971.

WEB RESOURCES:

- http://bubl.ac.uk/link/n/nuclearphysics.html Nuclear Physics
- http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www. scholarpedia.org/article/Nuclear_Forces - Nuclear Forces
- https://www.nuclear-power.net/nuclear-power/nuclear-reactions/ Nuclear Power and Reactors
- http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html
 Nuclear Reactor Models
- https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioac tivedecay.html - Radioactive Decay

Nature of Course	EMPLOYABILITY			SF	SKILL ORIENTED		1	ENTREPRENEURSHIP		2		
Curriculum Relevance	LOCAL		REC	HONAL	<u>,</u>		NATI	NATIONAL		GLOBAL		✓
Changes Made in the Course	Percentag	e of Ch	ange	60%	N	o Change	s Made		New Course			
*Treat	*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.											

COURS	SE OU	тсоме	S:								K LEVEL
After st	udying	this cour	se, the st	tudents v	vill be abl	e to:					
CO1	Gain k conver	e	e about t	he conce	pts of hel	icity, par	ity, angul	ar correla	ation and	internal	K1 to K5
CO2			-		ndamental ns and the	-				nucleus,	K1 to K5
CO3					to explain mer single		-	henomen	a and the	concept	K1 to K5
CO4	Analyze data from nuclear scattering experiments to identify different properties of nuclear force. Summarize and identify allowed and forbidden nuclear reactions based on conservat										K1 to K5
CO5	laws o	f the elem	entary pa	articles.		dden nucl	ear reacti	ons based	l on cons	ervation	K1 to K5
MAPPI	NG W	ITH PRO	OGRAM	OUTC	OMES:						
CO/PO	РО	1 PC)2 P	03	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	8	2	2	2	2	2	2	2	2
CO2	3	3	3	2	2	1	2	1	2	2	2
CO3	3	3	3	1	2	1	2	1	1	2	2
CO4	3	Э	3	2	3	2	3	2	2	3	3
CO 5	3	3	3	2	3	2	3	2	3	3	3
	3- S'	FRONG				2 – ME	DIUM			1 -	LOW
CO / F	O MA	PPING :							1		
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	1	3	3	2	2	2	2	2	2	2	2
CO	2	3	3	2	2	1	2	1	2	2	2
CO	3	3	3	1	2	1	2	1	1	2	2
СО	4	3	3	2	3	2	3	2	2	3	3
CO	5	3	3	2	3	2	3	2	3	3	3
WEIG7	AGE										
D PERCI GE COUI CONTR ION	WEIGHTE D PERCENTA GE OF COURSE CONTRIBUT ION TO POS										

LESSON PLAN:									
UNIT	NUCLEAR AND PARTICLE PHYSICS	HRS	PEDAGOGY						
I	Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.	17	Chalk &Talk, PPT, Seminar						
п	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.	19	Chalk &Talk, PPT						
III	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.	17	Chalk &Talk, Assignment						
IV	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.	19	Chalk &Talk, Group discussion						
v	Classification of elementary particles – Fundamental interactions (Gravitational, electromagnetic, strong, weak) – Conservation laws – Invariance under charge, parity, C.P., time and CPT – Electron and positron – Proton and anti- proton – Neutron and anti- neutron – Neutrino and antineutrino Photon and Gluon – Meson: muons, Tauons, Pions, K- meson, η - mesons, Hyperons : Λ -, Ξ , Σ , Ω -hyperons. Quarks.	18	Seminar, PPT, Chalk &Talk						

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	K Level	Section MC(Section B Either or	Section C					
Interna	COS	K Levei	No. of. Questions	K - Level	Choice	Either or Choice					
CI	CO1	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)					
AI	CO2	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
CI	CO3	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
AII	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
		No. of Questions to be asked	4		4	4					
Quest		No. of Questions to be answered	4		2	2					
Pattern CIA I & II		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		D	istribution of	Marks with	K Level	CIA I & CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	8
	K2	2			2	3.57	ð
	K3		10	16	26	46.43	46
CIA	K4		10		10	17.86	18
Ι	K5			16	16	28.57	28
	Marks	4	20	32	56	100	100
	K1	2			2	3.57	8
	K2	2			2	3.57	o
CIA	K3		20	16	36	64.29	64
II	K4			16	16	28.57	28
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – Bl	ue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	S. No Cos	K - Level	No. of	K – Level	or Choice) With	Choice) With
		Level	Questions	K – Level K - LEVEL		K - LEVEL
1	CO1	K5	2	(K1, K2)	2 (K4, K4)	2 (K5, K5)
2	CO2	K3	2	(K1, K2)	2 (K3, K3)	2 (K3, K3)
3	CO3	K3	2	(K1, K2)	2 (K3, K3)	2 (K3, K3)
4	CO4	K4	2	(K1, K2)	2 (K3, K3)	2 (K4, K4)
5	CO5	K5	2	(K1, K2)	2 (K5, K5)	2 (K5, K5)
No. of Qu	estions to	be Asked	10		10	10
	No. of Questions to be answered		10		5	5
Marks	Marks for each question		1		5	8
Total Ma	Total Marks for each section		10		25	40
	(Figuros	in noronth	osis donatas a	upostions sho	uld he asked with the a	ivon K lovol)

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5			5	3.57	4	
K2	5			5	3.57	4	
K3		30	32	62	44.29	44	
K4		10	16	26	18.57	18	
K5		10	32	42	30	30	
Marks	10	50	80	140	100	100	
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Q. No.	Unit	СО	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
7.	Unit - IV	CO4	K1		
				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
9.	Unit - V	CO5	K1		
				a)	b)
				c)	d)
10.	Unit - V	CO5	K2		
				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer ALL the questions				PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K4		
				OR	
11. b)	Unit - I	CO1	K4		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3			
	· · · · ·			OR	
13. b)	Unit - III	CO3	K3		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K5		
				OR	
15. b)	Unit - V	CO5	K5		

Answer ALL the questions				PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K5		
				OR	
16. b)	Unit - I	CO1	K5		
17. a)	Unit - II	CO2	K3		
				OR	
17. b)	Unit - II	CO2	K3		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K5		
				OR	
20. b)	Unit - V	CO5	K5		

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	SPECTROSCOPY						
Course Code	23PPHCC42	L	Р	С			
Category	CORE	6	-	5			
COURSE OBJECTIVES:							

- > To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- > Understand this important analytical tool

UNIT - I MICROWAVE SPECTROSCOPY

Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant - Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules - Instrumentation techniques – block diagram - Information Derived from Rotational Spectra- Stark effect- Problems.

UNIT - II INFRA-RED SPECTROSCOPY

Vibrations of simple harmonic oscillator – Zero-point energy- Anharmonic oscillator – Fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H_2O and CO_2 -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra- remote analysis of atmospheric gases like N2O using FTIR by National Remote Sensing Centre (NRSC), India– other simple applications.

UNIT - III RAMAN SPECTROSCOPY

Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H_2O and CO_2 .Mutual exclusion principle-determination of N_2O structure -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- SERS.

19

17

17

absorptivity - Transmittance and Absorbance - Color in organic compounds- Absorption by organic Molecule -- Chromophores-- Effect of conjugation on chromophores-- Choice of Solvent and Solvent effect --Absorption by inorganic systems - Instrumentation - Double beam UV-Spectrophotometer -Simple applications.

Origin of UV spectra - Laws of absorption - Lambert Bouguer law - Lambert Beer law - Molar

Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession-Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei -Indirect Spin -Spin Interaction - interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy - NMR in Chemical industries- MRI Scan Electron Spin Resonance: Basic principle -Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom) - ESR Spectra of Free radicals -g-factors - Instrumentation - Medical applications of

Total Lecture Hours

BOOKS FOR STUDY:

ESR.

- > C. N. Banwell and E M McCash, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw-Hill, New Delhi, 1994.
- > G. Aruldhas, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi, 1994

BOOKS FOR REFERENCES:

UNIT - IV RESONANCE SPECTROSCOPY

UNIT - V UV SPECTROSCOPY

- > D.N. Satyanarayana, Vibrational Spectroscopy and Applications, New Age International Publication, 2001.
- **B.K.** Sharma, Spectroscopy, Goel Publishing House Meerut, 2015.
- ▶ Kalsi.P.S, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers, 2016.
- > J. L. McHale, Molecular Spectroscopy, Pearson Education India, New Delhi, 2008.
- > J M Hollas, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge, 2002.
- B. P. Straughan and S. Walker, Spectroscopy Vol. I, Chapman and Hall, New York, 1976.
- K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi, 1989.
- > W. Demtroder, Laser Spectroscopy: Basic concepts and Instrumentation, Springer Link.

WEB RESOURCES:

- https://www.youtube.com/watch?v=0iQhirTf2PI Remote Sensing
- https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5 -Introduction to Molecular Spectroscopy
- https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee -Infrared Spectroscopy
- https://onlinecourses.nptel.ac.in/noc20_cy08/preview Molecular Spectroscopy
- https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopyintroduction-XCWRu - Spectroscopy

90

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		√	ENTREPRENEURSHIP				
Curriculum Relevance	LOCAL		REGIONAL				NATIONAL			GLOBAL	\checkmark
Changes Made in the Course	Percentage of Change		70%	N	o Changes	s Made			New Course		

*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	E OUTO	OME	S:								K LEVEL
After stu	dying thi	is cours	se, the stu	udents wi	ill be abl	e to:					
CO 1	and inte	erpret tl		viour. At	_	-	y, view m eir nature				K1 to K5
CO2	backgro	ound of mations	IR spec	troscopy.	Able to	correlate	copic inst mathema pret vibra	atical pro	cess of]	Fourier	K1 to K5
CO3				compositic tant analyt		lecules ar	nd use th	neir know	ledge of	Raman	K1 to K5
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances									ion of a	K1 to K5
CO5	Learn the electronic transitions caused by absorption of radiation in the UV/Vis region of the electromagnetic spectrum and be able to analyze a simple UV spectrum.								n of the	K1 to K5	
MAPPII	NG WIT	H PRC	OGRAM	OUTCO	DMES:						
CO/PO	PO1	PO	P	03 F	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3		3	2	3	3	3	3	3	2
CO2	2	2		2	3	3	3	3	3	3	2
CO3	3	2		3	3	3	3	3	3	3	3
CO4	3	2		3	3	3	3	3	3	3	3
CO5	3	3		3	3	3	3	3	3	3	3
	3- STR	ONG				2 – ME	DIUM			1 - I	.OW
CO / P	O MAPP	ING:									
COS	S P	SO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
СО	1	3	3	3	2	3	3	3	3	3	2
CO	2	2	2	2	3	3	3	3	3	3	2
CO	3	3	2	3	3	3	3	3	3	3	3
CO	4	3	2	3	3	3	3	3	3	3	3
CO	5	3	3	3	3	3	3	3	3	3	3

WEIGTAGE					
WEIGHTE D PERCENTA GE OF COURSE CONTRIBUT ION TO POS					

LESSON PLAN:

UNIT	SPECTROSCOPY	HRS	PEDAGOGY
I	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant - Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules - Instrumentation techniques – block diagram -Information Derived from Rotational Spectra- Stark effect-Problems.	17	Chalk &Talk, PPT, Seminar
п	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H ₂ O and CO ₂ -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra– remote analysis of atmospheric gases like N2O using FTIR by National Remote Sensing Centre (NRSC), India– other simple applications.	19	Chalk &Talk, PPT
III	Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H_2O and CO_2 .Mutual exclusion principle- determination of N_2O structure -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- SERS	17	Chalk &Talk, Assignment
IV	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction – interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy – NMR in Chemical industries- MRI Scan Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR.	19	Chalk &Talk, Group discussion
V	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance -	18	Seminar, PPT, Chalk

Color in organic compounds- Absorption by organic Molecule -	&Talk
Chromophores -Effect of conjugation on chromophores - Choice of	
Solvent and Solvent effect - Absorption by inorganic systems -	
Instrumentation - double beam UV-Spectrophotometer -Simple	
applications.	

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
			on Mapping – K Levels with Course Section A MCQs			Signal Section C				
Internal	Cos	K Level	No. of. Questions	K - Level	Either or Choice	Either or Choice				
CI	CO1	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
AI	CO2	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
CI	CO3	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)				
AII	CO4	K4	2	K2, K2	2 (K3, K3)	2 (K4, K4)				
		No. of Questions to be asked	4		4	4				
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2				
		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

		Dis	tribution of	Marks with	K Level	CIA I & CIA I	Ι
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.57	7
	K2	2			2	3.57	1
CIA	K3		20		20	35.71	36
I	K4			32	32	57.14	57
1	Marks	4	20	32	56	100	100
	K1	2	10	16	28	50	50
	K2	2			2	3.57	21
CIA	K3		10		10	17.86	41
II	K4			16	16	28.57	29
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summat	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or				
S. No	COs	K - Level	No. of K – Level		Choice) With	Choice) With				
			Questions		K - LEVEL	K - LEVEL				
1	CO1	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
2	CO2	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
3	CO3	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)				
4	CO4	K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)				
5	CO5	K3	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
No. of Q	uestions to	be Asked	10		10	10				
No. of Que	No. of Questions to be answered		10		5	5				
Marks	Marks for each question		1		5	8				
Total Ma	arks for ea	ch section	10		25	40				
	(Fig	tros in noron	thosis donotos	questions show	uld be acked with the give	n K lovol)				

(Figures in parenthesis denotes, questions should be asked with the given K level)

		Distrib	ution of Mar	ks with I	K Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	6	10	16	32	22.86	23
K2	4	10		14	10	10
K3		30	16	46	32.86	33
K4			32	32	22.86	23
K5			16	16	11.43	11
Marks	10	50	80	140	100	100
NB: Higher lev	vel of performa	nce of the stu	idents is to be	assessed l	by attempting	g higher level of K

levels.

Q. No.	Unit	СО	K-level		
Answer A	LL the questi	ions	P	PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
9.	Unit - V	CO5	K1		
				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	• ALL the qu	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K3		
				OR	
11. b)	Unit - I	CO1	K3		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K1		
				OR	
13. b)	Unit - III	CO3	K1		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K2		
		•	<u> </u>	OR	
15. b)	Unit - V	CO5	K2		

Answer A	ALL the ques	tions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K4		
				OR	
16. b)	Unit - I	CO1	K4		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K1		
				OR	
18. b)	Unit - III	CO3	K1		
19. a)	Unit - IV	CO4	K5		
				OR	
19. b)	Unit - IV	CO4	K5		
20. a)	Unit - V	CO5	K3		
			· · ·	OR	
20. b)	Unit - V	CO5	K3		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PRACTICAL - IV			
Course Code	23PPHCP41	L	Р	С
Category	CORE	-	6	4
COURSE OBJE	CTIVES			

- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN
- > To equip the computational skill using various mathematical tools.
- > To apply the software tools to explore the concepts of physical science.
- > To approach the real time activities using physics and mathematical formulations.

COURSE DETAILS

(Any Twelve Experiments)

- 40. Lagrange interpolation with Algorithm, Flow chart and output.
- 41. Newton forward interpolation with Algorithm, Flow chart and output.
- 42. Newton backward interpolation with Algorithm, Flow chart and output.
- 43. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 44. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 45. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 46. Numerical solution of ordinary first-order differential equations by the Runge– Kutta method with Algorithm, Flow chart and output.
- 47. Finding Roots of a Polynomial Bisection Method
- 48. Finding Roots of a Polynomial Newton Raphson Method
- 49. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 50. Solution of Ordinary Differential Equation by Euler method
- 51. Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 52. Trapezoidal rule
- 53. Simpson's 1/3 rule
- 54. Gaussian quadrature method (2 point and 3 point formula)
- 55. Find the thickness of the mica sheet using edser butler fringes
- 56. Pulse width modulation using IC555
- 57. Amplitude modulation using transistor
- 58. Analog computation using OPAMPs
- 59. Determination of dielectric constant of liquid (kerocine) using the passive circuit

BOOKS FOR STUDY:

- ▶ V. Rajaraman, Computer Oriented Numerical Methods, 3rd Ed. (Prentice-Hall, New Delhi, 1993.
- > V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI, New Delhi.

BOOKS FOR REFERENCES:

- > John Mathews, Kurtis Fink, Numerical methods using Matlab, Prentice Hall, New Jersey, 2006.
- M.K. Venkataraman, Numerical methods in Science and Engineering, National Publishing Co. Madras, 1996.
- M.K. Jain, S.R. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, 3rd Ed. New Age International, New Delhi, 1995.
- > S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New Delhi.
- S.D. Conte and C. de Boor, Elementary Numerical Analysis, An Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill), 1981.
- B.F. Gerald and P.O. Wheately, Applied Numerical Analysis, 5th Edition, Addison Wesley, Reading, MA, 1994.
- **B**. Carnahan, H.A. Luther and J.O. Wikes, Applied Numerical Methods (Wiley, New York, 1969.
- S.S. Kuo, Numerical Methods and Computers, Addison Wesley, London, 1996.

Nature of Course	EMPLC	YABII	LITY	~	Sŀ	KILL ORIE	ENTED	\checkmark	ENTRE	PRENEURSHIP	~
Curriculum Relevance	LOCAL		REC	GIONAL	,		NATI	ONAL		GLOBAL	\checkmark
Changes Made in the Course	Percentage	e of Ch	nange	75%	N	lo Change	s Made		New Course		

COURS	E OUTCOMES:	K LEVEL
After stu	dying this course, the students will be able to:	
CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1 to K5
CO2	Use various numerical methods in describing/solving physics problems.	K1 to K5
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific problems.	K1 to K5
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K1 to K5

CO5	To a	pply vario	ous math	ematical	entities, fa	cilitate to	visualise	any comp	licate tas	sks.	K1 to K5
MAPPIN	G WI	TH PRO	GRAM	I OUTC	OMES:						
CO/PO	РО	01 PC	02	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10
CO1	2	2	2	2	3	3	2	2	2	3	3
CO2	2	2	2	3	3	3	2	2	3	3	3
CO3	3		3	3	3	3	3	3	3	3	3
CO4	3			3	3	3	3	2	3	3	3
CO5	3		3	3	3	3	3	3	3	3	3
		RONG				2 – MEI	DIUM			1 - L	OW
CO / PO	MAI	PPING:									
COS		PSO1	PSO2	PSO	3 PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO 1		2	2	2	3	3	2	2	2	3	3
CO 2	2	2	2	3	3	3	2	2	3	3	3
CO 3	6	3	3	3	3	3	3	3	3	3	3
CO 4	-	3	2	3	3	3	3	2	3	3	3
CO 5	5	3	3	3	3	3	3	3	3	3	3
WEIGTA	GE										
WEIGHT PERCEN GE O COURS CONTRIE ON TO F	NTA F SE BUTI										
LESSON	PLA	N:									
EXPER IMENT S				PRA	CTICAL	- IV			HR	S PEI	AGOGY
1 to 4	Lagrange interpolation with Algorithm, Flow chart and output. Newton forward interpolation with Algorithm, Flow chart and output. Numerical integration by the trapezoidal rule with Algorithm Flow						30		k &Talk, PPT		
5 to 8	Num Eule Num Rung Find	r method r method herical sol ge- Kutta the thicl ing Roots	with Alg ution of method kness of of a Pol	gorithm, ordinary with Alg f the mi lynomial	 / first-order Flow chart / first-order orithm, Flo ca sheet u - Bisection - Newton F 	and output differen w chart a sing edse Method.	ut. tial equati nd output. er butler	ons by th	e 30		k &Talk, PPT

Academic Council Meeting Held On 17.05.2024

9 to 12	Pulse width modulation using IC555 Amplitude modulation using transistor Analog computation using OPAMPs Determination of dielectric constant of liquid (kerocine) using the passive circuit	30	Chalk & Talk, PPT
---------	--	----	----------------------

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark **Total CIA - 25 mark**

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
InternalCosK LevelNo. of. QuestionsK - Level							
CIA-I	CO1 – CO5	K1 – K5	1 Question for Each Student	K1 – K5			
	<u>.</u>	No. of Questions to be asked	1 Question for Each Student				
Question Pa	attern	No. of Questions to be answered					
CIA - I		Marks for each question	30				
		Total Marks for each section	30				

			Distribution of Marks with COs &K Level for Correction of CIA I			
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS	
	CO1	K1 to K5	Aim and apparatus	K1	2.0	
	CO2	K1 to K5	Formula and Tabular Column	К3	5.0	
	CO3	K1 to K5	Understanding and Observation	K5	10.0	
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0	
	CO5	K1 to K5	Interpretation of result	K2	3.0	
	Total Marks				30	

	Distribution of Marks with K Level CIA I							
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	Aim and apparatus	2	6.67				
	K3	Formula and Tabular Column	5	16.67	-			
	K5	Understanding and Observation	10	33.33	23.34			
CIA I	K4	Calculation and Graph	10	33.33	56.67			
	K2	Interpretation of result	3	10.00	90.00			
	Marks		30	100	100			

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences
- K5 Evaluating, interpreting and concluding the results with accurate measurements.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)						
COs	K - Level	K – Level				
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5			
No. of Question	ons to be Asked	1 Question for Each Student				
No. of Question	ns to be answered	1				
Marks for each question		75				
Total Marks f	for each section	75				

Distri	Distribution of Marks with COs &K Level for Correction of the Summative								
	Exam								
COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS					
CO1	K1 to K5	Aim and apparatus	K1	10					
CO2	K1 to K5	Formula and Tabular Column	K3	15					
CO3	K1 to K5	Understanding and Observation	K5	30					
CO4	K1 to K5	Calculation and Graph	K4	15					
CO5	K1 to K5	Interpretation of result	K2	5					
Total Marks				75					

Distribution of Marks with K Level								
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %				
K1	Aim and apparatus	10	13.33	13				
K3	Formula and Tabular Column	15	20	20				
K5	Understanding and Observation	30	40	40				
K4	Calculation and Graph	15	20	20				
K2	Interpretation of result	5	6.67	7				
Marks		75	100	100				

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PROJECT AND VIVA VOCE			
Course Code	23PPHPRJ1	L	Р	С
Category	CORE	-	6	4

COURSE OBJECTIVES:

- > To develop strong student competencies in Physics and its applications in a technology-rich, interactive environment.
- > To enable the skills in research, analysis and interpretation of new findings.
- > To prepare the students to successfully complete the projects offered a wide range of experience to meet the industrial needs.
- To apply knowledge and skill in the design and development of Instruments to cater to the needs of society.
- > To become professionally trained in the area of electronics, optical Communications, nonlinear circuits, materials characterization and lasers etc.

COURSE DETAIL

METHOD OF EVALUATION FOR PROJECT:

Continuous	End Semester	Examination		
Internal Assessment	Project Evaluation	Viva Voce	Total	Credit
25	50	25	100	4

- ✤ Internal examiners are the respective supervisors.
- Viva –voce examination to be evaluated by the external examiner.
- The report of the project must be in the prescribed form. It should be typed neatly in MS word with the equation editor or using Latex. The font size of the letter should be 12 or points with 1.5 space.
- The format of the project should have the following components.

First page should contain Title of the project report Name of the candidate Register number Name of the supervisor

i tune of the supervisor

Address of the institution

Month and year of submission

- 1. Contents
- 2. Declaration by candidate
- 3. Certificate by supervisor
- 4. Acknowledgement
- 5. Preface
- 6. Chapter-1-Preliminaries
- 7. Other chapters
- 8. References

The number of pages in the project may be 40 to 50

Each page should contain at least 18 lines

Two copies of the project report with binding should be submitted.

COURSE OU	JTCOMES	:				K LEVEL					
After studying	After studying this course, the students will be able to:										
CO1				behind the s techniques.	instrumentatio	on K1 to K5					
C02	Get hand techniques different r										
CO3	 Organize and pursue a scientific and industrial research project and work effectively as an individual in multidisciplinary settings 										
CO4	Derive th of basic	ge K1 to K5									
C05	Have a methodolo findings	1			search method cate the researc	,					
MAPPING W	ITH PRO	GRAM OU	TCOMES	5:							
CO/PO	PO1	PO2	PO3	PO4	PO5	P06					
CO1	3	2	1	1	2	2					
CO2	2	3	2	2	2	2					
CO3	2	1	2	1	2	1					
CO4	2	2	2	3	3	3					
CO5	1	2	2	2	1	2					
3- STRON	IG		2 – MI	EDIUM		1 - LOW					

	Distribution of Marks with COs &K Level for Correction of CIA								
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS				
	CO1	K1 to K5	Preliminary Research Problem - Introduction	K1	4.0				
	CO2	K1 to K5	Literature Survey	K2	5.0				
CIA	CO3	K1 to K5	Understanding and Observation of the Data	K3	8.0				
CIA	CO4	K1 to K5	Results and Discussion	K4	4.0				
	CO5	K1 to K5	Interpretation of result and Conclusion	K5	4.0				
	Total				25				
	Marks				23				

	Distribution of Marks with K Level CIA											
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %							
	K1	Preliminary Research Problem - Introduction	4	16.0	-							
	K2	Literature Survey	5	20.0								
	K3	Understanding and Observation of the Data	8	32.0	36.0							
CIA	K4	Results and Discussion	4	16.0	68.0							
	K5	Interpretation of result and Conclusion	4	16.0	84.0							
	Marks		25	100	100							

K1- Remembering and recalling facts with specific answers

- **K2** Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences
- K5 Evaluating, interpreting and concluding the results with accurate measurements.

Distri	Distribution of Marks with COs &K Level for Correction of the Summative							
	Exam							
COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS				
CO1	K1 to K5	Preliminary Research Problem - Introduction	K1	10				
CO2	K1 to K5	Literature Survey and scope of the problem	K2	10				
CO3	K1 to K5	Understanding and Observation of the Data	K3	20				
CO4	K1 to K5	Results and Discussion	K4	15				
CO5	K1 to K5	Viva Voce	K5	20				
Total Marks				75				

	Distribution of Marks with K Level										
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %							
K1	Preliminary Research Problem - Introduction	10	13.33	13.3							
K2	Literature Survey	10	13.33	13.3							
K3	Understanding and Observation of the Data	20	26.67	26.7							
K4	Results and Discussion	15	20.0	20							
K5	Viva Voce	20	26.67	26.7							
Marks		75	100	100							

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Code23PPHEC41LP	
	C
Category ELECTIVE 4 -	3

COURSE OBJECTIVES:

- > To make students to understand different numerical approaches to solve a problem.
- > To understand the basics of programming

UNIT - I SOLUTIONS OF EQUATIONS

Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.

UNIT - II LINEAR SYSTEM OF EQUATIONS

Simultaneous linear equations and their matrix representation– Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.

UNIT - III INTERPOLATION AND CURVE FITTING

Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.

UNIT - IV OFDIFFERENTIAL EQUATIONS

Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.

UNIT - V PROGRAMMING WITH C

Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and nonexecutable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.

Total Lecture Hours

11

12

12

60

13

12

BOOKS FOR STUDY:

- ▶ V. Rajaraman, Computer Oriented Numerical Methods, 3rd Edition. PHI, New Delhi, 1993.
- > V.Rajaraman, Programming in FORTRAN / Programming in C, PHI, New Delhi

BOOKS FOR REFERENCES:

- M. K. Jain, S. R. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 3rd Edition, New Age Intl., New Delhi, 1995.
- S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi
- ▶ F. Scheid, Numerical Analysis, 2nd Edition, Schaum's series, McGraw Hill, New York, 1998.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd Edition, Cambridge Univ. Press, 1992.
- S. D. Conte and C. de Boor, Elementary Numerical analysis-an algorithmic approach, 3rd Edition, McGraw Hill, 1981.
- B. F. Gerald, and P. O. Wheatley, Applied Numerical analysis, 5th Edition, Addison-Wesley, MA, 1994.
- B. Carnagan, H. A. Luther and J. O. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.
- S. S. Kuo, Numerical Methods and Computers, Addison-Wesley, 1969.

WEB RESOURCES:

- https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-Methods-by-V-RajaRaman - Computer-Oriented-Numerical-Methods
- https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespap ers.aspx?referenceid=1682874 - Applied Numerical Methods
- https://nptel.ac.in/course/122106033/ Computer Programming
- https://nptel.ac.in/course/103106074/ Numerical Methods
- https://onlinecourses.nptel.ac.in/noc20_ma33/preview Computer-Oriented-Numerical-Methods

Nature of Course	EMPLOYABILITY		~	SF	KILL ORIE	INTED	~	ENTRE	PRENEURSHIP)	✓	
Curriculum Relevance	LOCAL	L REGIONAL NATIONAL GLO				GLOBAL		\checkmark				
Changes Made in the Course	Percentage	e of Ch	ange	60%	N	o Changes	s Made		New Course			
*Treat	20% as ead	ch unit	t (20*5 =	100%)	and	d calculat	e the pe	rcentage	of chang	ge for the cours	se.	

COURS	E OU	тсоме	s:								K LEVEL
After stu	ıdying	this cour	se, the st	udents v	vill be ab	le to:					
CO1	Unde		e basic c	concept	involved	analyze t in root fi itations.			-		K1 to K5
CO2				-		nd their ltaneous li		-	ion Disti	nguish	K1 to K5
CO3	Understand, how interpolation will be used in various realms of physics and Apply to some simple problems Analyze the newton forward and backward interpolation									oply to	K1 to K5
CO4						al differen erical integ		d integra	tion. Ass	ess the	K1 to K5
CO 5	Unde	erstand the	e basics o	f C-prog	ramming	and condi	tional stat	ements.			K1 to K5
MAPPI	NG W	ITH PRO	OGRAM	OUTC	OMES:						
CO/PO	РО	1 PC)2 P	03	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	2	2	3	1	1	2	3	2	2	3
CO2	3			3	1	1	2	3	2	2	3
CO3	3			3	1	1	2	3	2	2	3
CO4	3			3	1	1	2	3	2	2	3
CO 5	3		2	3	1	1	2	3	2	2	3
		FRONG				2 – ME	DIUM			1 -	LOW
CO / P	O MA	PPING:									
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
со	1	3	2	3	1	1	2	3	2	2	3
СО	2	3	2	3	1	1	2	3	2	2	3
СО	3	3	2	3	1	1	2	3	2	2	3
СО	4	3	2	3	1	1	2	3	2	2	3
СО	5	3	2	3	1	1	2	3	2	2	3
WEIGT	AGE										
WEIGH D PERCE GE C COUR CONTR ION 7 POS	OF SE IBUT TO										

LESSO	ON PLAN:		
UNIT	NUMERICAL METHODS AND COMPUTER PROGRAMMING	HRS	PEDAGOGY
I	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.	12	Chalk &Talk, PPT, Seminar
II	Simultaneous linear equations and their matrix representation– Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.	13	Chalk &Talk, PPT
III	Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.	11	Chalk &Talk, Assignment
IV	Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.	12	Chalk &Talk, Group discussion
v	Flow-charts – Integer and floating point arithmetic expressions – Built- in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.	12	Seminar, PPT, Chalk &Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal Cos		K Level	Section MC(Section B Either or	Section C					
		K Levei	No. of. Questions	K - Level	Choice	Either or Choice					
CI	CO1	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)					
AI	CO2	K2	2	K2, K2	2 (K2, K2)	2 (K2, K2)					
CI	CO3	K3	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
AII	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
		No. of Questions to be asked	4		4	4					
Quest		No. of Questions to be answered	4		2	2					
Pattern CIA I & II		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

	Distribution of Marks with K Level CIA I & CIA II										
	K (Multiple Level Choice Questions)		Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2	10	16	28	50	50				
	K2	2	10	16	28	50	50				
CIA I	Marks	4	20	32	56	100	100				
	K1	2			2	3.57	-				
	K2	2			2	3.57	7				
CIA	K3		20	16	36	64.29	64				
II	K4			16	16	28.57	29				
	Marks	4	20	32	56	100	100				

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or			
S. No	COs	K - Level	No. of Questions	K – Level	Choice) With K - LEVEL	Choice) With K - LEVEL			
1	CO1	K1	2	K1, K1	2 (K1, K1)	2 (K1, K1)			
2	CO2	K2	2	K2, K2	2 (K2, K2)	2 (K2, K2)			
3	CO3	K3 2 K1, K2		K1, K2	2 (K3, K3)	2 (K3, K3)			
4	CO4	K4	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
5	CO5	K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)			
No. of Qu	uestions to	be Asked	10		10	10			
No. of Que	estions to b	be answered	10		5	5			
Marks	Marks for each question				5	8			
Total Ma	Total Marks for each section				25	40			
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)			

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	10	16	31	22.14	22				
K2	5	10	16	31	22.14	22				
K3		20	16	36	25.72	26				
K4		10	16	26	18.57	19				
K5			16	16	11.43	11				
Marks	10	50	80	140	100	100				
NB: Higher le levels.	NB: Higher level of performance of the students is to be assessed by attempting higher level of K									

Q. No.	Unit	CO	K-level		
	ALL the ques	stions	Р	ART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K1		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
3.				a)	b)
				c)	d)
4.	Unit - II	CO2	K2		
				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	• ALL the qu	estions		PART – B	(5 x 5 = 25 Marks)						
11. a)	Unit - I	CO1	K1								
	OR										
11. b)	Unit - I	CO1	K1								
12. a)	Unit - II	CO2	K2								
	OR										
12. b)	Unit - II	CO2	K2								
13. a)	Unit - III	CO3	K3								
				OR							
13. b)	Unit - III	CO3	K3								
14. a)	Unit - IV	CO4	K3								
				OR							
14. b)	Unit - IV	CO4	K3								
15. a)	Unit - V	CO5	K4								
				OR							
15. b)	Unit - V	CO5	K4								

Answer .	ALL the ques	tions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K1		
				OR	
16. b)	Unit - I	CO1	K1		
17. a)	Unit - II	CO2	K2		
				OR	
17. b)	Unit - II	CO2	K2		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K5		
				OR	
20. b)	Unit - V	CO5	K5		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS FOR NET/SET							
Course Code	23PPHSC41	L	Р	С				
Category	SKILL ENHANCEMENT COURSE	2	-	2				
COURSE OBJECTIVES:								

- > To prepare the prospective teacher educator for appearing NET/SET examination.
- > To enhance the eligibility for the award of Junior Research Fellowships (JRF).

UNIT - I CLASSICAL MECHANICS

Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Rigid body dynamics moment of inertia tensor. Non-inertial frames and pseudo forces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion and its applications - Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special theory of relativity Lorentz transformations, relativistic kinematics and mass–energy equivalence. Poisson brackets and canonical transformations. Symmetry, invariance and Noether's theorem. Hamilton-Jacobi theory.

UNIT - II ELECTROMAGNETIC THEORY

Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.

UNIT - III CONDENSED MATTER PHYSICS

Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattices specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations.

06

06

06

UNIT - IV NUCLEAR AND PARTICLE PHYSICS

Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semi empirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single particle shell model, its validity and limitations. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions. Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann Nishijima formula. Quark model, baryons and mesons. Parity nonconservation in weak interaction.

UNIT - V ELECTRONICS

Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Operational amplifiers and their applications - Digital Electronics Fundamentals – Number systems – Logic gates and logic circuits –Boolean algebra – Demorgan's theorem – K-Map – registers -counters, comparators - A/D and D/A converters.

Total Lecture Hours

30

06

BOOKS FOR STUDY:

- Soldstein, Poole&Safko, Classical Mechanics, PearsonEducation Inc., Seventh Indian, 2004.
- Paul Lorain & Dale R.Corson, Electromagnetic Fields and Waves, 2nd Edition, CBS Publishers and distributors, New Delhi, 2003.
- C. Kittel, Introduction to Solid State Physics, 7th Edition, Wiley, NewYork, 1996.
- S.B. Patel, Nuclear Physics An Introduction, 2nd Edition, New AgeInternational (P) Limited, 2008.
- > D.C.Tayal, Nuclear Physics, 1st Edition, HimalayaPublishing House, 2004.
- M.Morris Mano, Digital Logic and Computer Design, Prentice –Hallof India Private Limited, 2004.

BOOKS FOR REFERENCES:

- > Dr. SurekhaTomar, CSIR-UGC NET/JRF/SET Physical sciences Upkar'sprakashan, Agra, 2010.
- R. NageswaraRao, CSIR-UGC NET / SLET Physical Sciences, UV Physics Academy, Hyderabad.

Nature of Course	EMPLOYABILITY		\checkmark	SKILL OF	LL ORIENTED		ENTREPRENEURSHIP		> ✓	
Curriculum Relevance	LOCAL		REC	HONAL		NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	the Percentage of Change			No Char	nges Made			New Course	~	
* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.										

06

COUR	SE OU	TCOME	S:								K LEVEL
	After studying this course, the students will be able to:										
CO1	• •	e the basi									K1 to K5
CO2			-		oroblems in	various fie	elds of phy	ysics.			K1 to K5
CO3		_			ve problem						K1 to K5
CO4					epare comp		ns.				K1 to K5
CO5	Develo	op skills to	o attemp	t NET/	SET exami	nations.					K1 to K5
MAPPI	NG W	ITH PRO	OGRAI	I OUI	COMES:						
CO/PO	PO	1 PC)2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	-					3				
CO2	3						3				
CO3 CO4	3						3				
C04	3						3				
	-	FRONG	I			2 – ME	-	1		1 - 1	LOW
CO / F	O MA	PPING:									
со	s	PSO1	PSO2	PSC	03 PSO	4 PSO 5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	1	3	3				3				
СО	2	3	3				3				
СО	3	3	3				3				
CO	4	3	3				3				
CO	5	3	3				3				
WEIG1	AGE										
D PERCH GE (COUH CONTR	WEIGHTE D PERCENTA GE OF COURSE CONTRIBUT ION TOImage of the second seco										
LESSO	N PLA	N:									
UNIT	PHYSICS FOR NET/SET							HRS	S PEI	DAGOGY	
I	analys frames Genera equation coordi	Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Rigid body dynamics moment of inertia tensor.Non-inertial							I 06		lk &Talk, , Seminar

Academic Council Meeting Held On 17.05.2024

	mass–energy equivalence. Poisson brackets and canonical transformations. Symmetry, invariance and Noether's theorem. Hamilton-Jacobi theory.		
II	Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.	06	Chalk &Talk, PPT, Seminar
III	Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations.	06	Chalk &Talk, PPT, Seminar
IV	Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semi empirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge- independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single particle shell model, its validity and limitations. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions. Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann Nishijima formula. Quark model, baryons and mesons. Parity nonconservation in weak interaction.	06	Chalk &Talk, PPT, Seminar
v	Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Operational amplifiers and their applications - Digital Electronics Fundamentals – Number systems – Logic gates and logic circuits –Boolean algebra – Demorgan's theorem – K-Map – registers -counters, comparators - A/D and D/A converters.	06	Chalk &Talk, PPT, Seminar

۵ ۳	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal Cos		K Level	Section MCQ No. of. Questions	A					
CI	CO1	K1 – K2	25	K - Level K1,K2					
AI	CO2	K1 – K2	25	K1,K2					
CI	CO3	K1 – K2	25	K1,K2					
AII	CO4	K1 – K2	25	K1,K2					
		No. of Questions to be asked	50						
Question	Pattern	No. of Questions to be answered	50						
CIAI	& II	Marks for each question	1						
		Total Marks for each section	50						

 * Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	30	30	60	100					
	K2	20	20 40		100					
	K3									
CIA I	K4									
	Marks	50	50	100	100					
	K1	30	30	60	100					
	K2	20	20	40	100					
CIA II	К3									
	K4									
	Marks	50	50	100	100					

- K1- Remembering and recalling facts with specific answers
- **K2-** Basic understanding of facts and stating main ideas with general answers
- **K3-** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
S. No	COs	K - Level	Section A (MCQs)				
			No. of Questions	K – Level			
1	CO1	K1-K2	15	K1,K2			
2	CO2	K1-K2	15	K1,K2			
3	CO3	K1-K2	15	K1,K2			
4	CO4	K1-K2	15	K1,K2			
5	CO5	K1-K2	15	K1,K2			
No. o	No. of Questions to be Asked			75			
No. of	No. of Questions to be answered			75			
Marks for each question			1				
Total Marks for each section			75				
(Figures in parenthesis denotes, questions should be asked with the given K level)							

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	40	40	53	100			
K2	35	35	47	100			
K3							
K4							
Marks		75	100	100			
NB: Higher level of performance of the students is to be assessed by attempting higher							
level of K levels.							