# M.Sc., MATHEMATICS



# **Program Code: PMT**

# 2023 - Onwards



# MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

# GUIDLINESS FOR OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

#### (FOR PG PROGRAM FROM 2023 -2024 ONWARDS)

#### **ELIGIBILITY CONDITION FOR ADMISSION**

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3 years degree course (under 10 + 2 + 3 pattern) recognized by the university as equivalent there to.

#### **DURATION**

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

#### ATTENDANCE

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

#### **EVALUATION PROCEDURE:**

A mark Statement with  $CGPA = \sum(MarksXcredits)$  $\sum(Credits)$ 

Where the summations are over all paper appeared up to the current semester. Examinations: 3 hours duration.

Total marks 100 for all papers

External Internal ratio 75:25 with 2 Internal tests.

#### Subjects of Study

The courses offered under the PG programs belong to the following categories:

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives (NME)
- 4. Skill Enhancement course

# **CBCS COURSE STRUCTURE - PG COURSES**

# M.A. (Tamil) - M.A. (English) – M.Com. – M.Com (CA) – M.S.W. M.Sc. (Mathematics) - M.Sc. (CS) - M.Sc. (CS&IT)

| Semester-I                                              | Credit | Semester-II                                                | Credit | Semester-III                                                                               | Credit | Semester-IV                                                                 | Credit |
|---------------------------------------------------------|--------|------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------|--------|
| 1.1. Core-I                                             | 4      | 2.1. Core-IV                                               | 4      | 3.1. Core-VII                                                                              | 4      | 4.1. Core-X                                                                 | 4      |
| 1.2 Core-II                                             | 4      | 2.2 Core-V                                                 | 4      | 3.2 Core-VII                                                                               | 4      | 4.2 Core-XI                                                                 | 4      |
| 1.3 Core – III                                          | 4      | 2.3 Core – VI                                              | 4      | 3.3 Core – IX                                                                              | 4      | 4.3 Core – XII                                                              | 4      |
| 1.4 Elective<br>(Generic /<br>Discipline<br>Centric)- I | 3      | 2.4 Elective<br>(Generic /<br>Discipline<br>Centric) – III | 3      | 3.4 Elective<br>(Generic /<br>Discipline<br>Centric) – V                                   | 3      | 4.4 Elective<br>(Generic /<br>Discipline<br>Centric) – VI                   | 3      |
| 1.5 Elective<br>(Generic /<br>Discipline<br>Centric)-II | 3      | 2.5 Elective<br>(Generic /<br>Discipline<br>Centric)-IV    | 3      | 3.5 Core<br>Industry<br>Module                                                             | 3      | 4.5 Project with<br>Viva-Voce                                               | 3      |
| 1.6Ability<br>Enhancement<br>Course- Soft<br>Skill -1   | 2      | 2.6 Ability<br>Enhancement<br>Course - Soft<br>Skill -2    | 2      | 3.6 Ability<br>Enhancement<br>Course- Soft<br>Skill -3                                     | 2      | 4.6 Ability<br>Enhancement<br>Course- Soft<br>Skill -4                      | 2      |
| Skill<br>Enhancement<br>Course SEC<br>1                 | 2      | 2.7 Skill<br>Enhancement<br>Course SEC<br>2                | 2      | 3.7 Skill<br>Enhancement<br>Course –<br>Term Paper<br>and Seminar<br>Presentation<br>SEC 3 | 2      | 4.7 Skill<br>Enhancement<br>Course -<br>Professional<br>Competency<br>Skill | 2      |
|                                                         |        |                                                            |        | 3.8 Internship/<br>Industrial<br>Activity                                                  | 2      | 4.8 Extension<br>Activity                                                   | 1      |
|                                                         | 22     |                                                            | 22     |                                                                                            | 24     |                                                                             | 23     |
|                                                         |        |                                                            |        |                                                                                            | To     | tal Credit Points                                                           | 91     |

# QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL ASSESSMENT

# Note: Duration – 1 hour 30 minutes The components for continuous internal assessment are:

Part -AFour multiple choice questions (answer all) $4 \times 01 = 04$  MarksPart -B $2 \times 05 = 10$  MarksTwo questions ('either .... or 'type) $2 \times 05 = 10$  MarksPart -C $2 \times 08 = 16$  Marks

 Total
 40 Marks

 ----- ----- 

 The components for continuous internal assessment are:
 ------ 

 (40 Marks of two continuous internal assessments will be converted to 15 marks)
 ------ 

 Two tests and their average
 --15 marks

 Seminar /Group discussion
 --5 marks

 Assignment
 --5 marks

\_\_\_\_\_

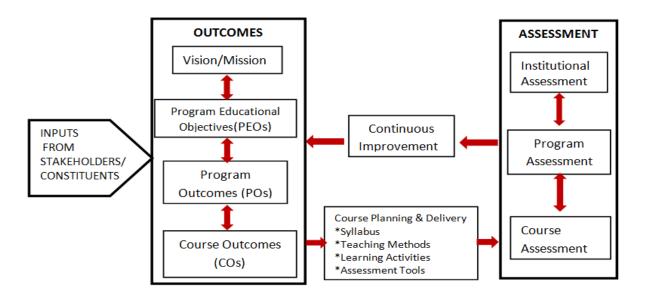
Total 25 Marks

\_\_\_\_\_

#### **OUTCOME BASED EDUCATION**

**1.** Course is defined as a theory, practical or theory cum practical subject studied in a semester. For e.g. Computer Applications Management

**2.** Course Outcome (CO) Course outcomes are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course. Outcomes may be specified for each course based on its weightage.


**3.** Program is defined as the specialization or discipline of a Degree. It is the interconnected arrangement of courses, co-curricular and extracurricular activities to accomplish predetermined objectives leading to the awarding of a degree.

**4.** Program Outcomes (POs) Program outcomes are narrower statements that describe what students are expected to be able to do by the time of graduation. POs are expected to be Guidelines for Outcome Based Education System 4 aligned closely with Graduate Attributes.

**5.** Program Educational Objectives (PEOs) of a program are the statements that describe the expected achievements of graduates in their career, and also in particular, what the graduates are expected to perform and achieve during the first few years after graduation.

**6.** Program Specific Outcomes (PSO) are what the students should be able to do at the time of graduation with reference to a specific discipline. Usually there are two to four PSOs for a Program.

**7.** Graduate Attributes (GA): The graduation attributes, are exemplars of the attributes expected of a graduate from a Program



#### **INSTITUTIONAL VISION**

To Mould the learners into accomplished individuals by providing them with a stimulus for social change through character, confidence and competence.

#### **INSTITUTIONAL MISSION**

1. Enlightening the learners on the ethical and environmental issues.

2. Extending holistic training to shape the learners in to committed and competent citizens.

3. Equipping them with soft skills for facing the competitive world.

4. Enriching their employability through career oriented courses.

5. Ensuring accessibility and opportunity to make education affordable to the underprivileged.

#### Highlights of the Revamped Curriculum:

- Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.

- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

## MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004 M. SC MATHEMATICS CURRICULUM

(For the student admitted during the academic year 2023-2024 onwards)

| Correct Code       | Title of the Commo                   | TTarr       |         | Maxii | Maximum Marks |       |  |
|--------------------|--------------------------------------|-------------|---------|-------|---------------|-------|--|
| <b>Course Code</b> | Title of the Course                  | Hrs         | Credits | Int   | Ext           | Total |  |
|                    | FIRST SEMEST                         | 'ER         |         |       |               |       |  |
| Part – III         | Core Courses                         |             |         |       |               |       |  |
| 23PMTCC11          | ALGEBRAIC STRUCTURES                 | 6           | 5       | 25    | 75            | 100   |  |
| 23PMTCC12          | REAL ANALYSIS - I                    | 6           | 5       | 25    | 75            | 100   |  |
| 23PMTCC13          | ORDINARY DIFFERENTIAL EQUATIONS      | 6           | 4       | 25    | 75            | 100   |  |
| Part – III         | Elective Courses                     |             |         |       |               |       |  |
| 23PMTEC11          | GRAPH THEORY AND<br>APPLICATIONS     | 6           | 3       | 25    | 75            | 100   |  |
| 23PMTEC12          | FUZZY SETS AND THEIR<br>APPLICATIONS | 6 3         |         |       | 75            | 100   |  |
|                    | Tota                                 | l <b>30</b> | 20      | 125   | 375           | 500   |  |
|                    | SECOND SEMES                         | TER         |         |       |               |       |  |
| Part – III         | Core Courses                         |             |         |       |               |       |  |
| 23PMTCC21          | ADVANCED ALGEBRA                     | 6           | 5       | 25    | 75            | 100   |  |
| 23PMTCC22          | REAL ANALYSIS - II                   | 6           | 5       | 25    | 75            | 100   |  |
| 23PMTCC23          | PARTIAL DIFFERENTIAL EQUATIONS       | 6           | 4       | 25    | 75            | 100   |  |
| Part – III         | Elective Courses                     |             |         |       |               |       |  |
| 23PMTEC21          | NUMERICAL ANALYSIS                   | 6           | 4       | 25    | 75            | 100   |  |
| 23PMTEC22          | RESOURCE MANAGEMENT<br>TECHNIQUES    | 6           | 4       | 25    | 75            | 100   |  |
|                    | Tota                                 | <b>30</b>   | 22      | 125   | 375           | 500   |  |





PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                            | ALGEBRAIC STRUCTURES                                                                                                      |              |           |       |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------|
| Course Code                            | 23PMTCC11                                                                                                                 | L            | Р         | C     |
| Category                               | CORE                                                                                                                      | 6            | _         | 5     |
| COURSE OBJE                            | CTIVES:                                                                                                                   |              |           |       |
|                                        | e the concepts and to develop working knowledge on class equati<br>n groups, linear transformations, real quadratic forms | ion, solvabi | lity of g | group |
| UNIT – I                               |                                                                                                                           |              |           | 18    |
| Counting Principle 2.12.1, First proof | - Class equation for finite groups and its applications - Sylow's the only).                                              | heorems (F   | for theo  | rem   |
| UNIT — II                              |                                                                                                                           |              |           | 18    |
| Solvable groups - I                    | Direct products - Finite abelian groups- Modules                                                                          |              |           |       |
| UNIT - III                             |                                                                                                                           |              |           | 18    |
| Linear Transformat                     | tions: Canonical forms – Triangular form - Nilpotent transformati                                                         | ions.        |           |       |
| UNIT – IV                              |                                                                                                                           |              |           | 18    |
| ONII - IV                              |                                                                                                                           |              |           |       |
|                                        | nal canonical form                                                                                                        |              |           |       |
| Jordan form - ration<br>UNIT - V       | nal canonical form                                                                                                        |              |           | 18    |
| Jordan form - ration                   | nal canonical form<br>e - Hermitian, unitary, normal transformations, real quadratic for                                  | m.           |           | 18    |

#### **BOOKS FOR STUDY:**

- > I.N. Herstein. *Topics in Algebra* (II Edition) Wiley Eastern Limited, New Delhi, 1975. UNIT-I: Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5) UNIT-II : Chapter 5 : Section 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem 5.7.1) Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only) Chapter 4: Section 4.5 UNIT-III: Chapter 6: Sections 6.4, 6.5 UNIT-IV : Chapter 6 : Sections 6.6 and 6.7 UNIT-V: Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9) **BOOKS FOR REFERENCES:** M.Artin, *Algebra*, Prentice Hall of India, 1991. > P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (Indian Edition) I.S.Luther and I.B.S.Passi, Algebra, Vol. I – Groups(1996); Vol. II Rings, Narosa Publishing House, New Delhi, 1999 > D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York. 1997. N.Jacobson, *Basic Algebra*, Vol. I & II W.H.Freeman (1980); also published by Hindustan Publishing Company, New Delhi. WEB RESOURCES: http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org,
  - \* www.algebra.com

| Curriculum<br>RelevanceLOCALREGIO |      |         |          |   |   |            |  |
|-----------------------------------|------|---------|----------|---|---|------------|--|
| Relevance                         | JNAL |         | NATIONA  | L | ✓ | GLOBAL     |  |
| ChangesMade in the<br>Course      | 80   | No Chan | ges Made |   |   | New Course |  |

| COURS             | SE OUTC                                                                                                                                                                                                                                                | OMES:                                                  |                                    |                                         |                                          |                           |                                                            |                         | K                  | LEVEL    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------|------------------------------------------|---------------------------|------------------------------------------------------------|-------------------------|--------------------|----------|
| After st          | udying this                                                                                                                                                                                                                                            | course, th                                             | ne student                         | s will be a                             | ble to:                                  |                           |                                                            |                         |                    |          |
| <b>CO</b> 1       |                                                                                                                                                                                                                                                        |                                                        | · 1 · 1                            |                                         | -                                        |                           | problems,<br>ow subgro                                     | -                       | ŀ                  | K1 to K5 |
| CO2               |                                                                                                                                                                                                                                                        | lvable grou<br>fine modul                              | -                                  | direct proc                             | lucts, exan                              | nine the pro              | operties of                                                | finite abel             | ian F              | K1 to K5 |
| CO3               | triangular<br>subspaces,                                                                                                                                                                                                                               | matrix, to f                                           | find the ind<br>variants of        | dex of nilp<br>linear tran              | otence to d<br>sformation                | ecompose<br>, to explor   | lore the pro<br>a space int<br>e the prope                 | o invarian              | t l                | K1 to K5 |
| CO4               | Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, and apply the concepts to find characteristic polynomial of linear transformation. |                                                        |                                    |                                         |                                          |                           |                                                            |                         |                    | K1 to K5 |
| C05               | to find trac<br>form, defin<br>unitary, no<br>unitary and                                                                                                                                                                                              | ce, to find t<br>ne symmet<br>formal trans<br>d normal | ranspose or ric matrix, formations | of matrix, to<br>skew sym<br>and to ver | o prove Jac<br>metric mat<br>rify whethe | cobson lem<br>rix, adjoin | es of trace a<br>ma using t<br>t, to define<br>formation i | he triangu<br>Hermitian | lar<br>I, <b>F</b> | K1 to K5 |
| MAPPI             | NG WITH                                                                                                                                                                                                                                                | I PROGR                                                | AM OUI                             | COMES                                   |                                          |                           |                                                            |                         |                    |          |
| CO/PC             |                                                                                                                                                                                                                                                        | PO2                                                    | PO3                                | PO4                                     | <b>PO5</b>                               | P06                       | PO7                                                        | <b>PO8</b>              | <b>PO9</b>         | PO10     |
| CO1               | 3                                                                                                                                                                                                                                                      | 1                                                      | 3                                  | 2                                       | 3                                        | 3                         |                                                            |                         |                    |          |
| <b>CO2</b>        | 2                                                                                                                                                                                                                                                      | 1                                                      | 3                                  | 1                                       | 3                                        | 3                         |                                                            |                         |                    |          |
| <b>CO3</b>        | 3                                                                                                                                                                                                                                                      | 2                                                      | 3                                  | 1                                       | 3                                        | 3                         |                                                            |                         |                    |          |
| CO4               | 1                                                                                                                                                                                                                                                      | 2                                                      | 3                                  | 2                                       | 3                                        | 3                         |                                                            |                         |                    |          |
| C05               | 3                                                                                                                                                                                                                                                      | 1                                                      | 2                                  | 3                                       | 3                                        | 3                         |                                                            |                         |                    |          |
| S- STR            | ONG                                                                                                                                                                                                                                                    |                                                        |                                    | M – M                                   | EDIUM                                    |                           |                                                            | L - L                   | ow                 |          |
| CO / P            | O MAPPI                                                                                                                                                                                                                                                | NG:                                                    |                                    |                                         |                                          |                           |                                                            |                         |                    |          |
| С                 | os                                                                                                                                                                                                                                                     | PSO1                                                   |                                    | PSO2                                    | PS                                       | 03                        | PSO4                                                       | ł                       | PSO5               |          |
| C                 | <b>D</b> 1                                                                                                                                                                                                                                             | 3                                                      |                                    | 2                                       | 1                                        |                           |                                                            |                         |                    |          |
| C                 | 0 2                                                                                                                                                                                                                                                    | 3                                                      |                                    | 2                                       | 1                                        |                           |                                                            |                         |                    |          |
| C                 | C 3                                                                                                                                                                                                                                                    | 3                                                      |                                    | 2                                       | 1                                        | -                         |                                                            |                         |                    |          |
| C                 | <b>D</b> 4                                                                                                                                                                                                                                             | 3                                                      |                                    | 2                                       | 1                                        | <u>.</u>                  |                                                            |                         |                    |          |
| C                 | D 5                                                                                                                                                                                                                                                    | 3                                                      |                                    | 2                                       | 1                                        | -                         |                                                            |                         |                    |          |
| WEIG              | HTAGE                                                                                                                                                                                                                                                  | 15                                                     |                                    | 10                                      | 5                                        | 5                         |                                                            |                         |                    |          |
| PERCE<br>OF CONTE | HTED<br>ENTAGE<br>DURSE<br>EIBUTIO<br>D POS                                                                                                                                                                                                            | 3                                                      |                                    | 2                                       | 1                                        | -                         |                                                            |                         |                    |          |

| LESSON PLAN: |                                                                                                                                       |     |                 |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|--|--|--|--|--|
| UNIT         | ALGEBRAIC STRUCTURES                                                                                                                  | HRS | PEDAGOGY        |  |  |  |  |  |
| I            | Counting Principle - Class equation for finite groups and its applications - Sylow's theorems (For theorem 2.12.1, First proof only). | 18  | Chalk &<br>Talk |  |  |  |  |  |
| II           | Solvable groups - Direct products - Finite abelian groups- Modules                                                                    | 18  | Chalk &<br>Talk |  |  |  |  |  |
| III          | Linear Transformations: Canonical forms – Triangular form - Nilpotent transformations                                                 | 18  | Chalk &<br>Talk |  |  |  |  |  |
| IV           | Jordan form - rational canonical form.                                                                                                | 18  | Chalk &<br>Talk |  |  |  |  |  |
| V            | Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form.                                                | 18  | Chalk &<br>Talk |  |  |  |  |  |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                |        |                        |                               |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|--------|------------------------|-------------------------------|--|--|--|--|
| Internal Cos   |                                                                                                                                                          | K Level                         | Section<br>MC( |        | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
|                | I Level                                                                                                                                                  | No. of.<br>Questions            | K -<br>Level   | Choice |                        |                               |  |  |  |  |
| CI             | CO1                                                                                                                                                      | K1 – K5                         | 2              | K2     | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2              | K2     | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2              | K2     | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII            | <b>CO4</b>                                                                                                                                               | K1 – K5                         | 2              | K2     | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                | <u>.</u>                                                                                                                                                 | No. of Questions to be asked    | 4              |        | 4                      | 4                             |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4              |        | 2                      | 2                             |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1              |        | 5                      | 8                             |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4              |        | 10                     | 16                            |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | . 25             |  |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |  |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                           | ination – B    | ue Print Artic  | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|
|           |                                    |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                                | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |
|           |                                    |                | Questions       |                | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | iestions to                        | be Asked       | 10              |                | 10                         | 10                     |
| No. of    | No. of Questions to be<br>answered |                | 10              |                | 10                         | 5                      |
| Marks     | for each                           | question       | 1               |                | 1                          | 8                      |
| Total Ma  | Total Marks for each section       |                |                 |                | 10                         | 40                     |
|           | (Figu                              | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |

| Distribution of Marks with K Level |           |           |           |       |      |                |  |  |
|------------------------------------|-----------|-----------|-----------|-------|------|----------------|--|--|
| K Level                            | Section A | Section B | Section C | Total | % of | Consolidated % |  |  |

|            | (Multiple<br>Choice<br>Questions) | (Either or<br>Choice | (Either/ or<br>Choice) | Marks | (Marks<br>without<br>choice) |                  |
|------------|-----------------------------------|----------------------|------------------------|-------|------------------------------|------------------|
| K1         | 5                                 |                      |                        | 5     | 3.6                          | 4                |
| K2         | 5                                 | 20                   |                        | 25    | 17.8                         | 18               |
| K3         |                                   | 30                   | 32                     | 62    | 44.3                         | 44               |
| K4         |                                   |                      | 48                     | 48    | 34.3                         | 34               |
| Marks      | 10                                | 50                   | 80                     | 140   | 100                          | 100              |
| ND TT' I I | 1 C C                             | C 41                 | 1                      |       |                              | 1. 1. 1. 1. 6 17 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

# **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | СО         | K-level |         |                        |
|-----------|----------------|------------|---------|---------|------------------------|
| Answer AL | L the question | ns         | PA      | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1        | K1      |         |                        |
| 1.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - I       | CO1        | K2      |         |                        |
| 2.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - II      | CO2        | K1      |         |                        |
| 3.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - II      | CO2        | K2      |         |                        |
| 4.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - III     | <b>CO3</b> | K1      |         |                        |
| 5.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - III     | CO3        | K2      |         |                        |
| 6.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - IV      | <b>CO4</b> | K1      |         |                        |
| 7.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - IV      | <b>CO4</b> | K2      |         |                        |
| 8.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - V       | CO5        | K1      |         |                        |
| 9.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - V       | CO5        | K2      |         |                        |
| 10.       |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |

| Answei | Answer ALL the questions   |            |    | PART – B | (5 x 5 = 25 Marks) |
|--------|----------------------------|------------|----|----------|--------------------|
| 11. a) | 11. a) <b>Unit - I CO1</b> |            | K2 |          |                    |
|        |                            |            |    | OR       |                    |
| 11. b) | Unit - I                   | CO1        | K2 |          |                    |
| 12. a) | Unit - II                  | CO2        | K3 |          |                    |
|        |                            |            |    | OR       |                    |
| 12. b) | Unit - II                  | CO2        | K3 |          |                    |
| 13. a) | Unit - III                 | CO3        | K2 |          |                    |
|        |                            |            |    | OR       |                    |
| 13. b) | Unit - III                 | CO3        | K2 |          |                    |
| 14. a) | Unit - IV                  | <b>CO4</b> | K3 |          |                    |
|        |                            |            |    | OR       |                    |
| 14. b) | Unit - IV                  | CO4        | K3 |          |                    |
| 15. a) | Unit - V                   | CO5        | K3 |          |                    |
|        |                            |            |    | OR       |                    |
| 15. b) | Unit - V                   | CO5        | K3 |          |                    |

| Answer . | ALL the quest | ions       |       | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|-------|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3    |          |                    |
| 17. a)   | Unit - II     | CO2        | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4    |          |                    |
| 18. a)   | Unit - III    | CO3        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3    |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4    |          |                    |
| 20. a)   | Unit - V      | CO5        | K4    |          |                    |
|          |               |            | · · · | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4    |          |                    |

**MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)** 

### PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name  | REAL ANALYSIS - I |   |   |   |
|--------------|-------------------|---|---|---|
| Course Code  | 23PMTCC12         | L | Р | С |
| Category     | CORE              | 6 | - | 5 |
| COURSE OBJEC | TIVES:            |   |   |   |

To work comfortably with functions of bounded variation, Riemann-Stieltjes Integration, convergence of infinite series, infinite product and uniform convergence and its interplay between various limiting operations

|                                                                                                       | 10      |
|-------------------------------------------------------------------------------------------------------|---------|
| Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation   | ation - |
| Additive property of total variation - Total variation on [a, x] as a function of x - Functions of be | ounded  |
| variation expressed as the difference of two increasing functions - Continuous functions of be        | ounded  |
| variation.                                                                                            |         |

Functions of bounded variation & Infinite Series

Absolute and conditional convergence - Dirichlet's test and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series

#### UNIT – II The Riemann - Stieltjes Integral

IINIT – I

Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.

#### UNIT - III The Riemann-Stieltjes Integral

Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval – Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann-Stieltjes integrals depending on a parameter- Differentiation under integral sign-Lebesgue criteriaon for existence of Riemann integrals.

#### UNIT – IV Infinite Series and infinite Products & Power series

Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.

Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limit theorem - Tauber's theorem

18

18

18

18

#### UNIT - V Sequences of Functions

Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions -Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration – Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence.

| <b>Total Lecture Hours</b> | 90 |
|----------------------------|----|
|----------------------------|----|

#### **BOOKS FOR STUDY:**

Tom M.Apostol : Mathematical Analysis, 2<sup>nd</sup> Edition, Addison-Wesley Publishing Company Inc. New York, 1974

UNIT I: Chapter – 6 : Sections 6.1 to 6.8

Chapter 8 : Sections 8.8, 8.15, 8.17, 8.18

UNIT II; Chapter - 7 : Sections 7.1 to 7.14

UNIT-III : Chapter - 7 : 7.15 to 7.26

UNIT-IV : Chapter - 8 Sec, 8.20, 8.21 to 8.26

Chapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23 UNIT-V: Chapter -9 Sec 9.1 to 9.6, 9.8,9.9,9.10,9.11, 9.13

#### **BOOKS FOR REFERENCES:**

- Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
- 2. Rudin,W. Principles of Mathematical Analysis, 3<sup>rd</sup> Edition. McGraw Hill Company, New York, 1976.
- > 3. Malik,S.C. and Savita Arora. Mathematical Anslysis, Wiley Eastern Limited.New Delhi, 1991.
- ▶ 4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991.
- > 5. Gelbaum, B.R. and J. Olmsted, Counter Examples in Analysis, Holden day, San Francisco, 1964.
- > 6. A.L.Gupta and N.R.Gupta, Principles of Real Analysis, Pearson Education, (Indian print) 2003.

#### WEB RESOURCES:

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,

http://www.opensource.org, www.mathpages.com

| Nature of<br>Course              | EMPLOYABILITY |         | ✓    | SKILL ORIENTED |         |          | ENTREPRENEURSHIP |   | )          |  |
|----------------------------------|---------------|---------|------|----------------|---------|----------|------------------|---|------------|--|
| Curriculum<br>Relevance          | LOCAL         |         | REG  | IONAL          |         | NATION   | AL               | ✓ | GLOBAL     |  |
| Changes<br>Made in the<br>Course | Percentag     | e of Ch | ange | 70             | No Chan | ges Made |                  |   | New Course |  |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COUR             | SE OUTC                                                                     | OMES:      |             |                     |              |             |            |              | ]          | K LEVEL  |  |
|------------------|-----------------------------------------------------------------------------|------------|-------------|---------------------|--------------|-------------|------------|--------------|------------|----------|--|
| After st         | udying this                                                                 | course, tl | he student  | s will be a         | ble to:      |             |            |              |            |          |  |
| <b>CO1</b>       | Analyze and evaluate functions of bounded variation and Rectifiable Curves. |            |             |                     |              |             |            |              |            |          |  |
| CO2              | Describe th                                                                 | ne concept | of Riema    | nn-Stieltje         | s integral a | nd its prop | erties.    |              | ]          | K1 to K5 |  |
| <b>CO3</b>       | Demonstratintegrals.                                                        | te the con | cept of ste | p function,         | upper fun    | ction, Lebe | esgue func | tion and the | eir        | K1 to K5 |  |
| CO4              | Construct establish th                                                      |            |             |                     |              | perties of  | Lebesgue i | ntegrals ar  | nd 1       | K1 to K5 |  |
| CO5              | Formulate                                                                   | the concep | pt and prop | perties of in       | nner produ   | cts, norms  | and measu  | rable func   | tions.     | K1 to K5 |  |
| MAPPI            | NG WITH                                                                     | PROGR      | AM OUI      | COMES               | :            |             |            |              |            |          |  |
| CO/PO            | <b>PO1</b>                                                                  | <b>PO2</b> | PO3         | PO4                 | <b>PO5</b>   | <b>PO6</b>  | <b>PO7</b> | <b>PO8</b>   | <b>PO9</b> | PO10     |  |
| <b>CO1</b>       | 3                                                                           | 1          | 3           | 2                   | 3            | 3           |            |              |            |          |  |
| <b>CO2</b>       | 2                                                                           | 1          | 3           | 1                   | 3            | 3           |            |              |            |          |  |
| <b>CO3</b>       | 3                                                                           | 2          | 3           | 1                   | 3            | 3           |            |              |            |          |  |
| <b>CO4</b>       | 1                                                                           | 2          | 3           | 2                   | 3            | 3           |            |              |            |          |  |
| <b>CO</b> 5      | 3                                                                           | 1          | 2           | 3                   | 3            | 3           |            |              |            |          |  |
| S- STR           | ONG                                                                         |            |             | <b>M</b> – <b>M</b> | EDIUM        |             |            | L - L        | OW         |          |  |
| CO / P           | O MAPPI                                                                     | NG:        |             |                     | _            | _           |            |              |            |          |  |
| С                | os                                                                          | PSO 1      | L           | PSO2                | PS           | 03          | PSO        | 4            | PS         | 05       |  |
| C                | <b>D</b> 1                                                                  | 3          |             | 2                   | 1            | L           |            |              |            |          |  |
| C                | 0 2                                                                         | 3          |             | 2                   | 1            | L           |            |              |            |          |  |
| C                | <b>D</b> 3                                                                  | 3          |             | 2                   | 1            | L           |            |              |            |          |  |
| C                | D 4                                                                         | 3          |             | 2                   | 1            | L           |            |              |            |          |  |
| C                | D 5                                                                         | 3          |             | 2                   | ]            | L           |            |              |            |          |  |
| WEIG             | HTAGE                                                                       | 15         |             | 10                  |              | 5           |            |              |            |          |  |
| PERCE<br>OF CONT | HTED<br>ENTAGE<br>DURSE<br>RIBUTI<br>O POS                                  | 3          |             | 2                   | ]            | L           |            |              |            |          |  |

| LESSC | ON PLAN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|
| UNIT  | REAL ANALYSIS - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HRS | PEDAGOGY        |
| I     | Introduction - Properties of monotonic functions - Functions of bounded<br>variation - Total variation - Additive property of total variation - Total<br>variation on [a, x] as a function of x - Functions of bounded variation<br>expressed as the difference of two increasing functions - Continuous<br>functions of bounded variation.<br>Absolute and conditional convergence - Dirichlet's test and Abel's test<br>- Rearrangement of series - Riemann's theorem on conditionally<br>convergent series.          | 18  | Chalk &<br>Talk |
| II    | Introduction - Notation - The definition of the Riemann - Stieltjes<br>integral - Linear Properties - Integration by parts- Change of variable in<br>a Riemann - Stieltjes integral - Reduction to a Riemann Integral –<br>Euler's summation formula - Monotonically increasing integrators,<br>Upper and lower integrals - Additive and linearity properties of upper,<br>lower integrals - Riemann's condition - Comparison theorems.                                                                                 | 18  | Chalk &<br>Talk |
| III   | Integrators of bounded variation-Sufficient conditions for the existence<br>of Riemann-Stieltjes integrals-Necessary conditions for the existence of<br>RS integrals- Mean value theorems -integrals as a function of the<br>interval – Second fundamental theorem of integral calculus-Change of<br>variable -Second Mean Value Theorem for Riemann integral- Riemann-<br>Stieltjes integrals depending on a parameter- Differentiation under<br>integral sign-Lebesgue criteriaon for existence of Riemann integrals. | 18  | Chalk &<br>Talk |
| IV    | Double sequences - Double series - Rearrangement theorem for double<br>series - A sufficient condition for equality of iterated series -<br>Multiplication of series – Cesaro summability - Infinite products.<br>Double sequences - Double series - Rearrangement theorem for double<br>series - A sufficient condition for equality of iterated series -<br>Multiplication of series – Cesaro summability - Infinite products.                                                                                        | 18  | Chalk &<br>Talk |
| v     | Pointwise convergence of sequences of functions - Examples of<br>sequences of real - valued functions - Uniform convergence and<br>continuity - Cauchy condition for uniform convergence - Uniform<br>convergence of infinite series of functions - Riemann - Stieltjes<br>integration – Non-uniform Convergence and Term-by-term Integration -<br>Uniform convergence and differentiation - Sufficient condition for<br>uniform convergence of a series - Mean convergence.                                            | 18  | Chalk &<br>Talk |

|                                   | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|
| Internal                          | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
|                                   | COS                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |
| CI                                | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI                                | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI                                | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII                               | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                                   | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |
| Question<br>Pattern<br>CIA I & II |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |
|                                   |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |
|                                   |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |

|     | Distribution of Marks with K Level CIA I & CIA II |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|-----|---------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|--|--|--|
|     | K<br>Level                                        | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |  |  |  |
|     | K2                                                | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |  |  |  |
| CT. | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| CIA | K4                                                |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |  |  |  |
| I   | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |  |  |  |
|     | K2                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |  |  |  |  |
| CIA | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| II  | K4                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
|     | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs) |                |                 |                |                            |                        |  |  |  |
|-----------|----------------------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|--|--|--|
|           |                                                                                              |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |  |  |  |
| S. No     | Cos                                                                                          | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |  |  |  |
|           |                                                                                              |                | Questions       | K Level        | K - LEVEL                  | K - LEVEL              |  |  |  |
| 1         | CO1                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 2         | CO2                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 3         | CO3                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 4         | CO4                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 5         | CO5                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| No. of Qu | iestions to                                                                                  | be Asked       | 10              |                | 10                         | 10                     |  |  |  |
| No. of    | No. of Questions to be<br>answered                                                           |                |                 |                | 10                         | 5                      |  |  |  |
| Marks     | Marks for each question                                                                      |                | 1               |                | 1                          | 8                      |  |  |  |
| Total Ma  | Total Marks for each section                                                                 |                | 10              |                | 10                         | 40                     |  |  |  |
|           | (Fig                                                                                         | ires in narent | thesis denotes. | questions show | uld be asked with the give | en K level)            |  |  |  |

(Figures in parenthesis denotes, questions should be asked with the given K level

|                                                                                                           | Distribution of Marks with K Level             |                                   |                                     |                |                                      |                |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|--|--|--|--|
| K Level                                                                                                   | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |  |
| K1                                                                                                        | 5                                              |                                   |                                     | 5              | 3.6                                  | 4              |  |  |  |  |
| K2                                                                                                        | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18             |  |  |  |  |
| К3                                                                                                        |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44             |  |  |  |  |
| K4                                                                                                        |                                                |                                   | 48                                  | 48             | 34.3                                 | 34             |  |  |  |  |
| Marks                                                                                                     | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100            |  |  |  |  |
| NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels. |                                                |                                   |                                     |                |                                      |                |  |  |  |  |

| Q. No.    | Unit            | CO  | K-level |         |                     |
|-----------|-----------------|-----|---------|---------|---------------------|
| Answer AI | LL the question | ns  | PA      | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I        | CO1 | K1      |         |                     |
| 1.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - I        | CO1 | K2      |         |                     |
| 2.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - II       | CO2 | K1      |         |                     |
| 3.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - II       | CO2 | K2      |         |                     |
| 4.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - III      | CO3 | K1      |         |                     |
| 5.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - III      | CO3 | K2      |         |                     |
| 6.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - IV       | CO4 | K1      |         |                     |
| 7.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - IV       | CO4 | K2      |         |                     |
| 8.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - V        | CO5 | K1      |         |                     |
| 9.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - V        | CO5 | K2      |         |                     |
| 10.       |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |

# **Summative Examinations - Question Paper – Format**

| Answei | • ALL the que | estions    |    | PART – B | (5 x 5 = 25 Marks) |
|--------|---------------|------------|----|----------|--------------------|
| 11. a) | Unit - I      | CO1        | K2 |          |                    |
|        |               |            |    | OR       |                    |
| 11. b) | Unit - I      | CO1        | K2 |          |                    |
| 12. a) | Unit - II     | CO2        | K3 |          |                    |
|        |               |            |    | OR       |                    |
| 12. b) | Unit - II     | CO2        | K3 |          |                    |
| 13. a) | Unit - III    | CO3        | K2 |          |                    |
|        |               |            |    | OR       |                    |
| 13. b) | Unit - III    | CO3        | K2 |          |                    |
| 14. a) | Unit - IV     | <b>CO4</b> | K3 |          |                    |
|        |               |            |    | OR       |                    |
| 14. b) | Unit - IV     | CO4        | K3 |          |                    |
| 15. a) | Unit - V      | CO5        | K3 |          |                    |
|        |               |            | _, | OR       |                    |
| 15. b) | Unit - V      | CO5        | K3 |          |                    |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|----|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |
|          | ·             |            |    | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

### PG AND RESEARCH DEPARTMENT OF MATHEMATICS

#### FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name         | ORDINARY DIFFERENTIAL EQUATIONS |   |   |   |  |  |  |  |
|---------------------|---------------------------------|---|---|---|--|--|--|--|
| Course Code         | 23PMTCC13                       | L | Р | С |  |  |  |  |
| Category CORE 6 - 4 |                                 |   |   |   |  |  |  |  |
| COURSE OBJEC        | TIVES:                          |   |   |   |  |  |  |  |

To develop strong background on finding solutions to linear differential equations with constant and variable coefficients and also with singular points, to study existence and uniqueness of the solutions of first order differential equations

| UNIT – I | Linear equations with constant coefficients | 18 |
|----------|---------------------------------------------|----|
|          |                                             |    |

Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian-Non-homogeneous equation of order two.

#### **UNIT - II** Linear equations with constant coefficients

Homogeneous and non-homogeneous equation of order n -Initial value problems- Annihilator method to solve non-homogeneous equation- Algebra of constant coefficient operators.

#### UNIT - III Linear equation with variable coefficients

Initial value problems -Existence and uniqueness theorems – Solutions to solve a non-homogeneous equation - Wronskian and linear dependence - reduction of the order of a homogeneous equation - homogeneous equation with analytic coefficients-The Legendre equation

#### UNIT – IV Linear equation with regular singular point

Euler equation – Second order equations with regular singular points –Exceptional cases – Bessel Function.

#### UNIT - V

Existence and uniqueness of solutions to first order equations: Equation with variable separated – Exact equation – method of successive approximations – the Lipschitz condition – convergence of the successive approximations and the existence theorem.

> **Total Lecture Hours** 90

18

18

18

18

#### **BOOKS FOR STUDY:**

E.A.Coddington, A introduction to ordinary differential equations (3<sup>rd</sup> Printing) Prentice-Hall of India Ltd., New Delhi, 1987.

Unit I - Chapter 2 : Section 1 to 6

Unit II - Chapter 2 : Section 7 to 12

Unit III - Chapter 3: Section 1 to 8

Unit IV - Chapter 4: Section 1 to 8

Unit V - Chapter 5: Section 1 to 8

#### **BOOKS FOR REFERENCES:**

- Williams E. Boyce and Richard C. DI Prima, *Elementary differential equations and boundary value problems*, John Wiley and sons, New York, 1967.
- George F Simmons, Differential equations with applications and historical notes, Tata McGraw Hill, New Delhi, 1974.
- > N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.
- > W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company Ltd. New Delhi 2001
- B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi, 2002.

#### WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org,
- www.mathpages.com

| Nature of<br>Course              | EMPLOYABILITY |         | 1        | SKILL OR |            | ENTRE        |       |         |                   |          |
|----------------------------------|---------------|---------|----------|----------|------------|--------------|-------|---------|-------------------|----------|
| Curriculum<br>Relevance          | LOCAL         |         | REG      | IONAL    |            | NATION       | AL    | ~       | GLOBAL            |          |
| Changes<br>Made in the<br>Course | Percentage    | e of Ch | ange     |          | No Chan    | ges Made     | v     | /       | New Course        |          |
|                                  | 20% as ea     | ch unit | t (20*5= | 100%) a  | nd calcula | te the nerce | ntage | of chan | ge for the course | <u> </u> |

| COURS            | SE OUTC                                                                                              | OMES:                                   |             |              |              |             |               |            |          | K LEVEL         |
|------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|--------------|--------------|-------------|---------------|------------|----------|-----------------|
| After st         | udying this                                                                                          | s course, th                            | e student   | s will be al | ble to:      |             |               |            |          |                 |
| CO1              | Establish                                                                                            | the qualitati                           | ive behavi  | or of soluti | ons of syst  | ems of di   | fferential eq | uations.   |          | K1 to K5        |
| CO2              | <b>CO2</b> Recognize the physical phenomena modeled by differential equations and dynamical systems. |                                         |             |              |              |             |               |            | K1 to K5 |                 |
| <b>CO3</b>       | <b>CO3</b> Analyze solutions using appropriate methods and give examples.                            |                                         |             |              |              |             |               |            |          | K1 to K5        |
| <b>CO4</b>       | Formulate                                                                                            | Green's fu                              | nction for  | boundary     | value probl  | ems.        |               |            |          | K1 to K5        |
| CO5              | Understan<br>this course                                                                             |                                         | various the | oretical ide | eas and resu | ilts that u | nderlie the n | nathematic | cs in    | K1 to K5        |
| MAPPI            | NG WITH                                                                                              | I PROGR                                 | AM OUT      | COMES:       |              |             |               | 11         |          |                 |
| CO/PO            |                                                                                                      | PO2                                     | PO3         | <b>PO4</b>   | PO5          | <b>PO6</b>  | PO7           | <b>PO8</b> | PO       | 9 PO10          |
| <b>CO1</b>       | 3                                                                                                    | 1                                       | 3           | 2            | 3            | 3           |               |            |          |                 |
| CO2              |                                                                                                      | 1                                       | 3           | 1            | 3            | 3           |               |            |          |                 |
| CO3              | 3                                                                                                    | 2                                       | 3           | 1            | 3            | 3           |               |            |          |                 |
| CO4              |                                                                                                      | 2                                       | 3           | 2            | 3            | 3           |               |            |          |                 |
| C05              |                                                                                                      | 1                                       | 2           | 3            | 3            | 3           |               |            |          |                 |
| S- STR           | ONG                                                                                                  |                                         |             | M – MI       | EDIUM        |             |               | L - L(     | DW       |                 |
| CO / P           | O MAPP                                                                                               | ING:                                    |             |              |              |             |               |            |          |                 |
| С                | os                                                                                                   | PSO1                                    | . ]         | PSO2         | PSC          | 03          | PSO4          | PSO        |          | 805             |
| C                | 01                                                                                                   | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| C                | 02                                                                                                   | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| C                | 03                                                                                                   | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| C                | 04                                                                                                   | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| C                | 05                                                                                                   | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| WEIG             | HTAGE                                                                                                | 15                                      |             | 10           | 5            |             |               |            |          |                 |
| PERCE<br>OF CONT | HTED<br>ENTAGE<br>OURSE<br>RIBUTI<br>O POS                                                           | 3                                       |             | 2            | 1            |             |               |            |          |                 |
| LESSO            | N PLAN:                                                                                              |                                         |             |              |              |             |               |            |          |                 |
| UNIT             |                                                                                                      | ORDINA                                  | RY DIFF     | 'ERENTI      | AL EQUA      | TIONS       |               | HRS        | PE       | DAGOGY          |
| I                | dependent                                                                                            | rder homo<br>e and indep<br>ogeneous ec | pendence-'  | Wronskian    |              | -           |               | 18         | (        | Chalk &<br>Talk |
| II               | -                                                                                                    | eous and no<br>Annihilato               | -           | _            |              |             |               | 18         | (        | Chalk &<br>Talk |

|     | Algebra of constant coefficient operators.                                                                                                                                                                                                                                          |    |                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| III | Initial value problems -Existence and uniqueness theorems – Solutions<br>to solve a non-homogeneous equation – Wronskian and linear<br>dependence – reduction of the order of a homogeneous equation –<br>homogeneous equation with analytic coefficients-The Legendre<br>equation. | 18 | Chalk &<br>Talk |
| IV  | Euler equation – Second order equations with regular singular points – Exceptional cases – Bessel Function.                                                                                                                                                                         | 18 | Chalk &<br>Talk |
| v   | Existence and uniqueness of solutions to first order equations: Equation with variable separated – Exact equation – method of successive approximations – the Lipschitz condition – convergence of the successive approximations and the existence theorem.                         | 18 | Chalk &<br>Talk |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|
| Internal              | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C        |  |  |  |
|                       | COS                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |
| CI                    | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AII                   | <b>CO4</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
|                       | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |
| ~   | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |  |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | ive Exam                           | ination – B    | ue Print Artic      | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)      |
|-----------|------------------------------------|----------------|---------------------|----------------|----------------------------|---------------------------|
|           |                                    |                | Section A           | (MCQs)         | Section B (Either / or     | Section C (Either / or    |
| S. No     | Cos                                | K - Level      | No. of<br>Questions | K – Level      | Choice) With<br>K - LEVEL  | Choice) With<br>K - LEVEL |
| 1         | CO1                                | K1 – K5        | 2                   | K1,K2          |                            |                           |
| 1         | COI                                | <u> </u>       | 2                   |                | 2(K2,K2)                   | 2(K3,K3)                  |
| 2         | CO2                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 3         | CO3                                | K1 – K5        | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 4         | CO4                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 5         | CO5                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| No. of Qu | estions to                         | be Asked       | 10                  |                | 10                         | 10                        |
|           | No. of Questions to be<br>answered |                |                     |                | 10                         | 5                         |
| Marks     | for each                           | question       | 1                   |                | 1                          | 8                         |
| Total Ma  | rks for ea                         | ich section    | 10                  |                | 10                         | 40                        |
|           | (Figu                              | ires in parent | thesis denotes,     | questions shou | uld be asked with the give | en K level)               |

|         |                                                | Distrib                           | oution of Mar                       | ks with <b>H</b> | K Level                              |                |
|---------|------------------------------------------------|-----------------------------------|-------------------------------------|------------------|--------------------------------------|----------------|
| K Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks   | % of<br>(Marks<br>without<br>choice) | Consolidated % |
| K1      | 5                                              |                                   |                                     | 5                | 3.6                                  | 4              |
| K2      | 5                                              | 20                                |                                     | 25               | 17.8                                 | 18             |
| K3      |                                                | 30                                | 32                                  | 62               | 44.3                                 | 44             |
| K4      |                                                |                                   | 48                                  | 48               | 34.3                                 | 34             |
| Marks   | 10                                             | 50                                | 80                                  | 140              | 100                                  | 100            |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

# **Summative Examinations - Question Paper – Format**

| Q. No.                   | Unit       | CO  | K-level |         |                                       |  |  |
|--------------------------|------------|-----|---------|---------|---------------------------------------|--|--|
| Answer ALL the questions |            |     | P       | ART – A | (10 x 1 = 10 Marks)                   |  |  |
|                          | Unit - I   | CO1 | K1      |         |                                       |  |  |
| 1.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - I   | CO1 | K2      |         | · · · · · · · · · · · · · · · · · · · |  |  |
| 2.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - II  | CO2 | K1      |         |                                       |  |  |
| 3.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - II  | CO2 | K2      |         |                                       |  |  |
| 4.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - III | CO3 | K1      |         | · · · · · · · · · · · · · · · · · · · |  |  |
| 5.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - III | CO3 | K2      |         |                                       |  |  |
| 6.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - IV  | CO4 | K1      |         |                                       |  |  |
| 7.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - IV  | CO4 | K2      |         |                                       |  |  |
| 8.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - V   | CO5 | K1      |         |                                       |  |  |
| 9.                       |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |
|                          | Unit - V   | CO5 | K2      |         |                                       |  |  |
| 10.                      |            |     |         | a)      | b)                                    |  |  |
|                          |            |     |         | c)      | d)                                    |  |  |

| Answer ALL the questions |            |            |    | PART – B | (5 x 5 = 25 Marks) |
|--------------------------|------------|------------|----|----------|--------------------|
| 11. a)                   | Unit - I   | CO1        | K2 |          |                    |
|                          |            |            |    | OR       |                    |
| 11. b)                   | Unit - I   | CO1        | K2 |          |                    |
| 12. a)                   | Unit - II  | CO2        | K3 |          |                    |
|                          |            |            |    | OR       |                    |
| 12. b)                   | Unit - II  | CO2        | K3 |          |                    |
| 13. a)                   | Unit - III | CO3        | K2 |          |                    |
|                          |            |            |    | OR       |                    |
| 13. b)                   | Unit - III | CO3        | K2 |          |                    |
| 14. a)                   | Unit - IV  | <b>CO4</b> | K3 |          |                    |
|                          |            |            |    | OR       |                    |
| 14. b)                   | Unit - IV  | CO4        | K3 |          |                    |
| 15. a)                   | Unit - V   | CO5        | K3 |          |                    |
|                          |            |            |    | OR       |                    |
| 15. b)                   | Unit - V   | CO5        | K3 |          |                    |

| Answer ALL the questions |            |            |    | PART – C | (5 x 8 = 40 Marks) |
|--------------------------|------------|------------|----|----------|--------------------|
| 16. a)                   | Unit - I   | CO1        | K3 |          |                    |
|                          |            |            |    | OR       |                    |
| 16. b)                   | Unit - I   | CO1        | K3 |          |                    |
| 17. a)                   | Unit - II  | CO2        | K4 |          |                    |
|                          |            |            |    | OR       |                    |
| 17. b)                   | Unit - II  | CO2        | K4 |          |                    |
| 18. a)                   | Unit - III | CO3        | K3 |          |                    |
|                          |            |            |    | OR       |                    |
| 18. b)                   | Unit - III | CO3        | K3 |          |                    |
| 19. a)                   | Unit - IV  | <b>CO4</b> | K4 |          |                    |
|                          |            |            |    | OR       |                    |
| 19. b)                   | Unit - IV  | <b>CO4</b> | K4 |          |                    |
| 20. a)                   | Unit - V   | CO5        | K4 |          |                    |
|                          |            |            |    | OR       |                    |
| 20. b)                   | Unit - V   | CO5        | K4 |          |                    |

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                        | GRAPH THEORY AND APPLICATIONS                                                                                                                                                        |           |          |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| Course Code                                                                        | 23PMTEC11 L                                                                                                                                                                          | Р         | С        |
| Category                                                                           | ELECTIVE 6                                                                                                                                                                           | -         | 3        |
| COURSE OBJECT                                                                      | IVES:                                                                                                                                                                                |           |          |
| <ul> <li>To apply graph</li> <li>To improve the</li> <li>To learn to mo</li> </ul> | the fundamental concepts in graph theory.<br>In theory in different fields<br>the different types of proof writing skills.<br>del problems using graphs<br>problems algorithmically. |           |          |
| UNIT – I                                                                           |                                                                                                                                                                                      |           | 18       |
|                                                                                    | djacency Matrices, Sub graphs, Vertex degrees, Paths and Connection, Calges and Bonds, Cut vertices                                                                                  | vcles, Sp | erner's  |
| UNIT – II                                                                          |                                                                                                                                                                                      |           | 18       |
| Euler tours, Hamilton<br>Bipartite graphs                                          | nian cycles, The travelling salesman problem, Matchings, Matchings and                                                                                                               | Coverin   | gs in    |
| UNIT - III                                                                         |                                                                                                                                                                                      |           | 18       |
| Edge Chromatic Nur                                                                 | nber, Vizing's Theorem, Chromatic number, Brook's theorem.                                                                                                                           |           |          |
| UNIT – IV                                                                          |                                                                                                                                                                                      |           | 18       |
|                                                                                    | ohs, Dual Graphs ,Euler's formula ,Bridges ,Kuratowski's Theorem, Dire<br>ted Cycles, Flows, Cuts, The Max-Flow Min –Cut theorem                                                     | cted Gra  | iphs,    |
| UNIT - V                                                                           |                                                                                                                                                                                      |           | 18       |
|                                                                                    | ctedness and components – spanning tree – cut vertices and separab<br>th algorithm – planarity testing – isomorphism                                                                 | ility – c | lirected |
|                                                                                    | Total Lecture Ho                                                                                                                                                                     | urs       | 90       |

#### **BOOKS FOR STUDY:**

➤ J.A.Bondy and U.S.R.Murty, Graph Theory with Applications. North Holland Publications, New york, 1976.

Unit I - Chapter 1 : Section 1.3 to 1.7 and 1.9

Chapter 2: Section 2.1 to 2.3 Unit II – Chapter 4: Section 4.1, 4.2 and 4.4

Chapter 5: Section 5.1 to 5.2

Unit III - Chapter 6 : Section 6.1, 6.2

Chapter 8 : Section 8.1, 8.2

Unit IV - Chapter 9 : Section 9.1 to 9.5

Chapter 10 : Section 10.1 to 10.3

Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, 1979.

Unit V - Chapter 11 : Section 11.4 to 11.7

#### **BOOKS FOR REFERENCES:**

- John Clark and Derek Allan Holton, A first look at Graph Theory, World ScientificPublications, Singapore, 1991.
- > Harary, **Graph Theory**, Narosa Publishing House, New Delhi, 1988.
- S.K.Yadav, Elements of Graph Theory, Ane Books Pvt. Ltd, New Delhi, 2010

#### WEB RESOURCES:

- https://nptel.ac.in/courses/111/106/111106102/
- https://nptel.ac.in/courses/111/106/111106050/
- https://www.math.kit.edu/iag6/lehre/graphtheo2015w/media/lecture\_notes

.pdf

| Nature of<br>Course              | EMPLOYABILITY        |         |          | ~        | SKILL OR    |               | ENTREPRENEURSHIP |          |                 |     |
|----------------------------------|----------------------|---------|----------|----------|-------------|---------------|------------------|----------|-----------------|-----|
| Curriculum<br>Relevance          | LOCAL                |         | REG      | IONAL    |             | NATIONAL      |                  | 1        | GLOBAL          |     |
| Changes<br>Made in the<br>Course | Percentage of Change |         |          |          | No Chan     | ges Made      |                  | <b>~</b> | New Course      |     |
|                                  | 20% as ea            | ch unit | t (20*5= | :100%) a | nd calculat | te the percer | ntage            | of chang | ge for the cour | se. |

| COURS                  | SE OUTC                                                                                                                                                         | OMES:                                                                                                                      |             |                     |              |             |             |            | K          | LEVEL                   |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|--------------|-------------|-------------|------------|------------|-------------------------|--|
| After st               | udying this                                                                                                                                                     | s course, t                                                                                                                | he studen   | ts will be a        | ble to:      |             |             |            |            |                         |  |
| CO1                    | Understan                                                                                                                                                       | Understand the definition of different types of graphs and Sperner's lemma.       I                                        |             |                     |              |             |             |            |            |                         |  |
| CO2                    | Make use covering.                                                                                                                                              | Make use of graph theory concepts in travelling salesman problem, Matching and overing.                                    |             |                     |              |             |             |            |            |                         |  |
| CO3                    | Categorize                                                                                                                                                      | e chromati                                                                                                                 | c number,   | edge chron          | natic numb   | er with the | eorems.     |            | K          | 1 to K5                 |  |
| CO4                    | Develop th                                                                                                                                                      | he differen                                                                                                                | t types of  | proof writi         | ng skills fo | r planar gr | aphs and di | rected gra | phs        | 1 to K5                 |  |
| CO5                    | Apply var                                                                                                                                                       | ious types                                                                                                                 | of algorith | nms in grap         | h.           |             |             |            | K          | 1 to K5                 |  |
| MAPPI                  | NG WITH                                                                                                                                                         | I PROGR                                                                                                                    | RAM OU      | rcomes              | :            |             |             |            |            |                         |  |
| CO/P<br>O              | <b>PO1</b>                                                                                                                                                      | PO2                                                                                                                        | PO3         | PO4                 | PO5          | P06         | P07         | <b>PO8</b> | PO9        | PO10                    |  |
| <b>CO</b> 1            | 3                                                                                                                                                               | 2                                                                                                                          | 1           | -                   | -            | 2           |             |            |            |                         |  |
| <b>CO2</b>             | 2                                                                                                                                                               | 2                                                                                                                          | 2           | 1                   | 2            | 1           |             |            |            |                         |  |
| CO3                    | 2                                                                                                                                                               | 1                                                                                                                          | 1           | 1                   | 2            | -           |             |            |            |                         |  |
| CO4                    | 3                                                                                                                                                               | 2                                                                                                                          | 1           | 1                   | 1            | 1           |             |            |            |                         |  |
| CO5                    | 3                                                                                                                                                               | 2                                                                                                                          | 3           | 2                   | 2            | 1           |             |            |            |                         |  |
| S- STR                 | ONG                                                                                                                                                             |                                                                                                                            |             | <b>M</b> – <b>M</b> | EDIUM        |             |             | L - L(     | <b>W</b> C |                         |  |
| CO / P                 | O MAPPI                                                                                                                                                         | ING:                                                                                                                       |             |                     |              |             |             |            |            |                         |  |
| С                      | os                                                                                                                                                              | PSO                                                                                                                        | 1           | PSO2                | PS           | 03          | PSO4        | PSO5       |            |                         |  |
| C                      | 01                                                                                                                                                              | 3                                                                                                                          |             | 2                   | 1            |             |             |            |            |                         |  |
| C                      | 02                                                                                                                                                              | 3                                                                                                                          |             | 2                   | 1            | L           |             |            |            |                         |  |
| C                      | 03                                                                                                                                                              | 3                                                                                                                          |             | 2                   | ]            | Ĺ           |             |            |            |                         |  |
| C                      | 04                                                                                                                                                              | 3                                                                                                                          |             | 2                   | 1            | L           |             |            |            |                         |  |
| C                      | D 5                                                                                                                                                             | 3                                                                                                                          |             | 2                   | 1            | L           |             |            |            |                         |  |
| WEIG                   | HTAGE                                                                                                                                                           | 15                                                                                                                         |             | 10                  | Ę            | 5           |             |            |            |                         |  |
| PERCE<br>OF CO<br>CONT | HTED<br>ENTAGE<br>DURSE<br>RIBUTI<br>O POS                                                                                                                      | 3                                                                                                                          |             | 2                   | ]            | L           |             |            |            |                         |  |
| LESSO                  | N PLAN:                                                                                                                                                         |                                                                                                                            |             |                     |              |             |             |            |            |                         |  |
| UNIT                   | GRAPH THEORY AND APPLICATIONS                                                                                                                                   |                                                                                                                            |             |                     |              |             |             | HRS        | PED        | AGOGY                   |  |
| I                      | The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees,<br>Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and<br>Bonds, Cut vertices |                                                                                                                            |             |                     |              |             |             |            |            | , Chalk<br>&<br>k, quiz |  |
| II                     |                                                                                                                                                                 | Euler tours, Hamiltonian cycles, The travelling salesman problem<br>Matchings, Matchings and Coverings in Bipartite graphs |             |                     |              |             |             |            |            | alk &<br>k, PPT         |  |

| III | Edge Chromatic Number, Vizing's Theorem, Chromatic number, Brook's theorem                                                                                                                 | 18 | Chalk &<br>Talk                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------|
| IV  | Plane and Planar graphs, Dual Graphs ,Euler's formula ,Bridges ,<br>Kuratowski's Theorem, Directed Graphs, Directed Paths, Directed<br>Cycles, Flows, Cuts, The Max-Flow Min –Cut theorem. | 18 | Chalk &<br>Talk,<br>Assignment |
| v   | Algorithms : connectedness and components – spanning tree – cut vertices and separability – directed circuits – shortest path algorithm – planarity testing – isomorphism                  | 18 | Chalk &<br>Talk, PPT           |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|--|
| Internal Co    | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C        |  |  |  |  |
|                |                                                                                                                                                          | I Level                         | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |  |
| CI             | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
|                | <u>L</u>                                                                                                                                                 | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              | 20               |
| ~   | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs) |           |           |           |                        |                        |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------|-----------|-----------|-----------|------------------------|------------------------|--|--|--|--|
|           |                                                                                              |           | Section A | (MCQs)    | Section B (Either / or | Section C (Either / or |  |  |  |  |
| S. No     | Cos                                                                                          | K - Level | No. of    | K – Level | Choice) With           | Choice) With           |  |  |  |  |
|           |                                                                                              |           | Questions | II Level  | K - LEVEL              | K - LEVEL              |  |  |  |  |
| 1         | CO1                                                                                          | K1 – K5   | 2         | K1,K2     | 2(K2,K2)               | 2(K3,K3)               |  |  |  |  |
| 2         | CO2                                                                                          | K1 – K5   | 2         | K1,K2     | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |
| 3         | CO3                                                                                          | K1 – K5   | 2         | K1,K2     | 2(K2,K2)               | 2(K3,K3)               |  |  |  |  |
| 4         | CO4                                                                                          | K1 – K5   | 2         | K1,K2     | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |
| 5         | CO5                                                                                          | K1 – K5   | 2         | K1,K2     | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |
| No. of Qu | estions to                                                                                   | be Asked  | 10        |           | 10                     | 10                     |  |  |  |  |
|           | Questior answered                                                                            |           | 10        |           | 10                     | 5                      |  |  |  |  |
| Marks     | Marks for each question                                                                      |           | 1         |           | 1                      | 8                      |  |  |  |  |
| Total Ma  | Total Marks for each section                                                                 |           |           |           | 10                     | 40                     |  |  |  |  |
|           | (Figures in parenthesis denotes, questions should be asked with the given K level)           |           |           |           |                        |                        |  |  |  |  |

| Distribution of Marks with K Level |                                                |                                   |                                     |                |                                      |                |  |  |  |
|------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|--|--|--|
| K Level                            | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |
| K1                                 | 5                                              |                                   |                                     | 5              | 3.6                                  | 4              |  |  |  |
| K2                                 | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18             |  |  |  |
| K3                                 |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44             |  |  |  |
| K4                                 |                                                |                                   | 48                                  | 48             | 34.3                                 | 34             |  |  |  |
| Marks                              | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100            |  |  |  |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

| Q. No.    | Unit           | СО         | K-level |         |                        |
|-----------|----------------|------------|---------|---------|------------------------|
| Answer AL | L the question | ns         | PA      | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1        | K1      |         |                        |
| 1.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - I       | CO1        | K2      |         |                        |
| 2.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - II      | CO2        | K1      |         |                        |
| 3.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - II      | CO2        | K2      |         |                        |
| 4.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - III     | CO3        | K1      |         |                        |
| 5.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - III     | CO3        | K2      |         |                        |
| 6.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - IV      | <b>CO4</b> | K1      |         |                        |
| 7.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - IV      | <b>CO4</b> | K2      |         |                        |
| 8.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - V       | CO5        | K1      |         |                        |
| 9.        |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |
|           | Unit - V       | CO5        | K2      |         |                        |
| 10.       |                |            |         | a)      | b)                     |
|           |                |            |         | c)      | d)                     |

| Answei | • ALL the que          | estions    |    | PART – B | (5 x 5 = 25 Marks) |  |  |  |  |  |
|--------|------------------------|------------|----|----------|--------------------|--|--|--|--|--|
| 11. a) | 11. a) Unit - I CO1 K2 |            | K2 |          |                    |  |  |  |  |  |
|        | OR                     |            |    |          |                    |  |  |  |  |  |
| 11. b) | Unit - I               | CO1        | K2 |          |                    |  |  |  |  |  |
| 12. a) | Unit - II              | CO2        | K3 |          |                    |  |  |  |  |  |
|        |                        |            |    | OR       |                    |  |  |  |  |  |
| 12. b) | Unit - II              | CO2        | K3 |          |                    |  |  |  |  |  |
| 13. a) | Unit - III             | CO3        | K2 |          |                    |  |  |  |  |  |
|        |                        |            |    | OR       |                    |  |  |  |  |  |
| 13. b) | Unit - III             | CO3        | K2 |          |                    |  |  |  |  |  |
| 14. a) | Unit - IV              | <b>CO4</b> | K3 |          |                    |  |  |  |  |  |
|        |                        |            |    | OR       |                    |  |  |  |  |  |
| 14. b) | Unit - IV              | <b>CO4</b> | K3 |          |                    |  |  |  |  |  |
| 15. a) | Unit - V               | CO5        | K3 |          |                    |  |  |  |  |  |
|        |                        |            |    | OR       |                    |  |  |  |  |  |
| 15. b) | Unit - V               | CO5        | K3 |          |                    |  |  |  |  |  |

| Answer . | ALL the quest | ions       |       | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|-------|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3    |          |                    |
| 17. a)   | Unit - II     | CO2        | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4    |          |                    |
| 18. a)   | Unit - III    | CO3        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3    |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 19. b)   | Unit - IV     | CO4        | K4    |          |                    |
| 20. a)   | Unit - V      | CO5        | K4    |          |                    |
|          |               |            | · · · | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4    |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

# FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

|                                                                                                                                                                      | FUZZY SETS AND THEIR APPLICATIONS                                                                                                                                                                                                                                                                                      |                     |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|
| COURSE CODE                                                                                                                                                          | 23PMTEC12 L                                                                                                                                                                                                                                                                                                            | Р                   | С                                       |
| CATEGORY                                                                                                                                                             | ELECTIVE 6                                                                                                                                                                                                                                                                                                             | -                   | 3                                       |
| COURSE OBJEC                                                                                                                                                         | TIVES:                                                                                                                                                                                                                                                                                                                 |                     |                                         |
| <ul> <li>To learn the b</li> <li>To differentiat</li> <li>To use inferentiation</li> </ul>                                                                           | the concept of crisp set and its properties<br>asics of fuzzy sets and its operations<br>te crisp logic, multi-valued logic and fuzzy logic<br>ace theory in fuzzy logic<br>pplication in real life                                                                                                                    |                     |                                         |
| UNIT – I                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |                     | 18                                      |
|                                                                                                                                                                      | tes–Basic concepts – Additional properties of $\alpha$ – cuts – Representation of or fuzzy sets – Types of operations – Fuzzy complements                                                                                                                                                                              | f fuzzy s           | sets –                                  |
| UNIT – II                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        |                     | 18                                      |
| Fuzzy numbers – Lin<br>numbers                                                                                                                                       | guistic variables – Arithmetic operation on intervals – Arithmetic operatio                                                                                                                                                                                                                                            | n on fuz            | zzy                                     |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |                     |                                         |
| UNIT - III                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                     | 18                                      |
| Fuzzy relation : Cris                                                                                                                                                | o versus Fuzzy relation – projection and cyclinderic extensions- Binary fu<br>ivalence relations – Fuzzy compatibility relation                                                                                                                                                                                        | zzy rela            | -                                       |
| Fuzzy relation : Crisj<br>single set – fuzzy equ                                                                                                                     |                                                                                                                                                                                                                                                                                                                        | zzy rela            | -                                       |
| single set – fuzzy equ<br><b>UNIT – IV</b><br>Fuzzy logic: Classica<br>Linguistic hedges – Ii                                                                        |                                                                                                                                                                                                                                                                                                                        | Juantifie           | tion or<br><b>18</b><br>ers –           |
| Fuzzy relation : Crisj<br>single set – fuzzy equ<br><b>UNIT – IV</b><br>Fuzzy logic: Classica<br>Linguistic hedges – Ii                                              | ivalence relations – Fuzzy compatibility relation<br>l logic – An over view – multi valued logic – Fuzzy propositions –Fuzzy conference from conditional fuzzy propositions – Inference from conditional                                                                                                               | Juantifie           | tion or<br><b>18</b><br>ers –           |
| Fuzzy relation : Crisj<br>single set – fuzzy equ<br><b>UNIT – IV</b><br>Fuzzy logic: Classica<br>Linguistic hedges – In<br>propositions – Inferer<br><b>UNIT - V</b> | ivalence relations – Fuzzy compatibility relation<br>l logic – An over view – multi valued logic – Fuzzy propositions –Fuzzy conference from conditional fuzzy propositions – Inference from conditional<br>from quantified propositions<br>ations to Civil Engineering –Computer Engineering – Reliability theory – 2 | uantific<br>and qua | tion or<br>18<br>ers –<br>antifie<br>18 |

George J Klir and B.Yuan, Fuzzy sets and Fuzzy logic – Theory and application, Second edition, Prentice Hall, New Delhi, 1995.

| Unit I-    | Chapter 1 : Sections 1.2 to 1.4                  |
|------------|--------------------------------------------------|
|            | Chapter 2 : Sections 2.1 to 2.3                  |
|            | Chapter 3 : Sections 3.1,3.2                     |
| Unit II -  | Chapter 4 : Section 4.1 to 4.4                   |
| Unit III - | Chapter 5 : Sections 5.1 to 5.6                  |
| Unit IV -  | Chapter 8 : Sections 8.2 to 8.8                  |
| Unit V-    | Chapter 16 : Sections 16.1 , 16.2, 16.5 to 16.7, |
|            | Chapter 17 : Sections 17.1 to 17.3.              |

#### **BOOKS FOR REFERENCES:**

- H.J.Zimmermann, Fuzzy Set Theory and its Applications, Fourth Edition, Springer Publishers, New Delhi, 2006.
- > Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition, Willey, 2010.
- Michal Baczynski and Balasubramaniam Jayaram, Fuzzy Implications, Springer Verlag, Heidelberg, 2008

## WEB RESOURCES:

- https://www.thesisscientist.com/docs/Study%20Notes/66860129-5a91-459d-810f-54e0fc41175d
- https://ocw.mit.edu/courses/health-sciences-and-technology/hst-951jmedical-decision-support-spring-2003/lecture-notes/lecture4.pdf
- https://www.iitk.ac.in/eeold/archive/courses/2013/intel-info/d1pdf3.pdf
  https://nptel.ac.in/courses/106105173/2
- https://www.cse.iitb.ac.in/~cs621-2011/lectures\_2009/cs621-lect38-fuzzylogic-2009-11-11.ppt

| Nature of<br>Course              | EMPLOYABILITY          |  | ✓   | SKILL ORIENTED |            |   | ENTREPRENEURSHIP |            | • |
|----------------------------------|------------------------|--|-----|----------------|------------|---|------------------|------------|---|
| Curriculum<br>Relevance          | LOCAL                  |  | REG | IONAL          | . NATIONAL |   | ~                | GLOBAL     |   |
| Changes<br>Made in the<br>Course | e Percentage of Change |  |     | No Chan        | iges Made  | V |                  | New Course |   |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COUR                  | SE OUTC                                                                      | OMES:                                                            |                          |                                            |                        |            |                  |       | 1          | K LEVEL        |
|-----------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------------------------------------|------------------------|------------|------------------|-------|------------|----------------|
|                       | After studying this course, the students will be able to:                    |                                                                  |                          |                                            |                        |            |                  |       |            |                |
| <b>CO1</b>            |                                                                              |                                                                  |                          |                                            |                        | and extens | ion princip      | le    | ]          | K1 to K5       |
| CO2                   | Identify fu                                                                  | zzy numbe                                                        | ers and its              | linguistic v                               | variables              |            |                  |       | ]          | K1 to K5       |
| CO3                   | Validate fu                                                                  | alidate fuzzy relation, projections and its equivalence.         |                          |                                            |                        |            |                  |       |            |                |
| CO4                   | Analyse m                                                                    | Analyse multi valued logic and fuzzy logic with inference theory |                          |                                            |                        |            |                  |       |            |                |
| <b>CO5</b>            | Apply fuzziness in real valued problems                                      |                                                                  |                          |                                            |                        |            |                  |       |            | K1 to K5       |
| MAPPI                 | NG WITH                                                                      | G WITH PROGRAM OUTCOMES:                                         |                          |                                            |                        |            |                  |       |            |                |
| CO/PO                 | <b>PO1</b>                                                                   | PO2                                                              | PO3                      | PO4                                        | PO5                    | <b>PO6</b> | PO7              | PO8   | <b>PO9</b> | PO10           |
| <b>CO1</b>            | 3                                                                            | 2                                                                | -                        | 1                                          | 2                      | -          |                  |       |            |                |
| CO2                   | 2                                                                            | 2                                                                | -                        | -                                          | 2                      | -          |                  |       |            |                |
| <b>CO3</b>            | 2                                                                            | 1                                                                | 1                        | 2                                          | 2                      | 1          |                  |       |            |                |
| <b>CO4</b>            | 2                                                                            | 1                                                                | 1                        | 2                                          | 2                      | 1          |                  |       |            |                |
| CO5                   | 2                                                                            | 1                                                                | 1                        | 1                                          | -                      | 2          |                  |       |            |                |
| S- STR                | ONG                                                                          |                                                                  |                          | <b>M</b> – <b>M</b>                        | EDIUM                  |            |                  | L - L | ow         |                |
| CO / F                | O MAPPI                                                                      | NG:                                                              |                          |                                            |                        |            |                  |       |            |                |
| С                     | os                                                                           | PSO1                                                             | <u> </u>                 | PSO2                                       | PS                     | 03         | PSO <sub>2</sub> | PSO5  |            |                |
| C                     | 01                                                                           | 3                                                                |                          | 2                                          | 1                      | L          |                  |       |            |                |
| C                     | 0 2                                                                          | 3                                                                |                          | 2                                          | 1                      | <u> </u>   |                  |       |            |                |
| C                     | 03                                                                           | 3                                                                |                          | 2                                          | 1                      | <u> </u>   |                  |       |            |                |
| C                     | 04                                                                           | 3                                                                |                          | 2                                          | 1                      | <u>.</u>   |                  |       |            |                |
| C                     | 05                                                                           | 3                                                                |                          | 2                                          | 1                      | <u> </u>   |                  |       |            |                |
| WEIG                  | HTAGE                                                                        | 15                                                               |                          | 10                                         | 5                      | 5          |                  |       |            |                |
| PERCI<br>OF C<br>CONT | HTED<br>ENTAGE<br>OURSE<br>RIBUTI<br>O POS                                   | 3                                                                |                          | 2                                          | 1                      | L          |                  |       |            |                |
| LESSO                 | N PLAN:                                                                      |                                                                  |                          |                                            |                        |            |                  |       |            |                |
| UNIT                  | ]                                                                            | FUZZY S                                                          | ETS AN                   | D THEIR                                    | APPLIC                 | ATIONS     |                  | HRS   | PEI        | DAGOGY         |
| I                     | Fuzzy sets: Basic types–Basic concepts – Additional properties of $\alpha$ – |                                                                  |                          |                                            |                        |            |                  |       | С          | halk &<br>Talk |
| II                    | Fuzzy num<br>intervals –                                                     | nbers – Lin<br>Arithmeti                                         | guistic va<br>c operatio | riables – A<br>n on fuzzy                  | rithmetic o<br>numbers | -          | on               | 18    | С          | halk &<br>Talk |
| III                   | cyclinderic                                                                  | e extension                                                      | is- Binary               | Fuzzy relati<br>fuzzy relat<br>compatibili | ion on a si            |            | fuzzy            | 18    |            | halk &<br>Talk |

Academic Council Meeting Held On 20.04.2023

| IV | Fuzzy logic: Classical logic – An over view – multi valued logic –<br>Fuzzy propositions –Fuzzy quantifiers – Linguistic hedges – Inference<br>from conditional fuzzy propositions – Inference from conditional and<br>quantified propositions – Inference from quantified propositions | 18 | Chalk &<br>Talk |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| v  | Applications: Applications to Civil Engineering –Computer Engineering – Reliability theory – Robotics – Medicine – Economics.                                                                                                                                                           | 18 | Chalk &<br>Talk |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|--|
| Internal Cos   |                                                                                                                                                          | K Level                         | Section<br>MC(       | n A          | Section B<br>Either or | Section C        |  |  |  |  |
| mernar         | CUS                                                                                                                                                      | K Level                         | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |  |
| CI             | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |  |

|     | Distribution of Marks with K Level CIA I & CIA II |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|-----|---------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|--|--|--|
|     | K<br>Level                                        | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |  |  |  |
|     | K2                                                | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |  |  |  |
| ~   | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| CIA | K4                                                |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |  |  |  |
| Ι   | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |  |  |  |
|     | K2                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |  |  |  |  |
| CIA | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| II  | K4                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
|     | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | ive Exam                           | nination – B   | lue Print Artic     | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)      |
|-----------|------------------------------------|----------------|---------------------|----------------|----------------------------|---------------------------|
|           |                                    |                | Section A           | (MCQs)         | Section B (Either / or     | Section C (Either / or    |
| S. No     | Cos                                | K - Level      | No. of<br>Questions | K – Level      | Choice) With<br>K - LEVEL  | Choice) With<br>K - LEVEL |
| 1         | CO1                                | K1 – K5        | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 2         | CO2                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 3         | CO3                                | K1 – K5        | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 4         | CO4                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 5         | CO5                                | K1 – K5        | 2                   | K1,K2 2(K3,K3) |                            | 2(K4,K4)                  |
| No. of Qu | estions to                         | be Asked       | 10                  |                | 10                         | 10                        |
| No. of    | No. of Questions to be<br>answered |                |                     |                | 10                         | 5                         |
| Marks     | Marks for each question            |                | 1                   |                | 1                          | 8                         |
| Total Ma  | Total Marks for each section       |                |                     |                | 10                         | 40                        |
|           | (Figu                              | ires in parent | thesis denotes,     | questions show | uld be asked with the give | en K level)               |

| Distribution of Marks with K Level |                                                                                                   |                                   |                                     |                |                                      |                |  |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|--|--|--|--|
| K Level                            | Section A<br>(Multiple<br>Choice<br>Questions)                                                    | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |  |
| K1                                 | 5                                                                                                 |                                   |                                     | 5              | 3.6                                  | 4              |  |  |  |  |
| K2                                 | 5                                                                                                 | 20                                |                                     | 25             | 17.8                                 | 18             |  |  |  |  |
| K3                                 |                                                                                                   | 30                                | 32                                  | 62             | 44.3                                 | 44             |  |  |  |  |
| K4                                 |                                                                                                   |                                   | 48                                  | 48             | 34.3                                 | 34             |  |  |  |  |
| Marks                              | 10                                                                                                | 50                                | 80                                  | 140            | 100                                  | 100            |  |  |  |  |
| NB: Higher le                      | NB: Higher level of performance of the students is to be assessed by attempting higher level of K |                                   |                                     |                |                                      |                |  |  |  |  |

NB: Higher level of perform levels.

| Q. No.    | Unit           | CO  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         | · · · · · ·            |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         | · · · · · ·            |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         | · · · · · ·            |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         |                        |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

| Answei | ALL the que | estions |    | PART – B | (5 x 5 = 25 Marks) |  |  |  |  |  |  |
|--------|-------------|---------|----|----------|--------------------|--|--|--|--|--|--|
| 11. a) | Unit - I    | CO1     | K2 |          |                    |  |  |  |  |  |  |
|        | OR          |         |    |          |                    |  |  |  |  |  |  |
| 11. b) | Unit - I    | CO1     | K2 |          |                    |  |  |  |  |  |  |
| 12. a) | Unit - II   | CO2     | K3 |          |                    |  |  |  |  |  |  |
|        |             |         | ·  | OR       |                    |  |  |  |  |  |  |
| 12. b) | Unit - II   | CO2     | K3 |          |                    |  |  |  |  |  |  |
| 13. a) | Unit - III  | CO3     | K2 |          |                    |  |  |  |  |  |  |
|        | · · ·       |         | ·  | OR       |                    |  |  |  |  |  |  |
| 13. b) | Unit - III  | CO3     | K2 |          |                    |  |  |  |  |  |  |
| 14. a) | Unit - IV   | CO4     | K3 |          |                    |  |  |  |  |  |  |
|        |             |         |    | OR       |                    |  |  |  |  |  |  |
| 14. b) | Unit - IV   | CO4     | K3 |          |                    |  |  |  |  |  |  |
| 15. a) | Unit - V    | CO5     | K3 |          |                    |  |  |  |  |  |  |
|        | OR          |         |    |          |                    |  |  |  |  |  |  |
| 15. b) | Unit - V    | CO5     | K3 |          |                    |  |  |  |  |  |  |

| Answer A | ALL the quest | Answer ALL the questions |    |    | (5 x 8 = 40 Marks) |
|----------|---------------|--------------------------|----|----|--------------------|
| 16. a)   | Unit - I      | CO1                      | K3 |    |                    |
|          |               |                          |    | OR |                    |
| 16. b)   | Unit - I      | CO1                      | K3 |    |                    |
| 17. a)   | Unit - II     | CO2                      | K4 |    |                    |
|          |               |                          |    | OR |                    |
| 17. b)   | Unit - II     | CO2                      | K4 |    |                    |
| 18. a)   | Unit - III    | CO3                      | K3 |    |                    |
|          |               |                          |    | OR |                    |
| 18. b)   | Unit - III    | CO3                      | K3 |    |                    |
| 19. a)   | Unit - IV     | <b>CO4</b>               | K4 |    |                    |
|          |               |                          |    | OR |                    |
| 19. b)   | Unit - IV     | CO4                      | K4 |    |                    |
| 20. a)   | Unit - V      | CO5                      | K4 |    |                    |
|          |               |                          |    | OR |                    |
| 20. b)   | Unit - V      | CO5                      | K4 |    |                    |



# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

# FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name           | ADVANCED ALGEBRA                                                                                             |                          |          |         |
|-----------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|----------|---------|
| Course Code           | 23PMTCC21                                                                                                    | L                        | Р        | C       |
| Category              | CORE                                                                                                         | 6                        | -        | 5       |
| COURSE OBJEC          | CTIVES:                                                                                                      |                          |          |         |
|                       | d extension, roots of polynomials, Galois Theory, f<br>nd to develop computational skill in abstract algebra |                          | s, solva | ability |
| UNIT – I              |                                                                                                              |                          |          | 18      |
| Extension fields – 7  | Franscendence of e                                                                                           |                          |          |         |
| UNIT – II             |                                                                                                              |                          |          | 18      |
| Roots or Polynomia    | als More about roots                                                                                         |                          |          |         |
| UNIT - III            |                                                                                                              |                          |          | 18      |
| Elements of Galois    | theory.                                                                                                      |                          |          |         |
| UNIT – IV             |                                                                                                              |                          |          | 18      |
| Finite fields - Wed   | derburn's theorem on finite division rings.                                                                  |                          |          |         |
| UNIT - V              |                                                                                                              |                          |          | 18      |
| Solvability by radica | als - A theorem of Frobenius - Integral Quaternions                                                          | and the Four - Square th | leorem   |         |
|                       |                                                                                                              | Total Lecture Hou        | rs       | 90      |

▶ I.N. Herstein. *Topics in Algebra* (II Edition) Wiley EasternLimited, New Delhi, 1975. UNIT I: Chapter 5: Section 5.1 and 5.2

UNIT 2: Chapter 5: Sections 5.3 and 5.5

UNIT 3: Chapter 5 : Section 5.6

UNIT 4: Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)

UNIT 5: Chapter 5: Section 5.7 (omit Lemma 5.7.1, Lemma 5.7.2 and Theorem 5.7.1)

Chapter 7 : Sections 7.3 and 7.4

#### **BOOKS FOR REFERENCES:**

- M.Artin, *Algebra*, Prentice Hall of India, 1991.
- P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (Indian Edition)
- I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, Narosa Publishing House, New Delhi, 1999
- D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York. 1997.
- N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing Company, New Delhi.

#### **WEB RESOURCES:**

- http://mathforum.org
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org,
- www.algebra.com

| Nature of<br>Course                                                                         | EMPLOYABILITY        |  | 1   | SKILL ORIENTED |                 |        | ENTREPRENEURSHIP |   |            |  |
|---------------------------------------------------------------------------------------------|----------------------|--|-----|----------------|-----------------|--------|------------------|---|------------|--|
| Curriculum<br>Relevance                                                                     | LOCAL                |  | REG | IONAL          |                 | NATION | AL               | ~ | GLOBAL     |  |
| Changes<br>Made in the<br>Course                                                            | Percentage of Change |  |     | 100            | No Changes Made |        |                  |   | New Course |  |
| * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |                      |  |     |                |                 |        |                  |   |            |  |

| COUR             | SE OUTC                                          | OMES        |           |                |               |            |            |        |                 | K LEVEL        |
|------------------|--------------------------------------------------|-------------|-----------|----------------|---------------|------------|------------|--------|-----------------|----------------|
|                  |                                                  |             | ne studer | ts will be a   | ble to:       |            |            |        |                 |                |
| CO1              |                                                  |             |           | braic ways o   |               | •          |            |        |                 | K1 to K5       |
| CO2              |                                                  | 11 .        |           | and understa   | 0             |            | nian graph | s.     |                 | K1 to K5       |
| CO3              |                                                  | · •         | 0 1       | roofs using    | 0             |            | 0 1        |        |                 | K1 to K5       |
| CO4              | -                                                |             | -         | t Algebra w    | -             |            |            |        |                 | K1 to K5       |
| CO5              |                                                  |             | 0         | Inderstandir   | 0             |            | 1          | 0      | nsion           | K1 to K5       |
|                  | _                                                |             |           | Finite fields, | _             | ations and | Sylow's th | eorem. |                 | NI to NS       |
|                  |                                                  |             |           | TCOMES         |               | DOC        | 707        | 200    | 700             | <b>DO10</b>    |
| CO/PO            |                                                  | PO2         | PO3       | PO4            | PO5           | P06        | <b>PO7</b> | PO8    | <b>PO9</b>      | PO10           |
| CO1              | 3                                                | 1           | 3         | 2              | 3             | 3          |            |        |                 |                |
| CO2              | 2                                                | 1           | 3         | 1              | 3             | 3          |            |        |                 |                |
| CO3<br>CO4       | 3                                                | 2<br>2      | 3<br>3    | 1 2            | 3<br>3        | 3          |            |        |                 |                |
| C04              | 3                                                | 2           | 3         | 3              | 3             | 3          |            |        |                 |                |
|                  | STRONO                                           |             | 4         | -              | s<br>I – MEDI | -          |            |        | L - LO <b>I</b> | 17             |
|                  |                                                  |             |           | IV.            |               | OW         |            |        |                 |                |
|                  | PO MAPPI                                         |             |           |                |               |            |            | -      |                 | ~ =            |
| C                | OS                                               | PSO 1       | L         | PSO2           | PS            | 03         | PSO4       | 1      | PS              | 05             |
| C                | 01                                               | 3           |           | 2              | ]             | L          |            |        |                 |                |
| C                | 0 2                                              | 3           |           | 2              | 1             | L          |            |        |                 |                |
| C                | 03                                               | 3           |           | 2              | 1             |            |            |        |                 |                |
| C                | 04                                               | 3           |           | 2              | 1             |            |            |        |                 |                |
|                  |                                                  |             |           |                |               |            |            |        |                 |                |
|                  | 05                                               | 3           |           | 2              |               | L          |            |        |                 |                |
|                  | HTAGE                                            | 15          |           | 10 5           |               | 5          |            |        |                 |                |
| PERCION OF CONTI | GHTED<br>ENTAGE<br>COURSE 3<br>'RIBUTIO<br>O POS |             |           | 2              | ]             | L          |            |        |                 |                |
| LESSC            | N PLAN:                                          |             |           |                |               |            |            |        |                 |                |
| UNIT             |                                                  |             | ADVA      | NCED AL        | GEBRA         |            |            | HRS    | PE              | DAGOGY         |
| I                | Extension                                        | fields – Tr | anscende  | nce of e.      |               |            |            | 18     |                 | halk &<br>Talk |
| II               | Roots or P                                       | olynomial   | s More    | about roots    |               |            |            | 18     |                 | halk &<br>Talk |
| III              | Elements                                         | of Galois t | heory.    |                |               |            |            | 18     | C               | halk &<br>Talk |

| IV | Finite fields - Wedderburn's theorem on finite division rings.                                         | 18 | Chalk &<br>Talk |
|----|--------------------------------------------------------------------------------------------------------|----|-----------------|
| v  | Solvability by radicals - A theorem of Frobenius - Integral Quaternions and the Four - Square theorem. | 18 | Chalk &<br>Talk |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|--|
| Internal Co           | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |  |
|                       | CUS                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |  |
| CI                    | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |  |
| AII                   | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |  |
|                       | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |  |

|     |            | D                                              | istribution of                          | Marks with                              | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CT. | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | ive Exam                           | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|
|           |                                    |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                                | K - Level      | No. of          | K _ Level      |                            | Choice) With           |
|           |                                    |                | Questions       |                | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | estions to                         | be Asked       | 10              |                | 10                         | 10                     |
|           | No. of Questions to be<br>answered |                | 10              |                | 10                         | 5                      |
| Marks     | Marks for each question            |                | 1               |                | 1                          | 8                      |
| Total Ma  | rks for ea                         | ach section    | 10              |                | 10                         | 40                     |
|           | (Figu                              | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |

|               | Distribution of Marks with K Level             |                                   |                                     |                |                                      |                     |  |  |  |  |  |
|---------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|---------------------|--|--|--|--|--|
| K Level       | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated %      |  |  |  |  |  |
| K1            | 5                                              |                                   |                                     | 5              | 3.6                                  | 4                   |  |  |  |  |  |
| K2            | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18                  |  |  |  |  |  |
| K3            |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44                  |  |  |  |  |  |
| K4            |                                                |                                   | 48                                  | 48             | 34.3                                 | 34                  |  |  |  |  |  |
| Marks         | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100                 |  |  |  |  |  |
| NB: Higher le | vel of performa                                | ance of the stu                   | dents is to be                      | assessed l     | ov attempting                        | g higher level of K |  |  |  |  |  |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

| Q. No.    | Unit            | CO  | K-level |         |                     |
|-----------|-----------------|-----|---------|---------|---------------------|
| Answer AI | LL the question | ns  | PA      | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I        | CO1 | K1      |         |                     |
| 1.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - I        | CO1 | K2      |         |                     |
| 2.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - II       | CO2 | K1      |         |                     |
| 3.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - II       | CO2 | K2      |         |                     |
| 4.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - III      | CO3 | K1      |         |                     |
| 5.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - III      | CO3 | K2      |         |                     |
| 6.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - IV       | CO4 | K1      |         |                     |
| 7.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - IV       | CO4 | K2      |         |                     |
| 8.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - V        | CO5 | K1      |         |                     |
| 9.        |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |
|           | Unit - V        | CO5 | K2      |         |                     |
| 10.       |                 |     |         | a)      | b)                  |
|           |                 |     |         | c)      | d)                  |

| Answer | ALL the que | estions    |       | PART – B | (5 x 5 = 25 Marks) |
|--------|-------------|------------|-------|----------|--------------------|
| 11. a) | Unit - I    | CO1        | K2    |          |                    |
|        | · · · ·     |            |       | OR       |                    |
| 11. b) | Unit - I    | CO1        | K2    |          |                    |
| 12. a) | Unit - II   | CO2        | K3    |          |                    |
|        |             |            |       | OR       |                    |
| 12. b) | Unit - II   | CO2        | K3    |          |                    |
| 13. a) | Unit - III  | CO3        | K2    |          |                    |
|        |             |            |       | OR       |                    |
| 13. b) | Unit - III  | CO3        | K2    |          |                    |
| 14. a) | Unit - IV   | <b>CO4</b> | K3    |          |                    |
|        |             |            |       | OR       |                    |
| 14. b) | Unit - IV   | <b>CO4</b> | K3    |          |                    |
| 15. a) | Unit - V    | CO5        | K3    |          |                    |
|        |             |            | · · · | OR       |                    |
| 15. b) | Unit - V    | CO5        | K3    |          |                    |

| Answer . | ALL the quest | ions       |       | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|-------|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3    |          |                    |
| 17. a)   | Unit - II     | CO2        | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4    |          |                    |
| 18. a)   | Unit - III    | CO3        | K3    |          |                    |
|          |               |            |       | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3    |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4    |          |                    |
|          |               |            |       | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4    |          |                    |
| 20. a)   | Unit - V      | CO5        | K4    |          |                    |
|          |               |            | · · · | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4    |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

## FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name  | REAL ANALYSIS - II |   |   |   |  |  |  |  |
|--------------|--------------------|---|---|---|--|--|--|--|
| Course Code  | 23PMTCC22          | L | Р | С |  |  |  |  |
| Category     | CORE 6 - 5         |   |   |   |  |  |  |  |
| COURSE OBJEC | TIVES:             |   |   |   |  |  |  |  |

To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals, in-depth study in multivariable calculus.

### UNIT – I Measure on the Real line

Lebesgue Outer Measure - Measurable sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability.

#### UNIT – II Integration of Functions of a Real variable

Integration of Non- negative functions - The General Integral - Riemann and Lebesgue Integrals

### UNIT - III Fourier Series and Fourier Integrals

Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The Riesz-Fischer Thorem - The convergence and representation problems in for trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point – Cesarosummability of Fourier series- Consequences of Fejes's theorem - The Weierstrass approximation theorem

#### UNIT – IV Multivariable Differential Calculus

Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of  $R^n$  to  $R^1$ 

#### UNIT - V Implicit Functions and Extremum Problems

Functions with non-zero Jacobian determinants – The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables-Extremum problems with side conditions.

Total Lecture Hours90

18

18

18

18

18

G. de Barra, *Measure Theory and Integration*, Wiley Eastern Ltd., New Delhi, 1981. (for Units I and II)

UNIT I : Chapter - 2 Sec 2.1 to 2.5

#### UNIT II: Chapter - 3 Sec 3.1,3.2 and 3.4

Tom M.Apostol : Mathematical Analysis, 2<sup>nd</sup> Edition, Addison-Wesley Publishing Company Inc. New York, 1974. (for Units III, IV and V)

UNIT III: Chapter 11 : Sections 11.1 to 11.15

UNIT IV: Chapter 12 : Section 12.1 to 12.14

UNIT V: Chapter 13 : Sections 13.1 to 13.7

### **BOOKS FOR REFERENCES:**

- > Burkill, J.C. The Lebesgue Integral, Cambridge University Press, 1951.
- Munroe, M.E. Measure and Integration. Addison-Wesley, Mass. 1971.
- > Roydon,H.L.Real Analysis, Macmillan Pub. Company, New York, 1988.
- > Rudin, W. Principles of Mathematical Analysis, McGraw Hill Company, New York, 1979.
- Malik, S.C. and Savita Arora. Mathematical Analysis, Wiley Eastern Limited. New Delhi, 1991.
- Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991

#### WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/oc.
- wweb/Mathematics
- http://www.opensource.org

| Nature of<br>Course              | EMPLOYABILITY        |  |         | ✓         | SKILL OR |        | ENTREPRENEURSHIP |              |        |  |
|----------------------------------|----------------------|--|---------|-----------|----------|--------|------------------|--------------|--------|--|
| Curriculum<br>Relevance          | LOCAL                |  | REG     | IONAL     |          | NATION | AL               | $\checkmark$ | GLOBAL |  |
| Changes<br>Made in the<br>Course | Percentage of Change |  | No Chan | iges Made |          |        | New Course       | ✓            |        |  |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COURS            | SE OUTC                                                                                           | OMES:                    |              |             |              |             |              |             | ]          | K LEVEL        |
|------------------|---------------------------------------------------------------------------------------------------|--------------------------|--------------|-------------|--------------|-------------|--------------|-------------|------------|----------------|
| After st         | udying this                                                                                       | s course, tl             | ne student   | s will be a | ble to:      |             |              |             |            |                |
| <b>CO1</b>       |                                                                                                   | d and desc<br>orthogonal |              | sic concep  | ts of Fouri  | er series a | nd Fourier i | ntegrals w  | ith        | K1 to K5       |
| <b>CO2</b>       | Analyze th                                                                                        | ne represen              | tation and   | convergen   | ice problen  | ns of Fouri | ier series.  |             | ]          | X1 to K5       |
| <b>CO3</b>       | Analyze a                                                                                         | nd evaluate              | e the differ | ence betwo  | een transfo  | rms of var  | ious functio | ons.        | ]          | K1 to K5       |
| CO4              | Formulate theorem.                                                                                | and evaluation           | ate comple   | ex contour  | integrals di | irectly and | by the fund  | lamental    | ]          | K1 to K5       |
| CO5              | Apply the                                                                                         | Cauchy in                | tegral theo  | orem in its | various ver  | sions to co | ompute con   | tour integr | ation ]    | K1 to K5       |
| MAPPI            | NG WITH                                                                                           | I PROGR                  | AM OU1       | COMES       | :            |             |              |             |            |                |
| CO/PO            | <b>PO1</b>                                                                                        | PO2                      | PO3          | PO4         | <b>PO5</b>   | P06         | <b>PO7</b>   | <b>PO8</b>  | <b>PO9</b> | PO10           |
| CO1              | 3                                                                                                 | 1                        | 3            | 2           | 3            | 3           |              |             |            |                |
| <b>CO2</b>       | 2                                                                                                 | 1                        | 3            | 1           | 3            | 3           |              |             |            |                |
| <b>CO3</b>       | 3                                                                                                 | 2                        | 3            | 1           | 3            | 3           |              |             |            |                |
| <b>CO4</b>       | 1                                                                                                 | 2                        | 3            | 2           | 3            | 3           |              |             |            |                |
| CO5              | 3                                                                                                 | 1                        | 2            | 3           | 3            | 3           |              |             |            |                |
| S- STR           | ONG                                                                                               |                          |              | M – M       | EDIUM        |             |              | L - L       | OW         |                |
| CO / F           | O MAPPI                                                                                           | ING:                     |              |             |              |             |              |             |            |                |
| С                | os                                                                                                | PSO1                     | L            | PSO2 P      |              | 03          | PSO4         | •           | PS         | 05             |
| C                | 01                                                                                                | 3                        |              | 2           | 1            | 1           |              |             |            |                |
| C                | 0 2                                                                                               | 3                        |              | 2           | 1            | 1           |              |             |            |                |
| C                | 03                                                                                                | 3                        |              | 2           | 1            | L           |              |             |            |                |
| C                | 0 4                                                                                               | 3                        |              | 2           | 1            | L           |              |             |            |                |
| C                | 05                                                                                                | 3                        |              | 2           | 1            | 1           |              |             |            |                |
| WEIG             | HTAGE                                                                                             | 15                       |              | 10          | 5            | 5           |              |             |            |                |
| PERCE<br>OF CONT | GHTED<br>ENTAGE<br>OURSE 3 2 1<br>PRIBUTI                                                         |                          |              |             |              |             |              |             |            |                |
| LESSO            | N PLAN:                                                                                           |                          |              |             |              |             |              |             |            |                |
| UNIT             |                                                                                                   |                          | REAI         | ANALY       | SIS II       |             |              | HRS         | PEI        | DAGOGY         |
| I                | Lebesgue Outer Measure - Measurable sets - Regularity - Measurable                                |                          |              |             |              |             |              | 18          | С          | halk &<br>Talk |
| п                | Integration of Non- negative functions - The General Integral - Riemann<br>and Lebesgue Integrals |                          |              |             |              |             |              | 18          | С          | halk &<br>Talk |

| III | Introduction - Orthogonal system of functions - The theorem on best<br>approximation - The Fourier series of a function relative to an<br>orthonormal system - Properties of Fourier Coefficients - The Riesz-<br>Fischer Thorem - The convergence and representation problems in for<br>trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet<br>Integrals - An integral representation for the partial sums of Fourier<br>series - Riemann's localization theorem - Sufficient conditions for<br>convergence of a Fourier series at a particular point –<br>Cesarosummability of Fourier series- Consequences of Fejes's theorem -<br>The Weierstrass approximation theorem | 18 | Chalk &<br>Talk |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| IV  | Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of $\mathbb{R}^n$ to $\mathbb{R}^1$                                                                                                                                                                 | 18 | Chalk &<br>Talk |
| v   | Functions with non-zero Jacobian determinants – The inverse function<br>theorem-The Implicit function theorem-Extrema of real valued<br>functions of severable variables-Extremum problems with side<br>conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 | Chalk &<br>Talk |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|
| Internal Cos          |                                                                                                                                                          | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C        |  |  |  |
| Internar              | Internal Cos                                                                                                                                             | K Level                         | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |
| CI                    | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AII                   | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
|                       | L                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              | 20               |
| ~   | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | ive Exam                           | ination – B    | ue Print Artic      | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)      |
|-----------|------------------------------------|----------------|---------------------|----------------|----------------------------|---------------------------|
|           | S. No Cos K - Lev                  |                | Section A           | (MCQs)         | Section B (Either / or     | Section C (Either / or    |
| S. No     |                                    |                | No. of<br>Questions | K – Level      | Choice) With<br>K - LEVEL  | Choice) With<br>K - LEVEL |
| 1         | CO1                                | K1 – K5        | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 2         | CO2                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 3         | CO3                                | K1 – K5        | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 4         | CO4                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 5         | CO5                                | K1 – K5        | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| No. of Qu | estions to                         | be Asked       | 10                  |                | 10                         | 10                        |
|           | No. of Questions to be<br>answered |                | 10                  |                | 10                         | 5                         |
| Marks     | Marks for each question            |                | 1                   |                | 1                          | 8                         |
| Total Ma  | Total Marks for each section       |                | 10                  |                | 10                         | 40                        |
|           | (Figu                              | ires in parent | thesis denotes,     | questions show | uld be asked with the give | en K level)               |

|                          | Distribution of Marks with K Level             |                                   |                                     |                |                                      |                     |  |  |  |  |
|--------------------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|---------------------|--|--|--|--|
| K Level                  | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated %      |  |  |  |  |
| K1                       | 5                                              |                                   |                                     | 5              | 3.6                                  | 4                   |  |  |  |  |
| K2                       | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18                  |  |  |  |  |
| K3                       |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44                  |  |  |  |  |
| K4                       |                                                |                                   | 48                                  | 48             | 34.3                                 | 34                  |  |  |  |  |
| Marks                    | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100                 |  |  |  |  |
| NB: Higher le<br>levels. | vel of performa                                | nce of the stu                    | dents is to be                      | assessed l     | oy attempting                        | g higher level of K |  |  |  |  |

| Q. No.    | Unit           | СО  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         | '                      |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         | '                      |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         |                        |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         | '                      |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

| Answei | ALL the que | estions    |    | PART – B | (5 x 5 = 25 Marks) |
|--------|-------------|------------|----|----------|--------------------|
| 11. a) | Unit - I    | CO1        | K2 |          |                    |
|        |             |            |    | OR       |                    |
| 11. b) | Unit - I    | CO1        | K2 |          |                    |
| 12. a) | Unit - II   | CO2        | K3 |          |                    |
|        |             |            |    | OR       |                    |
| 12. b) | Unit - II   | CO2        | K3 |          |                    |
| 13. a) | Unit - III  | CO3        | K2 |          |                    |
|        |             |            |    | OR       |                    |
| 13. b) | Unit - III  | CO3        | K2 |          |                    |
| 14. a) | Unit - IV   | <b>CO4</b> | K3 |          |                    |
|        |             |            |    | OR       |                    |
| 14. b) | Unit - IV   | CO4        | K3 |          |                    |
| 15. a) | Unit - V    | CO5        | K3 |          |                    |
|        |             |            | I  | OR       |                    |
| 15. b) | Unit - V    | CO5        | K3 |          |                    |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|----|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

# FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name   | PARTIAL DIFFERENTIAL EQUATIONS |   |   |   |  |  |  |  |
|---------------|--------------------------------|---|---|---|--|--|--|--|
| Course Code   | 23PMTCC23                      | L | Р | С |  |  |  |  |
| Category      | Core                           | 6 | - | 4 |  |  |  |  |
| COUDSE OD IEC |                                |   |   |   |  |  |  |  |

# COURSE OBJECTIVES:

To classify the second order partial differential equations and to study Cauchy problem, method of separation of variables, boundary value problems

## UNIT – I Mathematical Models and Classification of second order equation 18

Classical equations-Vibrating string – Vibrating membrane – waves in elastic medium – Conduction of heat in solids – Gravitational potential – Second order equations in two independent variables – canonical forms – equations with constant coefficients – general solution

## UNIT – II Cauchy Problem

The Cauchy problem – Cauchy-Kowalewsky theorem – Homogeneous wave equation – Initial Boundary value problem- Non-homogeneous boundary conditions – Finite string with fixed ends – Non-homogeneous wave equation – Riemann method – Goursat problem – spherical wave equation – cylindrical wave equation.

### UNIT - III Method of separation of variables

Separation of variable- Vibrating string problem – Existence and uniqueness of solution of vibrating string problem - Heat conduction problem – Existence and uniqueness of solution of heat conduction problem – Laplace and beam equations

## UNIT – IV Boundary Value Problems

Boundary value problems – Maximum and minimum principles – Uniqueness and continuity theorem – Dirichlet Problem for a circle, a circular annulus, a rectangle – Dirichlet problem involving Poisson equation – Neumann problem for a circle and a rectangle.

## UNIT - V Green's Function

The Delta function – Green's function – Method of Green's function – Dirichlet Problem for the Laplace and Helmholtz operators – Method of images and eigen functions – Higher dimensional problem – Neumann Problem.

Total Lecture Hours90

# 18

18

18

#### 18



TynMyint-U and Lokenath Debnath, Partial Differential Equations for Scientists and Engineers (Third Edition), North Hollan, New York, 1987.

UNIT I : Chapter 2 : Sections 2.1 to 2.6

Chapter 3 : Sections 3.1 to 3.4 (Omit 3.5)

UNIT II: Chapter 4 : Sections 4.1 to 4.11

UNIT III: Chapter 6 : Sections 6.1 to 6.6 (Omit section 6.7)

UNIT IV : Chapter 8 : Sections 8.1 to 8.9

UNIT V: Chapter 10 : Section 10.1 to 10.9

## **BOOKS FOR REFERENCES:**

- M.M.Smirnov, Second Order partial Differential Equations, Leningrad, 1964.
- > I.N.Sneddon, Elements of Partial Differential Equations, McGraw Hill, New Delhi, 1983.
- R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems, McGraw Hill, New York, 1968.
- M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company Ltd., New Delhi, 2001.
- S, Sankar Rao, Partial Differential Equations, 2<sup>nd</sup> Edition, Prentice
- Hall of India, New Delhi. 2004

## WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org, www.mathpages.com

| Nature of<br>Course              | EMPLOYABILITY        |  |    | ~               | SKILL OR |        | ENTREPRENEURSHIP |   |        |  |
|----------------------------------|----------------------|--|----|-----------------|----------|--------|------------------|---|--------|--|
| Curriculum<br>Relevance          | LOCAL REGIO          |  |    | IONAL           |          | NATION | AL               | ~ | GLOBAL |  |
| Changes<br>Made in the<br>Course | Percentage of Change |  | 50 | No Changes Made |          |        | New Course       |   |        |  |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COURS            | E OUTC                                                                                                                                                                  | OMES:      |            |              |             |             |                  |            |     | K LEVEL         |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|-------------|-------------|------------------|------------|-----|-----------------|--|
| After stu        | udying this                                                                                                                                                             | course, tl | ne studen  | ts will be a | ble to:     |             |                  |            |     |                 |  |
| CO1              | To underst                                                                                                                                                              | and and cl | assify sec | ond order e  | equations a | nd find ge  | eneral solution  | ons        |     | K1 to K5        |  |
| CO2              | To analyse                                                                                                                                                              | and solve  | wave equ   | ations in d  | ifferent po | lar coordii | nates            |            |     | K1 to K5        |  |
| CO3              | Laplace an                                                                                                                                                              | id beam eq | uations    |              |             | • ·         | to identify a    |            |     | K1 to K5        |  |
| CO4              | various bo                                                                                                                                                              | undary coi | nditions   |              |             |             | ılet, Neuma      | •          |     | r K1 to K5      |  |
| CO5              | To apply Green's function and solve Dirichlet, Laplace problems, to apply Helmholtz<br>operation and to solve Higher dimensional problem<br>PING WITH PROGRAM OUTCOMES: |            |            |              |             |             |                  |            | tz  | K1 to K5        |  |
|                  |                                                                                                                                                                         |            | 1          | 1            |             |             |                  |            |     |                 |  |
| CO/PO            | PO1                                                                                                                                                                     | PO2        | PO3        | PO4          | PO5         | <b>PO6</b>  | PO7              | <b>PO8</b> | POS | <b>PO10</b>     |  |
| CO1              | 3                                                                                                                                                                       | 1          | 3          | 2            | 3           | 3           |                  |            |     |                 |  |
| <b>CO2</b>       | 2                                                                                                                                                                       | 1          | 3          | 1            | 3           | 3           |                  |            |     |                 |  |
| CO3              | 3                                                                                                                                                                       | 2          | 3          | 1            | 3           | 3           |                  |            |     |                 |  |
| CO4              | 1                                                                                                                                                                       | 2          | 3          | 2            | 3           | 3           |                  |            |     |                 |  |
| CO5              | 3                                                                                                                                                                       | 1          | 2          | 3            | 3           | 3           |                  |            |     |                 |  |
| 5                | S- STRONG M – MEDIUM L - LOW                                                                                                                                            |            |            |              |             |             |                  |            |     |                 |  |
| CO / P           | O MAPPI                                                                                                                                                                 | NG:        |            |              |             |             |                  |            |     |                 |  |
| C                | os                                                                                                                                                                      | PSO1       | L          | PSO2         | PS          | 03          | PSO <sub>2</sub> | ł          | P   | SO5             |  |
| C                | D 1                                                                                                                                                                     | 3          |            | 2            | ]           |             |                  |            |     |                 |  |
| C                | 02                                                                                                                                                                      | 3          |            | 2            | 1           | L           |                  |            |     |                 |  |
| C                | D 3                                                                                                                                                                     | 3          |            | 2            | ]           | 1           |                  |            |     |                 |  |
| C                | ) 4                                                                                                                                                                     | 3          |            | 2 1          |             | L           |                  |            |     |                 |  |
| C                | D 5                                                                                                                                                                     | 3          |            | 2            | ]           | L           |                  |            |     |                 |  |
| WEIGI            | HTAGE                                                                                                                                                                   | 15         |            | 10           | Ę           | 5           |                  |            |     |                 |  |
| PERCE<br>OF CONT | HTED<br>CNTAGE<br>DURSE 3 2 1<br>RIBUTI<br>O POS                                                                                                                        |            |            |              |             |             |                  |            |     |                 |  |
| LESSO            | N PLAN:                                                                                                                                                                 |            |            |              |             |             |                  |            |     |                 |  |
| UNIT             |                                                                                                                                                                         | PARTIA     | AL DIFF    | ERENTIA      | AL EQUA     | TIONS       |                  | HRS        | PE  | DAGOGY          |  |
| I                | Classical equations-Vibrating string – Vibrating membrane – waves in<br>elastic medium – Conduction of heat in solids – Gravitational potential                         |            |            |              |             |             |                  | 18         |     | Chalk &<br>Talk |  |

| п   | The Cauchy problem – Cauchy-Kowalewsky theorem – Homogeneous<br>wave equation – Initial Boundary value problem- Non-homogeneous<br>boundary conditions – Finite string with fixed ends – Non-homogeneous<br>wave equation – Riemann method – Goursat problem – spherical wave<br>equation – cylindrical wave equation. | 18 | Chalk &<br>Talk |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| III | Separation of variable- Vibrating string problem – Existence and<br>uniqueness of solution of vibrating string problem - Heat conduction<br>problem – Existence and uniqueness of solution of heat conduction<br>problem – Laplace and beam equations                                                                  | 18 | Chalk &<br>Talk |
| IV  | Boundary value problems – Maximum and minimum principles –<br>Uniqueness and continuity theorem – Dirichlet Problem for a circle, a<br>circular annulus, a rectangle – Dirichlet problem involving Poisson<br>equation – Neumann problem for a circle and a rectangle.                                                 | 18 | Chalk &<br>Talk |
| v   | The Delta function – Green's function – Method of Green's function –<br>Dirichlet Problem for the Laplace and Helmholtz operators – Method of<br>images and eigen functions – Higher dimensional problem – Neumann<br>Problem                                                                                          | 18 | Chalk &<br>Talk |

|                                   | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|
| Internal Cos                      | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |
|                                   | 005                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |
| CI                                | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |
| AI                                | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |
| CI                                | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |
| AII                               | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |
|                                   | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |
| Question<br>Pattern<br>CIA I & II |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |
|                                   |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |
|                                   |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| ~   | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | ive Exam                           | ination – B   | ue Print Artic      | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)      |
|-----------|------------------------------------|---------------|---------------------|----------------|----------------------------|---------------------------|
|           |                                    |               | Section A           | (MCQs)         | Section B (Either / or     | Section C (Either / or    |
| S. No     | Cos                                | K - Level     | No. of<br>Questions | K – Level      | Choice) With<br>K - LEVEL  | Choice) With<br>K - LEVEL |
| 1         | 1 CO1 K1-K5                        |               | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 2         | 2 CO2 K1 – K5                      |               | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 3         | CO3                                | K1 – K5       | 2                   | K1,K2          | 2(K2,K2)                   | 2(K3,K3)                  |
| 4         | CO4                                | K1 – K5       | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| 5         | CO5                                | K1 – K5       | 2                   | K1,K2          | 2(K3,K3)                   | 2(K4,K4)                  |
| No. of Qu | estions to                         | be Asked      | 10                  |                | 10                         | 10                        |
|           | No. of Questions to be<br>answered |               |                     |                | 10                         | 5                         |
| Marks     | Marks for each question            |               | 1                   |                | 1                          | 8                         |
| Total Ma  | Total Marks for each section       |               | 10                  |                | 10                         | 40                        |
|           | (Figu                              | ires in paren | thesis denotes,     | questions show | uld be asked with the give | en K level)               |

|                          | Distribution of Marks with K Level                                                                |                                   |                                     |                |                                      |                |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|--|--|--|--|
| K Level                  | Section A<br>(Multiple<br>Choice<br>Questions)                                                    | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |  |
| K1                       | 5                                                                                                 |                                   |                                     | 5              | 3.6                                  | 4              |  |  |  |  |
| K2                       | 5                                                                                                 | 20                                |                                     | 25             | 17.8                                 | 18             |  |  |  |  |
| K3                       |                                                                                                   | 30                                | 32                                  | 62             | 44.3                                 | 44             |  |  |  |  |
| K4                       |                                                                                                   |                                   | 48                                  | 48             | 34.3                                 | 34             |  |  |  |  |
| Marks                    | 10                                                                                                | 50                                | 80                                  | 140            | 100                                  | 100            |  |  |  |  |
| NB: Higher le<br>levels. | NB: Higher level of performance of the students is to be assessed by attempting higher level of K |                                   |                                     |                |                                      |                |  |  |  |  |

| Q. No.    | Unit           | СО  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         | '                      |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         | '                      |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         |                        |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         | '                      |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

| Answei | ALL the que | estions    |    | PART – B | (5 x 5 = 25 Marks) |
|--------|-------------|------------|----|----------|--------------------|
| 11. a) | Unit - I    | CO1        | K2 |          |                    |
|        |             |            |    | OR       |                    |
| 11. b) | Unit - I    | CO1        | K2 |          |                    |
| 12. a) | Unit - II   | CO2        | K3 |          |                    |
|        |             |            |    | OR       |                    |
| 12. b) | Unit - II   | CO2        | K3 |          |                    |
| 13. a) | Unit - III  | CO3        | K2 |          |                    |
|        |             |            |    | OR       |                    |
| 13. b) | Unit - III  | CO3        | K2 |          |                    |
| 14. a) | Unit - IV   | <b>CO4</b> | K3 |          |                    |
|        |             |            |    | OR       |                    |
| 14. b) | Unit - IV   | CO4        | K3 |          |                    |
| 15. a) | Unit - V    | CO5        | K3 |          |                    |
|        |             |            | I  | OR       |                    |
| 15. b) | Unit - V    | CO5        | K3 |          |                    |

| Answer <b>ALL</b> the questions |            |            |    | PART – C | (5 x 8 = 40 Marks) |  |  |  |  |  |
|---------------------------------|------------|------------|----|----------|--------------------|--|--|--|--|--|
| 16. a)                          | Unit - I   | CO1        | K3 |          |                    |  |  |  |  |  |
|                                 | OR         |            |    |          |                    |  |  |  |  |  |
| 16. b)                          | Unit - I   | CO1        | K3 |          |                    |  |  |  |  |  |
| 17. a)                          | Unit - II  | CO2        | K4 |          |                    |  |  |  |  |  |
|                                 |            |            |    | OR       |                    |  |  |  |  |  |
| 17. b)                          | Unit - II  | CO2        | K4 |          |                    |  |  |  |  |  |
| 18. a)                          | Unit - III | CO3        | K3 |          |                    |  |  |  |  |  |
|                                 |            |            |    | OR       |                    |  |  |  |  |  |
| 18. b)                          | Unit - III | CO3        | K3 |          |                    |  |  |  |  |  |
| 19. a)                          | Unit - IV  | <b>CO4</b> | K4 |          |                    |  |  |  |  |  |
|                                 |            |            |    | OR       |                    |  |  |  |  |  |
| 19. b)                          | Unit - IV  | CO4        | K4 |          |                    |  |  |  |  |  |
| 20. a)                          | Unit - V   | CO5        | K4 |          |                    |  |  |  |  |  |
|                                 | I          |            |    | OR       |                    |  |  |  |  |  |
| 20. b)                          | Unit - V   | CO5        | K4 |          |                    |  |  |  |  |  |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

# FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

|                                                                                                             | NUMERICAL ANALYSIS                                                                                                                                                                                                                      |        |          |                                                   |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------------------------------------------------|
| Course Code                                                                                                 | 23PMTEC21                                                                                                                                                                                                                               | L      | Р        | С                                                 |
| Category                                                                                                    | ELECTIVE                                                                                                                                                                                                                                | 6      | -        | 4                                                 |
| COURSE OBJEC                                                                                                | CTIVES:                                                                                                                                                                                                                                 |        |          | 1                                                 |
| <ul> <li>To practice N</li> <li>To introduce</li> <li>To demonstr<br/>employabilit</li> </ul>               | Numerical computational skills.<br>Numerical computational applications.<br>difference equations and recurrence equations.<br>ate understanding and implementation of numerical solution of algorith<br>y<br>prors in the approximation | ms t   | based fo | or                                                |
| UNIT – I                                                                                                    |                                                                                                                                                                                                                                         |        |          | 18                                                |
| Bisection method – a                                                                                        | Iteration method (approximation method) based on first degree equation                                                                                                                                                                  | 1, sec | cond de  | egree                                             |
| UNIT – II                                                                                                   |                                                                                                                                                                                                                                         |        |          | 18                                                |
|                                                                                                             | ward substitution method, back substitution method, Cramer rule, Gauss<br>an method – triangulation method – LU decomposition– Cholesky meth                                                                                            |        |          |                                                   |
|                                                                                                             |                                                                                                                                                                                                                                         |        |          |                                                   |
| UNIT - III                                                                                                  |                                                                                                                                                                                                                                         |        |          | 18                                                |
| Iterative methods -                                                                                         | Jacobi iteration methods, Gauss-Seidel iteration methods, Similarity trans<br>n vectors –Jacobi method for symmetric matrices.                                                                                                          | nsfo   | rmatio   | 18                                                |
| Iterative methods<br>Eigen values – Eiger                                                                   |                                                                                                                                                                                                                                         | nsfo   | rmatio   | 18                                                |
| Iterative methods - Eigen values – Eiger<br><b>UNIT – IV</b><br>Lagrange's and New                          | n vectors –Jacobi method for symmetric matrices.<br>vton Interpolation, Finite Difference Operators, Interpolating Polynomia                                                                                                            |        |          | <b>18</b><br>n –<br><b>18</b>                     |
| Iterative methods<br>Eigen values – Eiger<br><b>UNIT – IV</b><br>Lagrange's and New<br>Differences, Hermite | n vectors –Jacobi method for symmetric matrices.<br>vton Interpolation, Finite Difference Operators, Interpolating Polynomia                                                                                                            |        |          | <b>18</b><br>n –<br><b>18</b>                     |
| Eigen values – Eiger<br><b>UNIT – IV</b><br>Lagrange's and New<br>Differences, Hermite<br><b>UNIT - V</b>   | n vectors –Jacobi method for symmetric matrices.<br>vton Interpolation, Finite Difference Operators, Interpolating Polynomia<br>e Interpolation.<br>iation, Partial Differentiation, Numerical Integration, Methods based on            | als us | sing Fii | <b>18</b><br>1-<br><b>18</b><br>nite<br><b>18</b> |

M.K.Jain, S.R.K.Iyengar, R.K.Jain, Numerical Methods for scientific and Engineering computation – 4th edition, New age international Pvt limited, New Delhi, 2009.

> Unit I - Chapter 2 : Section 2.1-2.4 and 2.5 Unit II - Chapter 3 : Section 3.1, 3.2 Unit III - Chapter 3 : Section 3.4, 3.5 and 3.7 Unit IV - Chapter 4 : Section 4.1 – 4.5 Unit V - Chapter 5 : Section 5.1, 5.2, 5.5 - 5.7, 5.9.

#### **BOOKS FOR REFERENCES:**

- **G**.Shankar Rao, **Numerical Analysis**, New Age International publishers, New Delhi,1997.
- > Rainer Kress, Numerical Analysis, Springer international Edition, New Delhi, 2010.
- S.R.K.Iyengar ,R.K.Jain ,Numerical Methods, , New age international Pvt limited, New Delhi, 2008.

#### **WEB RESOURCES:**

- http://www.ece.mcmaster.ca/~xwu/part6.pdf
- http://www.cis.upenn.edu/~cis515/cis515-12-sl2.pdf
- https://wiki.math.ntnu.no/\_media/tma4215/2012h/note.pdf

| Nature of<br>Course                                                                         | EMPLOYABILITY        |                     |     | ~       | SKILL OR | SKILL ORIENTED |  | ENTREPRENEURSHIP |  |  |
|---------------------------------------------------------------------------------------------|----------------------|---------------------|-----|---------|----------|----------------|--|------------------|--|--|
| Curriculum<br>Relevance                                                                     | LOCAL                | L REGIONAL NATIONAL |     | AL      | ~        | GLOBAL         |  |                  |  |  |
| Changes<br>Made in the<br>Course                                                            | Percentage of Change |                     | 10% | No Char | ges Made |                |  | New Course       |  |  |
| * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |                      |                     |     |         |          |                |  |                  |  |  |

| COUR                                                                      | SE OUTC                                                                                                            | OMES:        |             |                                          |             |             |             |             | I   | K LEVEL           |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------------------------------|-------------|-------------|-------------|-------------|-----|-------------------|
| After st                                                                  | udying this                                                                                                        | s course, tl | ne student  | ts will be a                             | ble to:     |             |             |             |     |                   |
| <b>CO1</b>                                                                | Demonstr                                                                                                           | ate the und  | erstanding  | g of direct r                            | nethods an  | d iterative | methods for | or equation | s I | K1 to K5          |
| <b>CO2</b>                                                                | Apply pro                                                                                                          | per method   | ls for solv | ing transce                              | ndental, al | gebraic an  | d system of | equations   | ł   | K1 to K5          |
| <b>CO3</b>                                                                | Evaluate i                                                                                                         | nterpolatio  | n and extr  | apolation u                              | sing tabula | ar values   |             |             | ł   | K1 to K5          |
| <b>CO4</b>                                                                | Associate                                                                                                          | tabular val  | ues with i  | ntegration                               | and differe | ntiation    |             |             | F   | K1 to K5          |
| <b>CO5</b>                                                                | Use iterati                                                                                                        | ve method    | s for PDE   |                                          |             |             |             |             | F   | K1 to K5          |
| MAPPI                                                                     | NG WITH                                                                                                            | I PROGR      |             | rcomes                                   | :           |             |             |             |     |                   |
| CO/PO                                                                     | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9                |              |             |                                          |             |             |             |             |     | PO10              |
| <b>CO</b> 1                                                               | 3                                                                                                                  | 3            | 3           | 1                                        | 1           | 1           |             |             |     |                   |
| CO2                                                                       | 3                                                                                                                  | 3            | 2           | 2                                        | 1           | -           |             |             |     |                   |
| CO3                                                                       | 3                                                                                                                  | 3            | 3           | 1                                        | 1           | 1           |             |             |     |                   |
| CO4                                                                       | 3                                                                                                                  | 3            | 2           | 2                                        | 1           | -           |             |             |     |                   |
| CO5                                                                       | 3                                                                                                                  | 3            | 2           | 2                                        | 2           | 1           |             |             |     |                   |
| S- STR                                                                    | RONG                                                                                                               |              |             | <b>M</b> – <b>M</b>                      | EDIUM       |             |             | L - L       | ow  |                   |
| CO / I                                                                    | PO MAPP                                                                                                            | ING:         |             |                                          |             |             |             |             |     |                   |
| С                                                                         | os                                                                                                                 | <b>PSO</b>   | L           | PSO2                                     | PS          | PSO3 PSO4   |             |             | PS  | 05                |
| C                                                                         | 01                                                                                                                 | 3            |             | 2                                        | 1           | 1           |             |             |     |                   |
| C                                                                         | 0 2                                                                                                                | 3            |             | 2                                        |             | 1           |             |             |     |                   |
| C                                                                         | 03                                                                                                                 | 3            |             | 2 1                                      |             |             |             |             |     |                   |
| C                                                                         | 04                                                                                                                 | 3            |             | 2                                        | 1           | 1           |             |             |     |                   |
| C                                                                         | 05                                                                                                                 | 3            |             | 2 1                                      |             | 1           |             |             |     |                   |
| WEIG                                                                      | HTAGE                                                                                                              | 15           |             | 10                                       |             | 5           |             |             |     |                   |
| WEIGHTED<br>PERCENTAGE<br>OF COURSE321OF COURSE321CONTRIBUTI<br>ON TO POS |                                                                                                                    |              |             |                                          |             |             |             |             |     |                   |
| LESSC                                                                     | N PLAN:                                                                                                            |              |             |                                          |             |             |             |             |     |                   |
| UNIT                                                                      | NUMERICAL ANALYSIS                                                                                                 |              |             |                                          |             |             |             | HRS         | PEI | DAGOGY            |
| I                                                                         | Bisection method – Iteration method (approximation method) based on first degree equation, second degree equation. |              |             |                                          |             |             |             |             |     | halk &<br>lk, PPT |
| II                                                                        | Cramer ru                                                                                                          | le, Gauss e  | liminatior  | tution metl<br>n method, C<br>omposition | Gauss Jorda | an method   | .—          | 18          |     | halk &<br>Talk    |

| III | Iterative methods - Jacobi iteration methods, Gauss-Seidel iteration<br>methods, Similarity transformation – Eigen values – Eigen vectors –<br>Jacobi method for symmetric matrices. | 18 | Chalk &<br>Talk      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|
| IV  | Lagrange's and Newton Interpolation, Finite Difference Operators,<br>Interpolating Polynomials using Finite Differences, Hermite<br>Interpolation.                                   | 18 | Chalk &<br>Talk, PPT |
| v   | Numerical Differentiation, Partial Differentiation, Numerical<br>Integration, Methods based on Interpolation, Composite Integration<br>methods.                                      | 18 | Chalk &<br>Talk      |

|                                   | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|
| Internal                          | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |
|                                   | 005                                                                                                                                                      | I Level                         | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |
| CI                                | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |
| AI                                | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |
| CI                                | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |
| AII                               | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |
|                                   | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |
| Question<br>Pattern<br>CIA I & II |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |
|                                   |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |
|                                   |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |

|     | Distribution of Marks with K Level CIA I & CIA II |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|-----|---------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|--|--|--|
|     | K<br>Level                                        | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |  |  |  |
|     | K2                                                | 2                                              | 10                                      |                                         | 12             | 21.4                              | 20               |  |  |  |  |
| ~   | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| CIA | K4                                                |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |  |  |  |
| Ι   | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |  |  |  |
|     | K2                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |  |  |  |  |
| CIA | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| II  | K4                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
|     | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs) |               |                 |                                                                                    |                        |                        |  |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------|---------------|-----------------|------------------------------------------------------------------------------------|------------------------|------------------------|--|--|--|--|--|--|--|
|           |                                                                                              |               | Section A       | (MCQs)                                                                             | Section B (Either / or | Section C (Either / or |  |  |  |  |  |  |  |
| S. No     | Cos                                                                                          | K - Level     | No. of          | K – Level                                                                          | Choice) With           | Choice) With           |  |  |  |  |  |  |  |
|           |                                                                                              |               | Questions       |                                                                                    | K - LEVEL              | K - LEVEL              |  |  |  |  |  |  |  |
| 1         | CO1                                                                                          | K1 – K5       | 2               | K1,K2                                                                              | 2(K2,K2)               | 2(K3,K3)               |  |  |  |  |  |  |  |
| 2         | CO2                                                                                          | K1 – K5       | 2               | K1,K2                                                                              | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |  |  |  |
| 3         | CO3 K1 – K5                                                                                  |               | 2               | K1,K2                                                                              | 2(K2,K2)               | 2(K3,K3)               |  |  |  |  |  |  |  |
| 4         | CO4                                                                                          | K1 – K5       | 2               | K1,K2                                                                              | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |  |  |  |
| 5         | CO5                                                                                          | K1 – K5       | 2               | K1,K2                                                                              | 2(K3,K3)               | 2(K4,K4)               |  |  |  |  |  |  |  |
| No. of Qu | estions to                                                                                   | be Asked      | 10              |                                                                                    | 10                     | 10                     |  |  |  |  |  |  |  |
|           | No. of Questions to be<br>answered                                                           |               |                 |                                                                                    | 10                     | 5                      |  |  |  |  |  |  |  |
| Marks     | Marks for each question                                                                      |               |                 |                                                                                    | 1                      | 8                      |  |  |  |  |  |  |  |
| Total Ma  | Total Marks for each section                                                                 |               |                 |                                                                                    | 10                     | 40                     |  |  |  |  |  |  |  |
|           | (Figu                                                                                        | ires in paren | thesis denotes, | (Figures in parenthesis denotes, questions should be asked with the given K level) |                        |                        |  |  |  |  |  |  |  |

|                          | Distribution of Marks with K Level                                                                |                                   |                                     |                |                                      |                |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|--|--|--|--|--|
| K Level                  | Section A<br>(Multiple<br>Choice<br>Questions)                                                    | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |  |  |
| K1                       | 5                                                                                                 |                                   |                                     | 5              | 3.6                                  | 4              |  |  |  |  |  |
| K2                       | 5                                                                                                 | 20                                |                                     | 25             | 17.8                                 | 18             |  |  |  |  |  |
| K3                       |                                                                                                   | 30                                | 32                                  | 62             | 44.3                                 | 44             |  |  |  |  |  |
| K4                       |                                                                                                   |                                   | 48                                  | 48             | 34.3                                 | 34             |  |  |  |  |  |
| Marks                    | 10                                                                                                | 50                                | 80                                  | 140            | 100                                  | 100            |  |  |  |  |  |
| NB: Higher le<br>levels. | NB: Higher level of performance of the students is to be assessed by attempting higher level of K |                                   |                                     |                |                                      |                |  |  |  |  |  |

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | СО  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         | '                      |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         | '                      |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         |                        |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         | '                      |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

| Answei | ALL the que | estions    |    | PART – B | (5 x 5 = 25 Marks) |  |  |  |  |  |  |  |
|--------|-------------|------------|----|----------|--------------------|--|--|--|--|--|--|--|
| 11. a) | Unit - I    | CO1        | K2 |          |                    |  |  |  |  |  |  |  |
|        | OR          |            |    |          |                    |  |  |  |  |  |  |  |
| 11. b) | Unit - I    | CO1        | K2 |          |                    |  |  |  |  |  |  |  |
| 12. a) | Unit - II   | CO2        | K3 |          |                    |  |  |  |  |  |  |  |
|        |             |            |    | OR       |                    |  |  |  |  |  |  |  |
| 12. b) | Unit - II   | CO2        | K3 |          |                    |  |  |  |  |  |  |  |
| 13. a) | Unit - III  | CO3        | K2 |          |                    |  |  |  |  |  |  |  |
|        |             |            |    | OR       |                    |  |  |  |  |  |  |  |
| 13. b) | Unit - III  | CO3        | K2 |          |                    |  |  |  |  |  |  |  |
| 14. a) | Unit - IV   | <b>CO4</b> | K3 |          |                    |  |  |  |  |  |  |  |
|        |             |            |    | OR       |                    |  |  |  |  |  |  |  |
| 14. b) | Unit - IV   | <b>CO4</b> | K3 |          |                    |  |  |  |  |  |  |  |
| 15. a) | Unit - V    | CO5        | K3 |          |                    |  |  |  |  |  |  |  |
|        | OR          |            |    |          |                    |  |  |  |  |  |  |  |
| 15. b) | Unit - V    | CO5        | K3 |          |                    |  |  |  |  |  |  |  |

| Answer A | ALL the quest | ions       |           | PART – C | (5 x 8 = 40 Marks) |  |  |  |  |  |  |  |
|----------|---------------|------------|-----------|----------|--------------------|--|--|--|--|--|--|--|
| 16. a)   | Unit - I      | CO1        | K3        |          |                    |  |  |  |  |  |  |  |
|          | OR            |            |           |          |                    |  |  |  |  |  |  |  |
| 16. b)   | Unit - I      | CO1        | K3        |          |                    |  |  |  |  |  |  |  |
| 17. a)   | Unit - II     | CO2        | K4        |          |                    |  |  |  |  |  |  |  |
|          |               |            | · · · · · | OR       |                    |  |  |  |  |  |  |  |
| 17. b)   | Unit - II     | CO2        | K4        |          |                    |  |  |  |  |  |  |  |
| 18. a)   | Unit - III    | CO3        | K3        |          |                    |  |  |  |  |  |  |  |
|          |               |            | · · · · · | OR       |                    |  |  |  |  |  |  |  |
| 18. b)   | Unit - III    | CO3        | K3        |          |                    |  |  |  |  |  |  |  |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4        |          |                    |  |  |  |  |  |  |  |
|          |               |            |           | OR       |                    |  |  |  |  |  |  |  |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4        |          |                    |  |  |  |  |  |  |  |
| 20. a)   | Unit - V      | CO5        | K4        |          |                    |  |  |  |  |  |  |  |
|          |               |            |           | OR       |                    |  |  |  |  |  |  |  |
| 20. b)   | Unit - V      | CO5        | K4        |          |                    |  |  |  |  |  |  |  |

### PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                          | RESOURCE MANAGEMENT TECHNIQUES                                                                                                                                                                                      |         |          |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| Course Code                                                                          | 23PMTEC22 L                                                                                                                                                                                                         | Р       | С        |
| Category                                                                             | ELECTIVE 6                                                                                                                                                                                                          | _       | 4        |
| COURSE OBJEC                                                                         | TIVES:                                                                                                                                                                                                              |         |          |
| <ul> <li>To solve optim</li> <li>To introduce th</li> <li>To identify the</li> </ul> | various decisions– making tools.<br>nization problems.<br>The application on inventory control system and etc.<br>The resources required for a project and generate a plan and work schedule.<br>It queuing models. |         |          |
| UNIT – I                                                                             |                                                                                                                                                                                                                     |         | 18       |
| Network definitions-<br>and PERT.                                                    | Minimal Spanning Tree Algorithm-Shortest route problem-Maximal Flow                                                                                                                                                 | v Model | - CPM    |
| UNIT – II                                                                            |                                                                                                                                                                                                                     |         | 18       |
|                                                                                      | computations in DP - Forward and Backward recursion - Selected DP appli-<br>tatic Economic Order Quantity(EOQ) models.                                                                                              | cations | . Genera |
| UNIT - III                                                                           |                                                                                                                                                                                                                     |         | 18       |
| Decision making und<br>under uncertainty-Ga                                          | ler certainty-Analytic Hierarchy Process(AHP)-Decision making under rist<br>me theory.                                                                                                                              | k- Deci | sion     |
| UNIT – IV                                                                            |                                                                                                                                                                                                                     |         | 18       |
|                                                                                      | lements of Queuing model – Role of Exponential Distribution – Pure Birtl<br>d Poisson Queuing Models – Specialized Poisson Queues.                                                                                  | n and D | eath     |
| UNIT - V                                                                             |                                                                                                                                                                                                                     |         | 18       |
|                                                                                      | ems – Necessary and Sufficient Conditions- Newton – Raphson Method - Constraints- Inequality Constraints- Karush-Kuhn-Tucker Conditions.                                                                            | Constra | ined     |
|                                                                                      |                                                                                                                                                                                                                     |         |          |

#### **BOOKS FOR STUDY:**

Hamdy A. Taha, **Operations Research** – An introduction, 8<sup>th</sup> Edition, PHI, New Delhi.

- Unit I-Chapter 6: sections 6.1 to 6.5
- Chapter 10: sections 10.1 to10.3 Unit II -Chapter 11:sections 11.1 to 11.3
- Unit III Chapter 13:sections 13.1 to 13.4
- Unit IV Chapter 15:sections 15.1 to 15.6

Unit V - Chapter 18: sections 18.1 to18.2

#### **BOOKS FOR REFERENCES:**

- KantiSwarup, P.K. Gupta and Man Mohan, "Operations Research", Sultan Chand & sons Publications, Reprint 2006, NewDelhi.
- Harvey M. Wagner, "Principles of Operations Research", Second Edition, Prentice Hall of Pvt  $\succ$ Ltd, 1998, NewDelhi.

> Prem Kumar Gupta and D.S.Hira, "Operations Research", S.Chand Publications, 2009, New Delhi.

#### WEB RESOURCES:

- https://nptel.ac.in/courses/111/105/111105100/
- https://nptel.ac.in/courses/111/104/111104071/
- http://apmonitor.com/me575/

| Nature of<br>Course              | EMPLOYABILITY           |  |      | ✓       | SKILL OR  | IENTED |          | ENTREPRENEURSHIP |        |   |
|----------------------------------|-------------------------|--|------|---------|-----------|--------|----------|------------------|--------|---|
| Curriculum<br>Relevance          | LOCAL                   |  | REGI | ONAL    |           | NATION | NATIONAL |                  | GLOBAL | ✓ |
| Changes<br>Made in the<br>Course | he Percentage of Change |  |      | No Chan | iges Made | ~      |          | New Course       |        |   |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COUR        | SE OUTCOMES:                                              | K LEVEL  |  |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------|----------|--|--|--|--|--|--|--|
| After st    | After studying this course, the students will be able to: |          |  |  |  |  |  |  |  |
| <b>CO1</b>  | <b>CO1</b> Identify various decisions– making tools.      |          |  |  |  |  |  |  |  |
| CO2         | Analyze various models in inventory system.               | K1 to K5 |  |  |  |  |  |  |  |
| CO3         | Apply suitable method in game theory.                     | K1 to K5 |  |  |  |  |  |  |  |
| CO4         | Explain Poisson Queuing Models                            | K1 to K5 |  |  |  |  |  |  |  |
| <b>CO</b> 5 | Classify the constrained and unconstrained Problems       | K1 to K5 |  |  |  |  |  |  |  |

| MAPPI                    | NG WITH                                                                                                                                                                         | I PROGR                 | AM              | OUI           | COMES:                  | :                    |            |                                       |     |    |                        |                                                     |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|---------------|-------------------------|----------------------|------------|---------------------------------------|-----|----|------------------------|-----------------------------------------------------|
| CO/PO                    | <b>PO1</b>                                                                                                                                                                      | PO2                     | PC              | )3            | PO4                     | PO5                  | <b>PO6</b> | PO7                                   | POS | 3  | PO9                    | PO10                                                |
| <b>CO1</b>               | 3                                                                                                                                                                               | 2                       | 3               | 3             | 2                       | 3                    | 3          |                                       |     |    |                        |                                                     |
| CO2                      | 3                                                                                                                                                                               | 2                       | 3               | 3             | 2                       | 2                    | 3          |                                       |     |    |                        |                                                     |
| CO3                      | 3                                                                                                                                                                               | 2                       | 3               | 3             | 2                       | 2                    | 3          |                                       |     |    |                        |                                                     |
| <b>CO4</b>               | 2                                                                                                                                                                               | 2                       | 2               | 2             | 2                       | 2                    | 3          |                                       |     |    |                        |                                                     |
| <b>CO</b> 5              | 2                                                                                                                                                                               | 2                       | 2               | 2             | 2                       | 2                    | 3          |                                       |     |    |                        |                                                     |
| S- STR                   | S- STRONG M – MEDIUM                                                                                                                                                            |                         |                 |               |                         |                      |            |                                       |     | LO | N                      |                                                     |
| CO / P                   | O MAPP                                                                                                                                                                          | ING:                    |                 |               |                         |                      |            |                                       |     |    |                        |                                                     |
| C                        | os                                                                                                                                                                              | PSO                     | L               | •             | PSO2                    | PS                   | 03         | PSO4                                  | ŀ   |    | PSO                    | 5                                                   |
| C                        | D 1                                                                                                                                                                             | 3                       |                 |               | 2                       | 1                    | L          |                                       |     |    |                        |                                                     |
| C                        | 0 2                                                                                                                                                                             | 3                       |                 |               | 2                       | 1                    |            |                                       |     |    |                        |                                                     |
| C                        | D 3                                                                                                                                                                             | 3                       |                 |               | 2                       | 1                    | L          |                                       |     |    |                        |                                                     |
| C                        | <b>)</b> 4                                                                                                                                                                      | 3                       |                 |               | 2                       | 1                    | L          |                                       |     |    |                        |                                                     |
|                          |                                                                                                                                                                                 |                         | 2               | 1             |                         |                      |            |                                       |     |    |                        |                                                     |
|                          | HTAGE 15 10 5                                                                                                                                                                   |                         |                 |               |                         |                      |            |                                       |     |    |                        |                                                     |
| WEIG<br>PERCE<br>OF CONT | WEIGHTED<br>PERCENTAGE<br>OF COURSE 3<br>CONTRIBUTI<br>ON TO POS                                                                                                                |                         |                 |               | 2                       | 1                    |            |                                       |     |    |                        |                                                     |
| LESSO                    | N PLAN:                                                                                                                                                                         |                         |                 |               |                         |                      |            |                                       |     |    |                        |                                                     |
| UNIT                     | :                                                                                                                                                                               | RESOUR                  | CE N            | <b>IAN</b>    | AGEMEN                  | NT TECH              | INIQUES    | 5                                     | HR  | RS | PED                    | AGOGY                                               |
| I                        | Network definitions, minimal spanning tree algorithm Shortest route                                                                                                             |                         |                 |               |                         |                      |            |                                       |     | 8  | Bo<br>Vi<br>Class<br>I | lk and<br>oard,<br>rtual<br>s room,<br>CD<br>jector |
| п                        | Recursive nature of computations in DP - Forward and Backward<br>recursion - Selected DP applications. General inventory models – Static<br>Economic Order Quantity(EOQ) models |                         |                 |               |                         |                      |            |                                       |     |    | G                      | uest<br>tures.                                      |
| III                      | Decision 1                                                                                                                                                                      | making und              | ler ris         | k- de         | cision und              | er uncertai          | nty-Game   |                                       | 18  | 8  |                        | alk &<br>Salk                                       |
| IV                       | Distribution<br>Queuing M                                                                                                                                                       | on – Pure<br>Models – S | Birth<br>pecial | n and<br>ized | l Death M<br>Poisson Qu | Iodels – C<br>ueues. | Generalize | xponential<br>ed Poisson              | 18  | 8  |                        | alk &<br>Salk                                       |
| v                        | Newton                                                                                                                                                                          |                         | n Me            | ethod         | - Constr                | rained Pro           | oblems –   | Conditions-<br>- Equality<br>nditions | 18  | 8  |                        | alk &<br>Salk                                       |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|
| Internal Co    | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
| Inter nur      | COS                                                                                                                                                      | I Lever                         | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |
| CI             | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |

|      |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|------|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|      | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|      | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|      | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CT A | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA  | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι    | K5         |                                                |                                         |                                         |                |                                   |                  |
|      | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|      | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|      | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA  | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II   | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|      | K5         |                                                |                                         |                                         |                |                                   |                  |
|      | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                           | ination – B   | ue Print Artic  | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|------------------------------------|---------------|-----------------|----------------|----------------------------|------------------------|
|           |                                    |               | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                                | K - Level     | No. of          | K – Level      | Choice) With               | Choice) With           |
|           |                                    |               | Questions       | K – Level      | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                                | K1 – K5       | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                                | K1 – K5       | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                                | K1 – K5       | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                                | K1 – K5       | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                                | K1 – K5       | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | lestions to                        | be Asked      | 10              |                | 10                         | 10                     |
| No. of    | No. of Questions to be<br>answered |               | 10              |                | 10                         | 5                      |
| Marks     | for each o                         | question      | 1               |                | 1                          | 8                      |
| Total Ma  | rks for ea                         | ich section   | 10              |                | 10                         | 40                     |
|           | (Figu                              | res in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |

|               | Distribution of Marks with K Level             |                                   |                                     |                |                                      |                     |  |  |  |  |  |
|---------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|---------------------|--|--|--|--|--|
| K Level       | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated %      |  |  |  |  |  |
| K1            | 5                                              |                                   |                                     | 5              | 3.6                                  | 4                   |  |  |  |  |  |
| K2            | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18                  |  |  |  |  |  |
| K3            |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44                  |  |  |  |  |  |
| K4            |                                                |                                   | 48                                  | 48             | 34.3                                 | 34                  |  |  |  |  |  |
| Marks         | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100                 |  |  |  |  |  |
| NR. Higher le | val of parforms                                | nce of the stu                    | donts is to be                      | accascad       | hy attemptin                         | g higher level of K |  |  |  |  |  |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | СО  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | PA      | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         |                        |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         |                        |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         |                        |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         |                        |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

| 11. a) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
|--------|------------|------------|----|----|--|--|--|--|--|--|
|        | OR         |            |    |    |  |  |  |  |  |  |
| 11. b) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
| 12. a) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 12. b) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
| 13. a) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 13. b) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
| 14. a) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 14. b) | Unit - IV  | CO4        | K3 |    |  |  |  |  |  |  |
| 15. a) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 15. b) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |

| Answer . | r ALL the questions PART – C |            |    |    | (5 x 8 = 40 Marks) |
|----------|------------------------------|------------|----|----|--------------------|
| 16. a)   | Unit - I                     | CO1        | K3 |    |                    |
|          |                              |            |    | OR |                    |
| 16. b)   | Unit - I                     | CO1        | K3 |    |                    |
| 17. a)   | Unit - II                    | CO2        | K4 |    |                    |
|          |                              |            |    | OR |                    |
| 17. b)   | Unit - II                    | CO2        | K4 |    |                    |
| 18. a)   | Unit - III                   | CO3        | K3 |    |                    |
|          |                              |            |    | OR |                    |
| 18. b)   | Unit - III                   | CO3        | K3 |    |                    |
| 19. a)   | Unit - IV                    | <b>CO4</b> | K4 |    |                    |
|          |                              |            |    | OR |                    |
| 19. b)   | Unit - IV                    | CO4        | K4 |    |                    |
| 20. a)   | Unit - V                     | CO5        | K4 |    |                    |
|          |                              |            |    | OR |                    |
| 20. b)   | Unit - V                     | CO5        | K4 |    |                    |

# M.Sc., MATHEMATICS



## **Program Code: PMT**

## 2023 - Onwards



## MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS)

Re-accredited with "A" Grade by NAAC

PASUMALAI, MADURAI – 625 004

## MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004

#### M. SC MATHEMATICS CURRICULUM

(For the students admitted from the academic year 2023-2024 onwards)

| <b>Course Code</b> | Title of the Course                  | Hrs  | Course different | Maximum Marks |     |       |  |
|--------------------|--------------------------------------|------|------------------|---------------|-----|-------|--|
| Course Code        | The of the Course                    |      | Credits          | Int           | Ext | Total |  |
|                    | FIRST SEMEST                         | ER   |                  |               |     |       |  |
| Part – III         | Core courses                         |      |                  |               |     |       |  |
| 23PMTCC11          | ALGEBRAIC STRUCTURES                 | 6    | 5                | 25            | 75  | 100   |  |
| 23PMTCC12          | REAL ANALYSIS - I                    | 6    | 5                | 25            | 75  | 100   |  |
| 23PMTCC13          | ORDINARY DIFFERENTIAL<br>EQUATIONS   | 6    | 4                | 25            | 75  | 100   |  |
| Part – III         | Elective courses                     |      |                  |               |     |       |  |
| 23PMTEC11          | GRAPH THEORY AND<br>APPLICATIONS     | 6    | 3                | 25            | 75  | 100   |  |
| 23PMTEC12          | FUZZY SETS AND THEIR<br>APPLICATIONS | 6    | 3                | 25            | 75  | 100   |  |
|                    | Tota                                 | I 30 | 20               | 125           | 375 | 500   |  |
|                    | SECOND SEMES                         | TER  |                  |               |     |       |  |
| Part – III         | Core courses                         |      |                  |               |     |       |  |
| 23PMTCC21          | ADVANCED ALGEBRA                     | 6    | 5                | 25            | 75  | 100   |  |
| 23PMTCC22          | REAL ANALYSIS - II                   | 6    | 5                | 25            | 75  | 100   |  |
| 23PMTCC23          | PARTIAL DIFFERENTIAL<br>EQUATIONS    | 6    | 4                | 25            | 75  | 100   |  |
| Part – III         | Elective courses                     |      |                  |               |     |       |  |
| 23PMTEC21          | NUMERICAL ANALYSIS                   | 6    | 4                | 25            | 75  | 100   |  |
| 23PMTEC22          | RESOURCE MANAGEMENT<br>TECHNIQUES    | 6    | 4                | 25            | 75  | 100   |  |
|                    | Tota                                 | I 30 | 22               | 125           | 375 | 500   |  |

| Course Code | Title of the Course                                            | Hrs  | Credits | Maxi       | Maximum Marks |       |  |  |
|-------------|----------------------------------------------------------------|------|---------|------------|---------------|-------|--|--|
| Course Coue | The of the Course                                              | nis  | Creans  | Int        | Ext           | Total |  |  |
|             | THIRD SEMES                                                    | TER  |         |            |               |       |  |  |
| Part – III  | Core courses                                                   |      |         |            |               |       |  |  |
| 23PMTCC31   | COMPLEX ANALYSIS                                               | 6    | 5       | 25         | 75            | 100   |  |  |
| 23PMTCC32   | PROBABILITY THEORY                                             | 6    | 5       | 25         | 75            | 100   |  |  |
| 23PMTCC33   | TOPOLOGY                                                       | 6    | 5       | 25         | 75            | 100   |  |  |
| Part – III  | Elective course                                                |      |         |            |               |       |  |  |
| 23PMTEC31   | COMBINATORIAL<br>MATHEMATICS                                   | 4    | 3       | 25         | 75            | 100   |  |  |
| Part - IV   | Skill Enhancement course                                       |      |         |            |               |       |  |  |
| 23PMTSP31   | MATHEMATICAL<br>DOCUMENTATION USING LATEX                      | 2    | 2       | 25         | 75            | 100   |  |  |
| Part - IV   | Non Major Elective course                                      |      |         |            |               |       |  |  |
| 23PMTNM31   | MATHEMATICS FOR<br>COMPETITIVE EXAMINATIONS                    | 6    | 3       | 25         | 75            | 100   |  |  |
| 23PMTINT31  | INTERNSHIP REPORT                                              | -    | 2       | 25         | 75            | 100   |  |  |
|             | Total                                                          | 30   | 25      | 175        | 525           | 700   |  |  |
|             | FOURTH SEMES                                                   | STER |         |            |               |       |  |  |
| Part – III  | Core courses                                                   |      |         |            |               |       |  |  |
| 23PMTCC41   | FUNCTIONAL ANALYSIS                                            | 6    | 5       | 25         | 75            | 100   |  |  |
| 23PMTCC42   | INTEGRAL EQUATIONS                                             | 6    | 5       | 25         | 75            | 100   |  |  |
| 23PMTPR41   | PROJECT & VIVA-VOCE                                            | 10   | 7       | 25         | 75            | 100   |  |  |
| Part – III  | Elective course                                                |      |         |            |               |       |  |  |
| 23PMTEC41   | MATHEMATICS FOR SET/NET &<br>GENERAL STUDIES FOR<br>UPSC/TNPSC | 4    | 3       | 25         | 75            | 100   |  |  |
| Part – IV   | Skill Enhancement course                                       |      |         |            |               |       |  |  |
| 23PMTSP41   | NUMERICAL ANALYSIS USING<br>PYTHON                             | 4    | 2       | 25         | 75            | 100   |  |  |
| Part - V    | Extension Activities                                           |      |         |            |               |       |  |  |
| 23PEXTG41   | EXTENSION ACTIVITY                                             | -    | 1       | 25         | 75            | 100   |  |  |
|             | Total                                                          | 23   | 30      | <b>150</b> | <b>450</b>    | 600   |  |  |
|             | Grand Total                                                    | 120  | 90      | 525        | 1725          | 2300  |  |  |



PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                   | COMPLEX ANALYSIS                                                                                                                                                              |         |      |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| Course Code                                   | 23PMTCC31 L                                                                                                                                                                   | Р       | С    |
| Category                                      | CORE VII 6                                                                                                                                                                    | -       | 5    |
| COURSE OBJEC                                  | CTIVES:                                                                                                                                                                       |         | 1    |
| ~                                             | uchy integral formula, local properties of analytic functions, general form c<br>evaluation of definite integral and harmonic functions                                       | f Caucl | ıy's |
| UNIT – I Cauc                                 | hy's Integral Formula                                                                                                                                                         |         | 18   |
| -                                             | at with respect to a closed curve – The Integral formula – Higher derivatives<br>ical Functions:Removable Singularities-Taylors's Theorem – Zeros and po-<br>ximum Principle. |         |      |
| UNIT – II The g                               | general form of Cauchy's Theorem                                                                                                                                              |         | 18   |
|                                               | Simple Continuity - Homology - The General statement of Cauchy's The<br>em - Locally exact differentials- Multiply connected regions - Residue                                |         |      |
| UNIT - III Evalu                              | uation of Definite Integrals and Harmonic Functions                                                                                                                           |         | 18   |
| Evaluation of definit<br>property - Poisson f | ite integrals - Definition of Harmonic function and basic properties - Mean formula.                                                                                          | value   |      |
| UNIT – IV Harm                                | nonic Functions and Power Series Expansions                                                                                                                                   |         | 18   |
| Schwarz theorem -                             | The reflection principle - Weierstrass theorem - Taylor's Series - Laurent                                                                                                    | series  |      |
| UNIT - V Parti                                | al Fractions and Entire Functions                                                                                                                                             |         | 18   |
| Partial fractions - Ir<br>Hadamard's Theor    | nfinite products – Canonical products – Gamma Function- Jensen's formula<br>em                                                                                                | -       |      |
|                                               |                                                                                                                                                                               |         |      |

#### **BOOKS FOR STUDY:**

| Lars V. Ahlfors, <i>Complex Analysis</i> , (3 <sup>rd</sup> edition) McGraw Hill Co., New York, 1979                                   |
|----------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-I: Chapter 4: Section 2: 2.1 to 2.3                                                                                               |
| Chapter 4 : Section 3 : 3.1 to 3.4                                                                                                     |
| UNIT-II: Chapter 4 : Section 4 : 4.1 to 4.7                                                                                            |
| UNIT-III: Chapter 4 : Section 5: 5.1 and 5.2<br>Chapter 4 : Section 5 : 5.3                                                            |
| UNIT-IV : Chapter 4 : Sections 6 : 6.1 to 6.3                                                                                          |
| Chapter 4 : Sections 6.4 and 6.5                                                                                                       |
| Chapter 5 : Sections 1.1 to 1.3                                                                                                        |
| UNIT-V: Chapter 5 : Sections 2.1 to 2.4                                                                                                |
| Chapter 5 : Sections 3.1 and 3.2                                                                                                       |
| BOOKS FOR REFERENCES:                                                                                                                  |
| > H.A. Presfly, Introduction to complex Analysis, Clarendon Press, oxford, 1990.                                                       |
| J.B. Conway, <i>Functions of one complex variables</i> Springer - Verlag, International student Edition,<br>Naroser Publishing Co.1978 |
| E. Hille, Analytic function Thorey (2 vols.), Gonm& Co, 1959.                                                                          |
| M.Heins, Complex function Theory, Academic Press, New York, 1968                                                                       |
| WEB RESOURCES:                                                                                                                         |
| http://ocw.mit.edu/ocwweb/Mathematics,                                                                                                 |
| http://mathforum.org,                                                                                                                  |
| http://www.opensource.org,                                                                                                             |
| http://en.wikipedia.org                                                                                                                |

| Nature of<br>Course              | EMPLOYABILITY                                                                               |  |       | ✓     | SKILL ORIENTED |          |    | ENTRE | ENTREPRENEURSHIP |  |
|----------------------------------|---------------------------------------------------------------------------------------------|--|-------|-------|----------------|----------|----|-------|------------------|--|
| Curriculum<br>Relevance          | LOCAL REC                                                                                   |  | REG   | IONAL |                | NATION   | AL | ~     | GLOBAL           |  |
| Changes<br>Made in the<br>Course | Percentage of Change                                                                        |  | lange | 25    | No Chan        | ges Made |    |       | New Course       |  |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |  |       |       |                |          |    |       |                  |  |

| COURS             | SE OUTC                                                                                                                                                                                                                                                | OMES:                                                                                                                                                                                                                         |           |                |            |             |            |            | K          | LEVEL          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------|-------------|------------|------------|------------|----------------|
| After st          | udying this                                                                                                                                                                                                                                            | s course, tl                                                                                                                                                                                                                  | ne stude  | nts will be a  | ble to:    |             |            |            |            |                |
| <b>CO1</b>        | Analyze a                                                                                                                                                                                                                                              | Analyze and evaluate local properties of analytical functions and definite integrals                                                                                                                                          |           |                |            |             |            |            |            |                |
| CO2               | Describe t                                                                                                                                                                                                                                             | he concept                                                                                                                                                                                                                    | of defin  | ite integral a | nd harmon  | ic function | ns.        |            | K          | 1 to K5        |
| CO3               | Demonstra                                                                                                                                                                                                                                              | ate the con                                                                                                                                                                                                                   | cept of t | he general fo  | rm of Cau  | chy's theo  | rem        |            | K          | 1 to K5        |
| <b>CO4</b>        | Develop T                                                                                                                                                                                                                                              | aylor and                                                                                                                                                                                                                     | Laurent   | series         |            |             |            |            | K          | 1 to K5        |
| CO5               | Explain th                                                                                                                                                                                                                                             | e infinite p                                                                                                                                                                                                                  | roducts,  | canonical pr   | oducts and | l jensen's  | formula .  |            | K          | 1 to K5        |
| MAPPI             | NG WITH                                                                                                                                                                                                                                                | I PROGR                                                                                                                                                                                                                       | AM OU     | JTCOMES        | :          |             |            |            |            |                |
| CO/PC             | ) PO1                                                                                                                                                                                                                                                  | <b>PO2</b>                                                                                                                                                                                                                    | PO3       | PO4            | PO5        | <b>PO6</b>  | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10           |
| <b>CO1</b>        | 3                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                             | 3         | 2              | 3          | 3           |            |            |            |                |
| CO2               | 2                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                             | 3         | 1              | 3          | 3           |            |            |            |                |
| <b>CO3</b>        | 3                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                             | 3         | 1              | 3          | 3           |            |            |            |                |
| <b>CO4</b>        | 1                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                             | 3         | 2              | 3          | 3           |            |            |            |                |
| CO5               | 3                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                             | 2         | 3              | 3          | 3           |            |            |            |                |
| S- STR            | ONG                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |           | M – M          | EDIUM      |             |            | L - L(     | <b>W</b>   |                |
| CO / P            | O MAPPI                                                                                                                                                                                                                                                | NG:                                                                                                                                                                                                                           |           |                |            |             |            |            |            |                |
| С                 | os                                                                                                                                                                                                                                                     | PSO1                                                                                                                                                                                                                          | L         | PSO2           | PSO3       |             | PSO4       | ۶          | PSO5       |                |
| C                 | 01                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                             |           | 2              | 1          |             |            |            |            |                |
| C                 | 02                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                             |           | 2              | 1          |             |            |            |            |                |
| C                 | 03                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                             |           | 2              | 1          | L           |            |            |            |                |
| C                 | 04                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                             |           | 2              | 1          | L           |            |            |            |                |
| C                 | 05                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                             |           | 2              | 1          | L           |            |            |            |                |
| WEIG              | HTAGE                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                            |           | 10             | 5          | 5           |            |            |            |                |
| PERCE<br>OF CONTE | HTED<br>ENTAGE<br>OURSE<br>RIBUTIO<br>D POS                                                                                                                                                                                                            | 3                                                                                                                                                                                                                             |           | 2              | ]          | L           |            |            |            |                |
| LESSO             | N PLAN:                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |           |                |            |             |            |            |            |                |
| UNIT              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               | СОМ       | PLEX ANA       | LYSIS      |             |            | HRS        | PED        | AGOGY          |
| I                 | The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Local Properties of analytical Functions:<br>Removable Singularities-Taylors's Theorem – Zeros and poles – The local Mapping – The Maximum Principle. |                                                                                                                                                                                                                               |           |                |            |             |            | 18         |            | ıalk &<br>Falk |
| II                | statement<br>exact diffe                                                                                                                                                                                                                               | Chains and cycles- Simple Continuity - Homology - The General statement of Cauchy's Theorem - Proof of Cauchy's theorem - Locally exact differentials- Multiply connected regions - Residue theorem - The argument principle. |           |                |            |             |            |            |            | alk &<br>Falk  |

| III | Evaluation of definite integrals - Definition of Harmonic function and basic properties - Mean value property - Poisson formula. | 18 | Chalk &<br>Talk, PPT |
|-----|----------------------------------------------------------------------------------------------------------------------------------|----|----------------------|
| IV  | Schwarz theorem - The reflection principle - Weierstrass theorem - Taylor's Series - Laurent series .                            | 18 | Chalk &<br>Talk      |
| v   | Partial fractions - Infinite products – Canonical products – Gamma Function- Jensen's formula – Hadamard's Theorem               | 18 | Seminar              |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|
| Internal              | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
|                       | COS                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |
| CI                    | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII                   | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                       |                                                                                                                                                          | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| Π   | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs) |                |                 |                |                            |                        |  |  |  |
|-----------|----------------------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|--|--|--|
|           |                                                                                              |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |  |  |  |
| S. No     | Cos                                                                                          | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |  |  |  |
|           |                                                                                              |                | Questions       |                | K - LEVEL                  | K - LEVEL              |  |  |  |
| 1         | CO1                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 2         | CO2                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 3         | CO3                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 4         | CO4                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 5         | CO5                                                                                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| No. of Qu | iestions to                                                                                  | be Asked       | 10              |                | 10                         | 10                     |  |  |  |
| No. of    | No. of Questions to be<br>answered                                                           |                |                 |                | 10                         | 5                      |  |  |  |
| Marks     | Marks for each question                                                                      |                | 1               |                | 1                          | 8                      |  |  |  |
| Total Ma  | Total Marks for each section                                                                 |                |                 |                | 10                         | 40                     |  |  |  |
|           | (Figu                                                                                        | ires in parent | thesis denotes, | questions shou | uld be asked with the give | en K level)            |  |  |  |

#### **Distribution of Marks with K Level**

| Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice           | Section C<br>(Either/ or<br>Choice)                                         | Total<br>Marks                                                                                                    | % of<br>(Marks<br>without<br>choice)                                                                                                   | Consolidated %                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                              |                                             |                                                                             | 5                                                                                                                 | 3.6                                                                                                                                    | 4                                                                                                                                                                                |
| 5                                              | 20                                          |                                                                             | 25                                                                                                                | 17.8                                                                                                                                   | 18                                                                                                                                                                               |
|                                                | 30                                          | 32                                                                          | 62                                                                                                                | 44.3                                                                                                                                   | 44                                                                                                                                                                               |
|                                                |                                             | 48                                                                          | 48                                                                                                                | 34.3                                                                                                                                   | 34                                                                                                                                                                               |
| 10                                             | 50                                          | 80                                                                          | 140                                                                                                               | 100                                                                                                                                    | 100                                                                                                                                                                              |
|                                                | (Multiple<br>Choice<br>Questions)<br>5<br>5 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>Choice555203030 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/ or<br>Choice)520520303248 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks55205520253032624848 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks(Marks<br>without<br>choice)52053.65202517.830326244.3484834.3 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

#### **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | CO  | K-level |         |                     |
|-----------|----------------|-----|---------|---------|---------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I       | CO1 | K1      |         |                     |
| 1.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - I       | CO1 | K2      |         |                     |
| 2.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - II      | CO2 | K1      |         |                     |
| 3.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - II      | CO2 | K2      |         |                     |
| 4.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - III     | CO3 | K1      |         |                     |
| 5.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - III     | CO3 | К2      |         |                     |
| 6.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - IV      | CO4 | K1      |         |                     |
| 7.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - IV      | CO4 | K2      |         |                     |
| 8.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - V       | CO5 | K1      |         |                     |
| 9.        |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |
|           | Unit - V       | CO5 | K2      |         |                     |
| 10.       |                |     |         | a)      | b)                  |
|           |                |     |         | c)      | d)                  |

Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |
|--------|------------|------------|----|----|--|--|--|--|--|
|        | OR         |            |    |    |  |  |  |  |  |
| 11. b) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |
| 12. a) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |
| 12. b) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |
| 13. a) | Unit - III | CO3        | K2 |    |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |
| 13. b) | Unit - III | CO3        | K2 |    |  |  |  |  |  |
| 14. a) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |
| 14. b) | Unit - IV  | CO4        | K3 |    |  |  |  |  |  |
| 15. a) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |
| 15. b) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |

| Answer <b>ALL</b> the questions |            |            | PART – C |    | (5 x 8 = 40 Marks) |  |  |  |  |  |
|---------------------------------|------------|------------|----------|----|--------------------|--|--|--|--|--|
| 16. a) <b>Unit - I CO1</b>      |            | CO1        | K3       |    |                    |  |  |  |  |  |
|                                 | OR         |            |          |    |                    |  |  |  |  |  |
| 16. b)                          | Unit - I   | CO1        | K3       |    |                    |  |  |  |  |  |
| 17. a)                          | Unit - II  | CO2        | K4       |    |                    |  |  |  |  |  |
|                                 |            |            |          | OR |                    |  |  |  |  |  |
| 17. b)                          | Unit - II  | CO2        | K4       |    |                    |  |  |  |  |  |
| 18. a)                          | Unit - III | CO3        | K3       |    |                    |  |  |  |  |  |
|                                 |            |            |          | OR |                    |  |  |  |  |  |
| 18. b)                          | Unit - III | CO3        | K3       |    |                    |  |  |  |  |  |
| 19. a)                          | Unit - IV  | <b>CO4</b> | K4       |    |                    |  |  |  |  |  |
|                                 |            |            |          | OR |                    |  |  |  |  |  |
| 19. b)                          | Unit - IV  | CO4        | K4       |    |                    |  |  |  |  |  |
| 20. a)                          | Unit - V   | CO5        | K4       |    |                    |  |  |  |  |  |
|                                 |            |            |          | OR |                    |  |  |  |  |  |
| 20. b)                          | Unit - V   | CO5        | K4       |    |                    |  |  |  |  |  |

#### PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name         | PROBABILITY THEORY |   |   |   |
|---------------------|--------------------|---|---|---|
| Course Code         | 23PMTCC32          | L | Р | С |
| Category            | CORE               | 6 | - | 5 |
| <b>COURSE OBJEC</b> | TIVES:             |   |   |   |

To introduce axiomatic approach to probability theory, to study some statistical characteristics, discrete and continuous distribution functions and their properties, characteristic function and basic limit theorems of probability.

#### UNIT - I Random Events and Random Variables

Random events – Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random Variables – Distribution Function – Joint Distribution – Marginal Distribution – Conditional Distribution – Independent random variables – Functions of random variables.

#### UNIT – II Parameters of the Distribution

Expectation- Moments – The Chebyshev Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types.

#### **UNIT - III Characteristic functions**

Properties of characteristic functions – Characteristic functions and moments – semi invariants – characteristic function of the sum of the independent random variables – Determination of distribution function by the Characteristic function – Characteristic function of multidimensional random vectors – Probability generating functions.

#### **UNIT – IV Some Probability distributions**

One point, two point, Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.

#### UNIT - V Limit Theorems

Stochastic convergence – Bernaulli law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel-Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.

Total Lecture Hours90

## 18

## 18

## 18

18

#### **18** ants

#### **BOOKS FOR STUDY:**

M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963

UNIT I: Chapter 1: Sections 1.1 to 1.7

Chapter 2 : Sections 2.1 to 2.9

UNIT II: Chapter 3 : Sections 3.1 to 3.8

UNIT-III: Chapter 4: Sections 4.1 to 4.7

UNIT-IV : Chapter 5 : Section 5.1 to 5.10 (Omit Section 5.11)

UNIT-V: Chapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9 , 6.11 and 6.12. (Omit Sections 6.5, 6.10, 6.13

to 6.15)

#### **BOOKS FOR REFERENCES:**

- > R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972
- > K.L.Chung, A course in Probability, Academic Press, New York, 1974
- ▶ R.Durrett, Probability : Theory and Examples, (2<sup>nd</sup> Edition) Duxbury Press, New York, 1996
- V.K.RohatgiAn Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1988(3<sup>rd</sup> Print).
- S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.
- B.R.Bhat, Modern Probability Theory (3<sup>rd</sup> Edition), New Age International (P)Ltd, New Delhi, 1999.

#### WEB RESOURCES:

- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org
- http://www.probability.net

| Nature of<br>Course              | EMPLOYABILITY |         |                   | 1       | SKILL OR    |               | ENTRE | <b>D</b>   |                |     |
|----------------------------------|---------------|---------|-------------------|---------|-------------|---------------|-------|------------|----------------|-----|
| Curriculum<br>Relevance          | LOCAL         |         | REG               | IONAL   |             | NATION        | AL    | ~          | GLOBAL         |     |
| Changes<br>Made in the<br>Course | Percentage    | e of Ch | ange              |         | No Chan     | ges Made      |       | New Course |                | ~   |
| * Treat                          | 20% as ea     | ch unit | t ( <b>20*5</b> = | 100%) a | nd calculat | te the percei | ntage | of chan    | ge for the cou | se. |

|                                                                                                                                            | SE OUTC                                                                                                                                                                                                    | OMES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                      |                                                              |                                                                                                  |             |             | K               | LEVEL       |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|-------------|-----------------|-------------|
| After st                                                                                                                                   | udying this                                                                                                                                                                                                | course, th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne student                             | ts will be a                                                                                         | ble to:                                                      |                                                                                                  |             |             |                 |             |
| <b>CO</b> 1                                                                                                                                | define Di                                                                                                                                                                                                  | stribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function,                              | ndom Varia<br>to find J<br>Distributi                                                                | loint Distr                                                  | ibution fu                                                                                       | inction, to | find Ma     | rginal          | (1 to K5    |
| CO2                                                                                                                                        |                                                                                                                                                                                                            | Expectation Expect |                                        | nts and Ch                                                                                           | ebyshev Ir                                                   | nequality,                                                                                       | to solve R  | egression ( | of the <b>K</b> | 1 to K5     |
| CO3                                                                                                                                        | To define Characteristic functions, to define distribution function, to find probabilit generating functions, to solve problems applying characteristic functions                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                      |                                                              |                                                                                                  |             |             |                 |             |
|                                                                                                                                            | To define                                                                                                                                                                                                  | e One po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oint, two-                             | -point, Bir                                                                                          | nomial dis                                                   | stributions                                                                                      | , to solv   | e problen   | ns of           |             |
| CO4                                                                                                                                        | Hypergeon                                                                                                                                                                                                  | metric and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Poisson                                | distributio                                                                                          | ns, to defi                                                  | ine Unifor                                                                                       | rm, norma   | l, gamma,   | Beta K          | 1 to K5     |
|                                                                                                                                            | distributio                                                                                                                                                                                                | ns, to solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e problems                             | s on Cauch                                                                                           | y and Lapla                                                  | ace distrib                                                                                      | utions      |             |                 |             |
|                                                                                                                                            | To discus                                                                                                                                                                                                  | s Stochas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tic conve                              | rgence, Be                                                                                           | ernaulli la                                                  | w of larg                                                                                        | ge number   | s, to elab  | oorate          |             |
|                                                                                                                                            | Converger                                                                                                                                                                                                  | nce of sequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ence of di                             | istribution t                                                                                        | functions, t                                                 | to prove L                                                                                       | evy-Crame   | er Theorem  | ns and          |             |
| CO5                                                                                                                                        | de Moivre                                                                                                                                                                                                  | -Laplace T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Theorems,                              | to explain                                                                                           | Poisson, C                                                   | Chebyshev,                                                                                       | , Khintchi  | ne Weak l   | aw of <b>K</b>  | 1 to K5     |
|                                                                                                                                            | large nun                                                                                                                                                                                                  | nbers, to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | explain                                | and solve                                                                                            | problems                                                     | s on Kol                                                                                         | lmogorov    | Inequality  | and             |             |
|                                                                                                                                            | Kolmogorov Strong Law of large numbers.                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                      |                                                              |                                                                                                  |             |             |                 |             |
|                                                                                                                                            | Honnogor                                                                                                                                                                                                   | ov Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | ge number                                                                                            | 5.                                                           |                                                                                                  |             |             |                 |             |
| MAPPI                                                                                                                                      | NG WITH                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                      |                                                              |                                                                                                  |             |             |                 |             |
|                                                                                                                                            | NG WITH                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                      |                                                              | PO6                                                                                              | PO7         | PO8         | PO9             | PO10        |
| CO/PC<br>CO1                                                                                                                               | NG WITH<br>D PO1<br>3                                                                                                                                                                                      | I PROGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AM OUT<br>PO3<br>3                     | PO4<br>2                                                                                             | PO5<br>3                                                     | 3                                                                                                | PO7         | PO8         | PO9             | PO10        |
| CO/PC<br>CO1<br>CO2                                                                                                                        | NG WITH<br>DPO1<br>3<br>2                                                                                                                                                                                  | PROGR<br>PO2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AM OUT<br>PO3<br>3<br>3                | PO4<br>2<br>1                                                                                        | PO5<br>3<br>3                                                | 3<br>3                                                                                           | P07         | PO8         | PO9             | PO10        |
| CO/PC<br>CO1<br>CO2<br>CO3                                                                                                                 | NG WITH<br>PO1<br>3<br>2<br>3                                                                                                                                                                              | PROGR<br>PO2<br>1<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AM OUT<br>PO3<br>3<br>3<br>3           | PO4<br>2<br>1<br>1                                                                                   | PO5<br>3<br>3<br>3<br>3                                      | 3<br>3<br>3                                                                                      | P07         | PO8         | <b>PO9</b>      | PO10        |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4                                                                                                          | NG WITH<br>PO1<br>3<br>2<br>3<br>1                                                                                                                                                                         | PROGR<br>PO2<br>1<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>3 | PO4<br>2<br>1<br>1<br>2<br>2                                                                         | PO5<br>3<br>3<br>3<br>3<br>3                                 | 3<br>3<br>3<br>3                                                                                 | P07         | PO8         | <b>PO9</b>      | <b>PO10</b> |
| CO/PC<br>CO1<br>CO2<br>CO3                                                                                                                 | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>1<br>3                                                                                                                                                          | PROGR<br>PO2<br>1<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AM OUT<br>PO3<br>3<br>3<br>3           | PO4<br>2<br>1<br>1<br>2<br>3                                                                         | PO5<br>3<br>3<br>3<br>3                                      | 3<br>3<br>3                                                                                      | P07         | P08         |                 | <b>PO10</b> |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR                                                                                         | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>1<br>3                                                                                                                                                          | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>3 | PO4<br>2<br>1<br>1<br>2<br>3                                                                         | PO5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                  | 3<br>3<br>3<br>3                                                                                 | <b>PO7</b>  |             |                 | P010        |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P                                                                               | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>1<br>3<br>CONG                                                                                                                                                  | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3                                                                         | PO5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                  | 3<br>3<br>3<br>3<br>3                                                                            | PO7         | L - L       |                 |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P<br>C                                                                          | NG WITH<br>PO1<br>3<br>2<br>3<br>2<br>3<br>1<br>3<br>3<br>2<br>0<br>NG<br>2<br>0<br>NG<br>2<br>0<br>NG<br>2<br>2<br>3<br>2<br>0<br>0<br>0<br>3<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>1<br>NG:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M - M                                                                | PO5 3 3 3 3 3 3 EDIUM                                        | 3<br>3<br>3<br>3<br>3<br>03                                                                      |             | L - L       | <b>OW</b>       |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P<br>C<br>C                                                                     | NG WITH<br>PO1<br>3<br>2<br>3<br>2<br>3<br>1<br>3<br>3<br>2<br>3<br>2<br>0<br>NG<br>2<br>0<br>MAPPI<br>OS                                                                                                  | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>NG:<br>PSO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M – M<br>PSO2                                                        | PO5 3 3 3 3 3 3 EDIUM PS                                     | 3<br>3<br>3<br>3<br>3<br>03                                                                      |             | L - L       | <b>OW</b>       |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P<br>C<br>C<br>C<br>C<br>C                                                      | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>CONG<br>O MAPPI<br>OS<br>0 1                                                                                                                                    | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M – M<br>PSO2<br>2                                                   | PO5 3 3 3 3 3 3 EDIUM PS0 1                                  | 3<br>3<br>3<br>3<br>3<br>03                                                                      |             | L - L       | <b>OW</b>       |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                       | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>CONG<br>O MAPPI<br>OS<br>0 1<br>0 2                                                                                                                             | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>1<br>NG:<br>PSO1<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M - M<br>PSO2<br>2<br>2                                              | PO5 3 3 3 3 3 5 EDIUM PS6 1 1 1                              | 3<br>3<br>3<br>3<br>3<br>03                                                                      |             | L - L       | <b>OW</b>       |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / F<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC                                           | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>CONG<br>O MAPPI<br>OS<br>0 1<br>0 2<br>0 3<br>0 4<br>0 5                                                                                                        | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>2<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M - M<br>PSO2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | PO5 3 3 3 3 3 5 EDIUM PS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3<br>3<br>3<br>3<br>3<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |             | L - L       | <b>OW</b>       |             |
| CO/PC<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>S- STR<br>CO / P<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC | NG WITH<br>PO1<br>3<br>2<br>3<br>1<br>3<br>CONG<br>O MAPPI<br>OS<br>0 1<br>0 2<br>0 3<br>0 4                                                                                                               | PROGR<br>PO2<br>1<br>1<br>2<br>2<br>1<br>2<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AM OUT<br>PO3<br>3<br>3<br>3<br>3<br>2 | PO4<br>2<br>1<br>1<br>2<br>3<br>M - M<br>PSO2<br>2<br>2<br>2<br>2<br>2<br>2                          | PO5 3 3 3 3 3 5 EDIUM PS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3<br>3<br>3<br>3<br>3<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |             | L - L       | <b>OW</b>       |             |

| CONT         | OURSE<br>RIBUTIO<br>D POS                                                                                                                                                                                                                                                                                                                                                |     |                 |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|--|--|--|--|--|--|--|
| LESSON PLAN: |                                                                                                                                                                                                                                                                                                                                                                          |     |                 |  |  |  |  |  |  |  |
| UNIT         | PROBABILITY THEORY                                                                                                                                                                                                                                                                                                                                                       | HRS | PEDAGOGY        |  |  |  |  |  |  |  |
| I            | Random events – Probability axioms – Combinatorial formulae –<br>conditional probability – Bayes Theorem – Independent events –<br>Random Variables – Distribution Function – Joint Distribution –<br>Marginal Distribution – Conditional Distribution – Independent random<br>variables – Functions of random variables.                                                |     |                 |  |  |  |  |  |  |  |
| II           | Expectation- Moments – The Chebyshev Inequality – Absolute<br>moments – Order parameters – Moments of random vectors –<br>Regression of the first and second types.                                                                                                                                                                                                      | 18  | Chalk &<br>Talk |  |  |  |  |  |  |  |
| III          | Properties of characteristic functions – Characteristic functions and<br>moments – semi0invariants – characteristic function of the sum of the<br>independent random variables – Determination of distribution function<br>by the Characteristic function – Characteristic function of<br>multidimensional random vectors – Probability generating functions.            | 18  | Chalk &<br>Talk |  |  |  |  |  |  |  |
| IV           | One point , two point , Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.                                                                                                                                                                                            | 18  | Chalk &<br>Talk |  |  |  |  |  |  |  |
| v            | Stochastic convergence – Bernaulli law of large numbers –<br>Convergence of sequence of distribution functions – Levy-Cramer<br>Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev,<br>Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov<br>Theroem – Borel-Cantelli Lemma - Kolmogorov Inequality and<br>Kolmogorov Strong Law of large numbers. | 18  | Chalk &<br>Talk |  |  |  |  |  |  |  |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|
| Internal Cos   |                                                                                                                                                          | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C        |  |  |  |
| inter nur      | COS                                                                                                                                                      | I Level                         | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |
| CI             | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              | 20               |
|     | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

**K1**- Remembering and recalling facts with specific answers

**K2**- Basic understanding of facts and stating main ideas with general answers

- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati   | Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs) |               |                |                |                            |                        |  |  |  |
|-----------|----------------------------------------------------------------------------------------------|---------------|----------------|----------------|----------------------------|------------------------|--|--|--|
|           |                                                                                              |               | Section A      | (MCQs)         | Section B (Either / or     | Section C (Either / or |  |  |  |
| S. No     | Cos                                                                                          | K - Level     | No. of         | K – Level      | Choice) With               | Choice) With           |  |  |  |
|           |                                                                                              |               | Questions      |                | K - LEVEL                  | K - LEVEL              |  |  |  |
| 1         | CO1                                                                                          | K1 – K5       | 2              | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 2         | CO2                                                                                          | K1 – K5       | 2              | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 3         | CO3                                                                                          | K1 – K5       | 2              | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |  |  |
| 4         | CO4                                                                                          | K1 – K5       | 2              | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| 5         | CO5                                                                                          | K1 – K5       | 2              | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |  |  |
| No. of Qu | iestions to                                                                                  | be Asked      | 10             |                | 10                         | 10                     |  |  |  |
| No. of    | No. of Questions to be<br>answered                                                           |               | 10             |                | 10                         | 5                      |  |  |  |
| Marks     | Marks for each question                                                                      |               | 1              |                | 1                          | 8                      |  |  |  |
| Total Ma  | rks for ea                                                                                   | ich section   | 10             |                | 10                         | 40                     |  |  |  |
|           | (Fig                                                                                         | ires in naren | thesis denotes | auestions show | uld be asked with the give | n K lovel)             |  |  |  |

(Figures in parenthesis denotes, questions should be asked with the given K level)

|               | Distribution of Marks with K Level             |                                   |                                     |                |                                      |                     |  |  |  |  |
|---------------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|---------------------|--|--|--|--|
| K Level       | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated %      |  |  |  |  |
| K1            | 5                                              |                                   |                                     | 5              | 3.6                                  | 4                   |  |  |  |  |
| K2            | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18                  |  |  |  |  |
| К3            |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44                  |  |  |  |  |
| K4            |                                                |                                   | 48                                  | 48             | 34.3                                 | 34                  |  |  |  |  |
| Marks         | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100                 |  |  |  |  |
| NR. Higher le | val of porform                                 | nce of the stu                    | donts is to be                      | assassad       | ny attemptin                         | g higher level of K |  |  |  |  |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

| Q. No.    | Unit           | СО  | K-level |         |                        |
|-----------|----------------|-----|---------|---------|------------------------|
| Answer AL | L the question | ns  | P       | ART – A | (10  x  1 = 10  Marks) |
|           | Unit - I       | CO1 | K1      |         |                        |
| 1.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - I       | CO1 | K2      |         |                        |
| 2.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K1      |         |                        |
| 3.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - II      | CO2 | K2      |         |                        |
| 4.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K1      |         |                        |
| 5.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - III     | CO3 | K2      |         |                        |
| 6.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K1      |         |                        |
| 7.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - IV      | CO4 | K2      |         |                        |
| 8.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K1      |         |                        |
| 9.        |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |
|           | Unit - V       | CO5 | K2      |         |                        |
| 10.       |                |     |         | a)      | b)                     |
|           |                |     |         | c)      | d)                     |

## **Summative Examinations - Question Paper – Format**

| Answei | ALL the que | estions |    | PART – B | (5 x 5 = 25 Marks) |
|--------|-------------|---------|----|----------|--------------------|
| 11. a) | Unit - I    | CO1     | K2 |          |                    |
|        | · · · ·     |         |    | OR       |                    |
| 11. b) | Unit - I    | CO1     | K2 |          |                    |
| 12. a) | Unit - II   | CO2     | K3 |          |                    |
|        | · · · ·     |         |    | OR       |                    |
| 12. b) | Unit - II   | CO2     | K3 |          |                    |
| 13. a) | Unit - III  | CO3     | K2 |          |                    |
|        | · · · ·     |         |    | OR       |                    |
| 13. b) | Unit - III  | CO3     | K2 |          |                    |
| 14. a) | Unit - IV   | CO4     | K3 |          |                    |
|        | · · · ·     |         |    | OR       |                    |
| 14. b) | Unit - IV   | CO4     | K3 |          |                    |
| 15. a) | Unit - V    | CO5     | K3 |          |                    |
|        |             |         |    | OR       |                    |
| 15. b) | Unit - V    | CO5     | K3 |          |                    |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|----|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |

### PG AND RESEARCH DEPARTMENT OF MATHEMATICS

#### FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                | TOPOLOGY                                                                                                              |                 |           |       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-------|
| Course Code                | 23PMTCC33                                                                                                             | L               | Р         | С     |
| Category                   | CORE - IX                                                                                                             | 6               | -         | 5     |
| COURSE OBJEC               | CTIVES:                                                                                                               |                 |           |       |
| To study top separation as | ological spaces, continuous functions, connectedness, compac<br>kioms.                                                | ctness, countal | bility an | ıd    |
| UNIT – I Topo              | logical spaces                                                                                                        |                 |           | 18    |
|                            | <ul> <li>Basis for a topology – The order topology – The product to</li> <li>Closed sets and limit points.</li> </ul> | pology on X >   | (Y - T)   | ne    |
| UNIT – II Cont             | inuous functions                                                                                                      |                 |           | 18    |
| Continuous function        | ns – the product topology – The metric topology.                                                                      |                 |           |       |
| UNIT - III Conn            | lectedness                                                                                                            |                 |           | 18    |
| Connected spaces-          | connected subspaces of the Real line – Components and local                                                           | l connectedne   | ss.       |       |
| UNIT – IV Com              | pactness                                                                                                              |                 |           | 18    |
| Compact spaces – c         | compact subspaces of the Real line – Limit Point Compactness                                                          | s – Local Com   | pactnes   | SS    |
| UNIT - V Coun              | tability and Separation Axiom                                                                                         |                 |           | 18    |
| •                          | eparation Axiom: The Countability Axioms – The separation ha – The Urysohnmetrization Theorem – The Tietz extension   |                 | ormal sp  | paces |
|                            | Total Le                                                                                                              | ecture Hou      | rs        | 90    |

#### **BOOKS FOR STUDY:**

- James R. Munkres, *Topology* (2<sup>nd</sup> Edition) Pearson Education Pve. Ltd., Delhi-2002 (Third Indian Reprint)
  - Unit I Chapter 2 : Sections 12 to 17
  - Unit II Chapter 2 : Sections 18 to 21 (Omit Section 22)
  - Unit III Chapter 3 : Sections 23 to 25.
  - Unit IV Chapter 3 : Sections 26 to 29.
  - Unit V Chapter 4 : Sections 30 to 35.

#### **BOOKS FOR REFERENCES:**

- > J. Dugundji ,*Topology* , Prentice Hall of India, New Delhi, 1975.
- > George F.Sinmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 1963
- > J.L. Kelly, *General Topology*, Van Nostrand, Reinhold Co., New York
- L.Steen and J.Subhash, Counter Examples in Topology, Holt, Rinehart and Winston, New York, 1970.
- S.Willard, *General Topology*, Addison Wesley, Mass., 1970.

#### WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/ocwweb/Mathematics
- http://www.opensource.org,
- http://en.wikipedia.org

| Nature of<br>Course              | EMPLOYABILITY                                                                               |                | ✓ | SKILL ORIENTED |                 |  | ENTREPRENEURSHIP |              | > |  |
|----------------------------------|---------------------------------------------------------------------------------------------|----------------|---|----------------|-----------------|--|------------------|--------------|---|--|
| Curriculum<br>Relevance          | LOCAL                                                                                       | LOCAL REGIONAL |   |                | NATIONAL        |  | ~                | GLOBAL       |   |  |
| Changes<br>Made in the<br>Course | Percentage of Change                                                                        |                |   |                | No Changes Made |  |                  | ✓ New Course |   |  |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |                |   |                |                 |  |                  |              |   |  |

| COURS                   | SE OUTC                                                        | OMES:                                                                                                                                         |             |             |             |            |                               |            | k                  | LEVEL    |  |
|-------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|------------|-------------------------------|------------|--------------------|----------|--|
| After stu               | udying this                                                    | course, tł                                                                                                                                    | ne student  | s will be a | ble to:     |            |                               |            |                    |          |  |
| CO1                     |                                                                |                                                                                                                                               | 1           | 1           | 0 1         |            | basic defini<br>s for definir | -          |                    | K1 to K5 |  |
| CO2                     | -                                                              |                                                                                                                                               | y, compac   | tness, conn | ectedness,  | homeomo    | orphism and                   | topologic  | cal F              | K1 to K5 |  |
| CO3                     | Analyze an                                                     |                                                                                                                                               | e topologi  | cal concep  | ts in Funct | ional Anal | ysis.                         |            | F                  | K1 to K5 |  |
| CO4                     | for a given                                                    | subset of                                                                                                                                     | a topologi  | cal space.  | 1 0         | •          | either a lin                  | •          | ľ                  | K1 to K5 |  |
| CO5                     | Hausdorff                                                      | and develo                                                                                                                                    | op tools to | identify w  | hen two ar  |            | ctness, secont<br>(homeom     |            | able,              | 1 to K   |  |
| MAPPI                   | NG WITH                                                        | PROGR                                                                                                                                         | AM OUT      | COMES:      |             |            |                               |            | 11                 |          |  |
| CO/PC                   |                                                                | PO2                                                                                                                                           | PO3         | PO4         | PO5         | <b>PO6</b> | PO7                           | <b>PO8</b> | <b>PO9</b>         | PO10     |  |
| CO1                     | 3                                                              | 1                                                                                                                                             | 3           | 2           | 3           | 3          |                               |            |                    |          |  |
| CO2                     | 2                                                              | 1                                                                                                                                             | 3           | 1           | 3           | 3          |                               |            |                    |          |  |
| CO3                     | 3                                                              | 2                                                                                                                                             | 3           | 1           | 3           | 3          |                               |            |                    |          |  |
| CO4                     | 1                                                              | 2                                                                                                                                             | 3           | 2           | 3           | 3          |                               |            |                    |          |  |
| CO5                     | 3                                                              | 1                                                                                                                                             | 2           | 3           | 3           | 3          |                               |            |                    |          |  |
| S- STR                  |                                                                |                                                                                                                                               |             | M – M.      | EDIUM       |            |                               | L - L      | OW                 |          |  |
| CO / P                  | O MAPPI                                                        | NG:                                                                                                                                           |             |             |             |            |                               |            |                    |          |  |
| C                       | os                                                             | PSO1                                                                                                                                          |             | PSO2        | PS          | 03         | PSO4                          | -          | PSC                | 05       |  |
| C                       | <b>D</b> 1                                                     | 3                                                                                                                                             |             | 2           | 1           | _          |                               |            |                    |          |  |
| C                       | 02                                                             | 3                                                                                                                                             |             | 2           | 1           |            |                               |            |                    |          |  |
| C                       | <b>J</b> 3                                                     | 3                                                                                                                                             |             | 2           | 1           | L          |                               |            |                    |          |  |
| C                       | <b>) 4</b>                                                     | 3                                                                                                                                             |             | 2           | 1           | -          |                               |            |                    |          |  |
| C                       | D 5                                                            | 3                                                                                                                                             |             | 2           | 1           | -          |                               |            |                    |          |  |
| WEIG                    | HTAGE                                                          | 15                                                                                                                                            |             | 10          | 5           | 5          |                               |            |                    |          |  |
| PERCE<br>OF CO<br>CONTE | WEIGHTED<br>ERCENTAGE<br>OF COURSE 3<br>ONTRIBUTIO<br>N TO POS |                                                                                                                                               |             | 2           |             |            |                               |            |                    |          |  |
| LESSO                   | N PLAN:                                                        |                                                                                                                                               |             |             |             |            |                               |            |                    |          |  |
| UNIT                    |                                                                |                                                                                                                                               | T           | OPOLOG      | Y           |            |                               | HRS        | PEI                | AGOGY    |  |
| I                       | 1 0                                                            | Topological spaces – Basis for a topology – The order topology – The order topology on $X \times Y$ – The subspace topology – Closed sets and |             |             |             |            |                               |            | 18 Chalk &<br>Talk |          |  |

| II  | Continuous functions – the product topology – The metric topology.                                                                                        | 18 | Chalk &<br>Talk |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| III | Connected spaces- connected subspaces of the Real line – Components and local connectedness.                                                              | 18 | Chalk &<br>Talk |
| IV  | Compact spaces – compact subspaces of the Real line – Limit Point Compactness – Local Compactness.                                                        | 18 | Chalk &<br>Talk |
| v   | The Countability Axioms – The separation Axioms – Normal spaces –<br>The Urysohn Lemma – The Urysohnmetrization Theorem – The Tietz<br>extension theorem. | 18 | Chalk &<br>Talk |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |                        |           |                  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|------------------------|-----------|------------------|--|--|--|--|
| Internal Cos          | K Level                                                                                                                                                  | Section<br>MC(                  | n A                  | Section B<br>Either or | Section C |                  |  |  |  |  |
|                       | COS                                                                                                                                                      | I Level                         | No. of.<br>Questions | K -<br>Level           | Choice    | Either or Choice |  |  |  |  |
| CI                    | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2                     | 2(K2,K2)  | 2(K3,K3)         |  |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2                     | 2(K3,K3)  | 2(K4,K4)         |  |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2                     | 2(K2,K2)  | 2(K3,K3)         |  |  |  |  |
| AII                   | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2                     | 2(K3,K3)  | 2(K4,K4)         |  |  |  |  |
|                       | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |                        | 4         | 4                |  |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |                        | 2         | 2                |  |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |                        | 5         | 8                |  |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |                        | 10        | 16               |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | . 25             |  |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | - 1.2            |  |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| Π   | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                           | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |  |
|-----------|------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|--|
|           |                                    |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |  |
| S. No     | Cos                                | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |  |
|           |                                    |                | Questions       | II Lever       | K - LEVEL                  | K - LEVEL              |  |
| 1         | CO1                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |
| 2         | CO2                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| 3         | CO3                                | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |
| 4         | CO4                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| 5         | CO5                                | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| No. of Qu | iestions to                        | be Asked       | 10              |                | 10                         | 10                     |  |
| No. of    | No. of Questions to be<br>answered |                | 10              |                | 10                         | 5                      |  |
| Marks     | Marks for each question            |                | 1               |                | 1                          | 8                      |  |
| Total Ma  | rks for ea                         | ich section    | 10              |                | 10                         | 40                     |  |
|           | (Figu                              | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |  |

#### **Distribution of Marks with K Level**

| Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice           | Section C<br>(Either/ or<br>Choice)                                         | Total<br>Marks                                                                                                    | % of<br>(Marks<br>without<br>choice)                                                                                                   | Consolidated %                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                              |                                             |                                                                             | 5                                                                                                                 | 3.6                                                                                                                                    | 4                                                                                                                                                                                |
| 5                                              | 20                                          |                                                                             | 25                                                                                                                | 17.8                                                                                                                                   | 18                                                                                                                                                                               |
|                                                | 30                                          | 32                                                                          | 62                                                                                                                | 44.3                                                                                                                                   | 44                                                                                                                                                                               |
|                                                |                                             | 48                                                                          | 48                                                                                                                | 34.3                                                                                                                                   | 34                                                                                                                                                                               |
| 10                                             | 50                                          | 80                                                                          | 140                                                                                                               | 100                                                                                                                                    | 100                                                                                                                                                                              |
|                                                | (Multiple<br>Choice<br>Questions)<br>5<br>5 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>Choice555203030 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/ or<br>Choice)520520303248 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks55205520253032624848 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks(Marks<br>without<br>choice)52053.65202517.830326244.3484834.3 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

#### **Summative Examinations - Question Paper – Format**

| Q. No.                   | Unit       | CO         | K-level  |    |                        |  |  |
|--------------------------|------------|------------|----------|----|------------------------|--|--|
| Answer ALL the questions |            |            | PART – A |    | (10  x  1 = 10  Marks) |  |  |
| 1.                       | Unit - I   | CO1        | K1       |    |                        |  |  |
|                          |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - I   | CO1        | K2       |    |                        |  |  |
| 2.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - II  | CO2        | K1       |    |                        |  |  |
| 3.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - II  | CO2        | K2       |    |                        |  |  |
| 4.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - III | CO3        | K1       |    |                        |  |  |
| 5.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - III | CO3        | K2       |    |                        |  |  |
| 6.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - IV  | <b>CO4</b> | K1       |    |                        |  |  |
| 7.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - IV  | CO4        | K2       |    |                        |  |  |
| 8.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - V   | CO5        | K1       |    |                        |  |  |
| 9.                       |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |
|                          | Unit - V   | CO5        | K2       |    |                        |  |  |
| 10.                      |            |            |          | a) | b)                     |  |  |
|                          |            |            |          | c) | d)                     |  |  |

Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2    |    |
|--------|------------|------------|-------|----|
|        |            |            |       | OR |
| 11. b) | Unit - I   | CO1        | K2    |    |
| 12. a) | Unit - II  | CO2        | K3    |    |
|        |            |            |       | OR |
| 12. b) | Unit - II  | CO2        | K3    |    |
| 13. a) | Unit - III | CO3        | K2    |    |
|        |            |            |       | OR |
| 13. b) | Unit - III | CO3        | K2    |    |
| 14. a) | Unit - IV  | <b>CO4</b> | K3    |    |
|        |            |            |       | OR |
| 14. b) | Unit - IV  | <b>CO4</b> | K3    |    |
| 15. a) | Unit - V   | CO5        | K3    |    |
|        | · · ·      |            | · · · | OR |
| 15. b) | Unit - V   | CO5        | K3    |    |

| Answer ALL the questions |            |     |       | PART – C | $(5 \times 8 = 40 \text{ Marks})$ |  |  |
|--------------------------|------------|-----|-------|----------|-----------------------------------|--|--|
| 16. a)                   | Unit - I   | CO1 | K3    |          |                                   |  |  |
|                          |            |     |       | OR       |                                   |  |  |
| 16. b)                   | Unit - I   | CO1 | K3    |          |                                   |  |  |
| 17. a)                   | Unit - II  | CO2 | K4    |          |                                   |  |  |
|                          |            |     |       | OR       |                                   |  |  |
| 17. b)                   | Unit - II  | CO2 | K4    |          |                                   |  |  |
| 18. a)                   | Unit - III | CO3 | K3    |          |                                   |  |  |
|                          |            |     |       | OR       |                                   |  |  |
| 18. b)                   | Unit - III | CO3 | K3    |          |                                   |  |  |
| 19. a)                   | Unit - IV  | CO4 | K4    |          |                                   |  |  |
|                          |            |     |       | OR       |                                   |  |  |
| 19. b)                   | Unit - IV  | CO4 | K4    |          |                                   |  |  |
| 20. a)                   | Unit - V   | CO5 | K4    |          |                                   |  |  |
|                          |            |     | · · · | OR       |                                   |  |  |
| 20. b)                   | Unit - V   | CO5 | K4    |          |                                   |  |  |

## PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                                  | COMBINATORIAL MATHEMATICS                                                                                                                                                                                                                             |           |       |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| Course Code                                                                                  | 23PMTEC31 L                                                                                                                                                                                                                                           | Р         | С     |
| Category                                                                                     | ELECTIVE 4                                                                                                                                                                                                                                            | -         | 3     |
| COURSE OBJEC                                                                                 | TIVES:                                                                                                                                                                                                                                                |           |       |
| <ul> <li>To study the </li> <li>To identify the indices.</li> <li>To familiarized</li> </ul> | d the rules of sum and product<br>Generating functions, Partitions of integers.<br>he recurrence relations with constant coefficients, and Recurrence relations v<br>e the concept of principle of inclusion and exclusion.<br>d fundamental theorem. | vith tw   | 0     |
| UNIT — I                                                                                     |                                                                                                                                                                                                                                                       |           | 12    |
| The rules of Sum and distinct Objects.                                                       | Product - Permutations - Combinations - Distributions of Distinct Objects - Distributions                                                                                                                                                             | outions   | of No |
| UNIT – II                                                                                    |                                                                                                                                                                                                                                                       |           | 12    |
| Generating Functions<br>Non distinct Cells - Pa                                              | for Combinations - Enumerators for Permutations – Distributions of Distinct Objartitions of Integers.                                                                                                                                                 | jects int | to    |
| UNIT - III                                                                                   |                                                                                                                                                                                                                                                       |           | 12    |
| Linear Recurrence rela                                                                       | ations with Constant Coefficients - Solution by the technique of Generating Function                                                                                                                                                                  | ons       |       |
| UNIT – IV                                                                                    |                                                                                                                                                                                                                                                       |           | 12    |
| The Principle of Inclu Relative Positions.                                                   | sion and Exclusion - The General Formula - Derangements - Permutations with Re                                                                                                                                                                        | strictio  | ns on |
| UNIT - V                                                                                     |                                                                                                                                                                                                                                                       |           | 12    |
| Equivalence Classes u<br>Functions - Polya's Fu                                              | under a Permutation Group - Equivalence Classes of Functions -Weights and Inver<br>undamental Theorem.                                                                                                                                                | ntories o | of    |
|                                                                                              | Total Lecture Hour                                                                                                                                                                                                                                    | s         | 60    |

### **BOOKS FOR STUDY:**

- C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill Inc., Newyork, 1968.
  - Unit I: Chapter 1: Sections 1.1 to 1.6
  - Unit II Chapter 2: Sections 2.1 to 2.5
  - Unit III: Chapter 3: Sections 3.1 to 3.3
  - Unit IV: Chapter 4: Sections 4.1 to 4.5
  - Unit V: Chapter 5: Sections 5.1 to 5.6 (Except 5.2)

### **BOOKS FOR REFERENCES:**

- J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 2001.
- > TituAndreescu and ZumingFeng, A Path to Combinatorics, Springer Science & Business Media, 2004.
- > Douglas West, Combinatorial Mathematics, Cambridge University Press, 2020

#### WEB RESOURCES:

- https://www.isinj.com/mtusamo/Applied%20Combinatorics%20(6th%20Edition)%20by%20Alan%20Tuc ker%20Wiley%20(2012).pdf
- http://cseweb.ucsd.edu/~gill/AlgCombSite/Resources/CCSRefP1.pdf
- https://en.wikipedia.org/w/index.php?title=Special:WhatLinksHere&target=A lgorithm

| Curriculum<br>RelevanceLOCALREGIONAL✓NATIONALGLOBALChanges<br>Made in the<br>CoursePercentage of C+NoNoNoNew Course | Nature of<br>Course | EMPLOYABILITY        |  |  |       | SKILL ORIENTED |           |    | ENTREPRENEURSHIP |            |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--|--|-------|----------------|-----------|----|------------------|------------|--|
| Made in thePercentage of ChangeNo Changes Made✓New Course                                                           |                     | LOCAL REGIONA        |  |  | IONAL | ~              | NATION    | AL |                  | GLOBAL     |  |
|                                                                                                                     | Made in the         | Percentage of Change |  |  |       | No Cha         | nges Made | •  |                  | New Course |  |

Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COURS                   | E OUTC                                   | OMES:                                                    |             |               |                 |             |               |             | K          | LEVEL    |
|-------------------------|------------------------------------------|----------------------------------------------------------|-------------|---------------|-----------------|-------------|---------------|-------------|------------|----------|
| After stu               | udying this                              | s course, tł                                             | ne studen   | ts will be a  | ble to:         |             |               |             |            |          |
| <b>CO1</b>              | Understand                               | l the rules of                                           | f Sum and   | Product of P  | Permutations    | s and Comb  | inations.     |             | ŀ          | K1 to K5 |
| CO2                     | Discuss dis                              | tributions of                                            | f Distinct  | Objects into  | Non-distinc     | t Cells and | Partitions of | Integers.   | ŀ          | K1 to K5 |
| <b>CO</b> 3             | Identify So<br>Indices.                  | lutions by th                                            | ne techniq  | ue of Genera  | ting Functio    | ons and Rec | currence Rela | ations with | Two F      | K1 to K5 |
| CO4                     | Make use c<br>Polynomial                 |                                                          | ots of Perr | nutations wit | h Restrictio    | ns on Relat | ive Positions | s and the R | ook F      | K1 to K5 |
| CO5                     | Analyze eq                               | uivanlence                                               | classes of  | functions in  | Polya's The     | eory        |               |             | ŀ          | K1 to K5 |
| MAPPI                   | NG WITH                                  | I PROGR                                                  | AM OU       | TCOMES        |                 |             |               |             |            | 1        |
| CO/PC                   | PO1                                      | PO2                                                      | PO3         | <b>PO4</b>    | <b>PO5</b>      | <b>PO6</b>  | PO7           | <b>PO8</b>  | <b>PO9</b> | PO10     |
| <b>CO1</b>              | 3                                        | 3 3 1 1 1                                                |             |               |                 |             |               |             |            |          |
| CO2                     | 3                                        | 3                                                        | 2           | 2             | 1               | -           |               |             |            |          |
| CO3                     | 3                                        | 3                                                        | 3           | 1             | 1               | 1           |               |             |            |          |
| CO4                     | 3                                        | 3                                                        | 2           | 2             | 1               | -           |               |             |            |          |
| <b>CO5</b>              | 3                                        | 3                                                        | 2           | 2             | 2               | 1           |               |             |            |          |
| S- STR                  | ONG                                      |                                                          |             | M – M         | EDIUM           |             |               | L - L(      | WC         |          |
| CO / P                  | O MAPPI                                  | NG:                                                      |             |               |                 |             |               |             |            |          |
| C                       | os                                       | PSO1                                                     | -           | PSO2          | PS              | 03          | PSO4          | -           | 05         |          |
| C                       | 01                                       | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| C                       | ) 2                                      | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| CC                      | ) 3                                      | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| CC                      | ) 4                                      | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| C                       | ) 5                                      | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| WEIGI                   | HTAGE                                    | 15                                                       |             | 10            | 5               | 5           |               |             |            |          |
| PERCE<br>OF CO<br>CONTR | HTED<br>INTAGE<br>DURSE<br>IBUTIO<br>POS | 3                                                        |             | 2             | 1               | L           |               |             |            |          |
| LESSO                   | N PLAN:                                  |                                                          |             |               |                 |             |               |             |            |          |
| UNIT                    | COMBINATORIAL MATHEMATICS                |                                                          |             |               |                 |             |               |             | PEI        | DAGOGY   |
| I                       | Permutation                              | ns and Com<br>ns - Combin<br>inct Objects                | 12          |               | Chalk &<br>Talk |             |               |             |            |          |
| II                      | Combinati<br>Distinct O                  | g Functions<br>ions - Enun<br>bjects into<br>y relations | 12<br>Talk  |               |                 |             |               |             |            |          |

| III | Recurrence Relation Introduction - Linear Recurrence relations with Constant<br>Coefficients - Solution by the technique of Generating Functions - Recurrence<br>Relations with Two Indices                                          | 12 | Chalk &<br>Talk |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|
| IV  | The Principle of Inclusion and Exclusion Introduction - The Principle<br>of Inclusion and Exclusion - The General Formula - Derangements -<br>Permutations with Restrictions on Relative Positions - The Rook<br>Polynomials         | 12 | Chalk &<br>Talk |
| v   | Theory of Counting Introduction - Equivalence Classes under a Permutation<br>Group - Equivalence Classes of Functions - Weights and Inventories of<br>Functions - Polya's Fundamental Theorem - Generalization of Polya's<br>Theorem | 12 | Chalk &<br>Talk |

|                                   | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                     |                  |  |  |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|---------------------|------------------|--|--|--|--|--|--|--|
| Intonnol                          | Con                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B           | Section C        |  |  |  |  |  |  |  |
| Internal Cos                      | Cos                                                                                                                                                      | K Levei                         | No. of.<br>Questions | K -<br>Level | Either or<br>Choice | Either or Choice |  |  |  |  |  |  |  |
| CI                                | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)            | 2(K3,K3)         |  |  |  |  |  |  |  |
| AI                                | CO2                                                                                                                                                      | K1 – K5                         | 2                    | 2 K2         |                     | 2(K4,K4)         |  |  |  |  |  |  |  |
| CI                                | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)            | 2(K3,K3)         |  |  |  |  |  |  |  |
| AII                               | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)            | 2(K4,K4)         |  |  |  |  |  |  |  |
|                                   |                                                                                                                                                          | No. of Questions to be asked    | 4                    |              | 4                   | 4                |  |  |  |  |  |  |  |
| Question<br>Pattern<br>CIA I & II |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                   | 2                |  |  |  |  |  |  |  |
|                                   |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                   | 8                |  |  |  |  |  |  |  |
|                                   |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                  | 16               |  |  |  |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |  |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
| Π   | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                            | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |  |
|-----------|-------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|--|
|           |                                     |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |  |
| S. No     | Cos                                 | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |  |
|           |                                     |                | Questions       | II Level       | K - LEVEL                  | K - LEVEL              |  |
| 1         | CO1 K1 – K5                         |                | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |
| 2         | 2 CO2 K1 – K5                       |                | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| 3         | CO3 K1 – K5                         |                | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |  |
| 4         | CO4                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| 5         | CO5                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |  |
| No. of Qu | lestions to                         | be Asked       | 10              |                | 10                         | 10                     |  |
| No. of    | f Question<br>answered              |                | 10              |                | 10                         | 5                      |  |
| Marks     | Marks for each question             |                |                 |                | 1                          | 8                      |  |
| Total Ma  | <b>Total Marks for each section</b> |                |                 | 10             |                            | 40                     |  |
|           | (Figu                               | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |  |

## **Distribution of Marks with K Level**

| Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice           | Section C<br>(Either/ or<br>Choice)                                         | Total<br>Marks                                                                                                    | % of<br>(Marks<br>without<br>choice)                                                                                                   | Consolidated %                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                              |                                             |                                                                             | 5                                                                                                                 | 3.6                                                                                                                                    | 4                                                                                                                                                                                |
| 5                                              | 20                                          |                                                                             | 25                                                                                                                | 17.8                                                                                                                                   | 18                                                                                                                                                                               |
|                                                | 30                                          | 32                                                                          | 62                                                                                                                | 44.3                                                                                                                                   | 44                                                                                                                                                                               |
|                                                |                                             | 48                                                                          | 48                                                                                                                | 34.3                                                                                                                                   | 34                                                                                                                                                                               |
| 10                                             | 50                                          | 80                                                                          | 140                                                                                                               | 100                                                                                                                                    | 100                                                                                                                                                                              |
|                                                | (Multiple<br>Choice<br>Questions)<br>5<br>5 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>Choice555203030 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/ or<br>Choice)520520303248 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks55205520253032624848 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks(Marks<br>without<br>choice)52053.65202517.830326244.3484834.3 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | CO         | K-level |         |                     |
|-----------|----------------|------------|---------|---------|---------------------|
| Answer AL | L the question | ns         | PA      | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I       | CO1        | K1      |         |                     |
| 1.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - I       | CO1        | K2      |         |                     |
| 2.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - II      | CO2        | K1      |         |                     |
| 3.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - II      | CO2        | K2      |         |                     |
| 4.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K1      |         |                     |
| 5.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K2      |         |                     |
| 6.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K1      |         |                     |
| 7.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K2      |         |                     |
| 8.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K1      |         |                     |
| 9.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K2      |         |                     |
| 10.       |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |

Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
|--------|------------|------------|----|----|--|--|--|--|--|--|
|        |            |            |    | OR |  |  |  |  |  |  |
| 11. b) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
| 12. a) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 12. b) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
| 13. a) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 13. b) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
| 14. a) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 14. b) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |  |
| 15. a) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 15. b) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |

| Answer A | ALL the quest | ions |       | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------|-------|----------|--------------------|
| 16. a)   | Unit - I      | CO1  | K3    |          |                    |
|          |               |      |       | OR       |                    |
| 16. b)   | Unit - I      | CO1  | K3    |          |                    |
| 17. a)   | Unit - II     | CO2  | K4    |          |                    |
|          |               |      |       | OR       |                    |
| 17. b)   | Unit - II     | CO2  | K4    |          |                    |
| 18. a)   | Unit - III    | CO3  | K3    |          |                    |
|          |               |      |       | OR       |                    |
| 18. b)   | Unit - III    | CO3  | K3    |          |                    |
| 19. a)   | Unit - IV     | CO4  | K4    |          |                    |
|          |               |      |       | OR       |                    |
| 19. b)   | Unit - IV     | CO4  | K4    |          |                    |
| 20. a)   | Unit - V      | CO5  | K4    |          |                    |
|          |               |      | · · · | OR       |                    |
| 20. b)   | Unit - V      | CO5  | K4    |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| <b>Course Name</b> MATHEMATICAL DOCUMENTATION USING LATEX                                     |                                                                                                                                    |   |          |   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---|----------|---|--|--|--|--|--|--|--|
| Course Code                                                                                   | 23PMTSP31                                                                                                                          | L | Р        | C |  |  |  |  |  |  |  |
| Category SKILL - 2                                                                            |                                                                                                                                    |   |          |   |  |  |  |  |  |  |  |
|                                                                                               | students with a software that is used for typesetting especially in ng skill for students with various documents formats of LaTeX. |   | tics and |   |  |  |  |  |  |  |  |
| List of Programmes                                                                            |                                                                                                                                    |   |          |   |  |  |  |  |  |  |  |
| <ol> <li>Creation of a doc</li> <li>Typing a Letter for</li> <li>Creation of own h</li> </ol> |                                                                                                                                    |   |          |   |  |  |  |  |  |  |  |

- 3. Creation of own Bio Data.
- 4. Creating a Table Structure.
- 5. Typing a Mathematical Expression involving Differentiation, Integration and Trigonometry.
- 6. Typing a Mathematical Expression using all Expressions and Inequalities.
- 7. Creation of an Article using Latex.
- 8. Inserting Picture in a Latex.
- 9. Preparing a question paper in Latex Format.
- 10. Creation of Powerpoint Presentation in Latex.

Total Lecture Hours 30

#### **BOOKS FOR REFERENCES:**

- > David F Griffiths and Desmond J. Higham, Learning LaTex, SIAM Publishers, Phildelphia, 1996
- A document preparation system LATEX, Second Edition, Leslie Lamport
- > LATEX- A Beginner Guide to Professional documentation, S. Swapna Kumar.

#### WEB RESOURCES:

- https://services.math.duke.edu/computing/tex/online.html,
- https://www.overleaf.com/learn

| Nature of<br>Course              | EMPLOYABILITY                                                                               |         |      |       | SKILL ORIENTED |          |    | ENTRE | P          |   |  |
|----------------------------------|---------------------------------------------------------------------------------------------|---------|------|-------|----------------|----------|----|-------|------------|---|--|
| Curriculum<br>Relevance          | LOCAL REGIO                                                                                 |         |      | IONAL |                | NATION   | AL | ~     | GLOBAL     |   |  |
| Changes<br>Made in the<br>Course | Percentage                                                                                  | e of Ch | ange |       | No Chan        | ges Made |    |       | New Course | ✓ |  |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |         |      |       |                |          |    |       |            |   |  |

| COURS                   | SE OUTC                                  | OMES:        |            |             |              |               |      |        | K          | LEVEL   |
|-------------------------|------------------------------------------|--------------|------------|-------------|--------------|---------------|------|--------|------------|---------|
| After st                | udying this                              | course, tł   | ne student | s will be a | ble to:      |               |      |        |            |         |
| CO1                     | Know how                                 | w to create  | basic type | s of LaTex  | document     | as (article). |      |        | K          | 1 to K5 |
| CO2                     | typeset late                             | ex commai    | nds        |             |              |               |      |        | K          | 1 to K5 |
| CO3                     | create a pa                              | ragraph, sy  | ymbols, co | mments an   | nd font styl | e.            |      |        | K          | 1 to K5 |
| CO4                     | change for                               | nt character | ristics.   |             |              |               |      |        | K          | 1 to K5 |
| CO5                     | know abou                                |              |            |             |              |               |      |        | K          | 1 to K5 |
|                         | NG WITH                                  |              | 1          |             |              |               |      |        |            |         |
| CO/PC                   |                                          | PO2          | PO3        | <b>PO4</b>  | PO5          | P06           | PO7  | PO8    | <b>PO9</b> | PO10    |
| C01                     | 3                                        | 1            | 1          | 1           | 1            | 2             |      |        |            |         |
| CO2                     | 3                                        | 2            | 1          | 1           | 1            | 2             |      |        |            |         |
| CO3                     | 3                                        | 2            | 1          | 1           | 1            | 1             |      |        |            |         |
| CO4<br>CO5              | 3                                        | 1<br>2       | 1<br>1     | 1           | 1<br>1       | 1<br>2        |      |        |            |         |
| S- STR                  |                                          | 4            | L          |             | L<br>EDIUM   | 4             |      | L - L( | <b>NW</b>  |         |
|                         |                                          | MC.          |            | MI - MI.    | EDIOM        |               |      | D - D  | <b>.</b>   |         |
|                         | O MAPPI                                  |              |            |             |              |               |      |        |            |         |
| C                       | os                                       | PSO1         |            | PSO2        | PS           | 03            | PSO4 | ŀ      | PSC        | )5      |
| C                       | D 1                                      | 3            |            | 2           | 1            | L             |      |        |            |         |
| C                       | D 2                                      | 3            |            | 3           | 2            | 2             |      |        |            |         |
| C                       | <b>D</b> 3                               | 3            |            | 2           | 2            | 2             |      |        |            |         |
|                         |                                          |              |            |             |              |               |      |        |            |         |
|                         | <b>)</b> 4                               | 3            |            | 2           | 1            |               |      |        |            |         |
| C                       | D 5                                      | 3            |            | 2           | 2            | 2             |      |        |            |         |
| WEIG                    | HTAGE                                    | 15           |            | 11          | 8            | 8             |      |        |            |         |
| PERCE<br>OF CO<br>CONTE | HTED<br>NTAGE<br>DURSE<br>RIBUTIO<br>POS | 3            |            | 2           | 1            | L             |      |        |            |         |

# LESSON PLAN:

| LESSON FLAN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| List of Programmes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRS | PEDAGOGY |
| <ol> <li>Creation of a document with different alignments</li> <li>Typing a Letter for applying a job.</li> <li>Creation of own Bio – Data.</li> <li>Creating a Table Structure.</li> <li>Typing a Mathematical Expression involving Differentiation, Integration and<br/>Trigonometry.</li> <li>Typing a Mathematical Expression using all Expressions and Inequalities.</li> <li>Creation of an Article using Latex.</li> <li>Inserting Picture in a Latex.</li> <li>Preparing a question paper in Latex Format.</li> <li>Creation of Powerpoint Presentation in Latex.</li> </ol> | 30  |          |

|                            | L   | Learning Outcon<br>Formativ<br>Articulation Mapping | ve Examinat               | ion - Blue l | Print | ·   |     |  |  |
|----------------------------|-----|-----------------------------------------------------|---------------------------|--------------|-------|-----|-----|--|--|
| Internal                   | Cos | K Level                                             | s principl Applications n |              |       |     |     |  |  |
|                            | CO1 | K1                                                  | 5                         |              |       |     |     |  |  |
| ~                          | CO2 | K2                                                  |                           | 5            |       |     |     |  |  |
| CIA                        | CO3 | K3                                                  |                           |              | 5     |     |     |  |  |
|                            | CO4 | K4                                                  |                           |              |       | 5   |     |  |  |
|                            | CO5 | K4                                                  |                           |              |       |     | 5   |  |  |
|                            | 1   | No. of Questions to be asked                        | 2                         | 2            | 2     | 2   | 2   |  |  |
| Question<br>Pattern<br>CIA |     | No. of Questions to be answered                     | 2                         | 2            | 2     | 2   | 2   |  |  |
|                            |     | Marks for each question                             | 2.5                       | 2.5          | 2.5   | 2.5 | 2.5 |  |  |
|                            |     | Total Marks for<br>each section                     | 5                         | 5            | 5     | 5   | 5   |  |  |

|     | Distribution of Marks with K Level CIA |                       |                               |                             |            |                           |                |                                                  |                                   |  |  |  |
|-----|----------------------------------------|-----------------------|-------------------------------|-----------------------------|------------|---------------------------|----------------|--------------------------------------------------|-----------------------------------|--|--|--|
|     | K<br>Level                             | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applicatio<br>ns | Codin<br>g | Debuggi<br>ng &<br>Output | Total<br>Marks | % of<br>(Mar<br>ks<br>witho<br>ut<br>choic<br>e) | Co<br>nso<br>lid<br>ate<br>d<br>% |  |  |  |
|     | K1                                     | 5                     |                               |                             |            |                           | 5              | 20                                               | 20                                |  |  |  |
|     | K2                                     |                       | 5                             |                             |            |                           | 5              | 20                                               | 20                                |  |  |  |
|     | K3                                     |                       |                               | 5                           |            |                           | 5              | 20                                               | 20                                |  |  |  |
| CIA | K4                                     |                       |                               |                             | 5          | 5                         | 10             | 40                                               | 40                                |  |  |  |
|     | Marks                                  |                       |                               |                             |            |                           | 25             | 100                                              | 100                               |  |  |  |

K2- Basic understanding of facts and stating main ideas with general answers

- **K3** Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                           | ination – B  | lue Print Artio       | culation Map                  | ping – K Level with C   | ourse Outco                   | mes (COs)                 |   |   |   |
|-----------|------------------------------------|--------------|-----------------------|-------------------------------|-------------------------|-------------------------------|---------------------------|---|---|---|
| S. No     | Cos                                | K -<br>Level | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applications | Coding&<br>Impleme<br>ntation | Debuggin<br>g &<br>Output |   |   |   |
| 1         | CO1                                | K1           | 15                    |                               |                         |                               |                           |   |   |   |
| 2         | CO2                                | K2           |                       | 15                            |                         |                               |                           |   |   |   |
| 3         | CO3                                | K3           |                       |                               | 15                      |                               |                           |   |   |   |
| 4         | CO4                                | K4           |                       |                               |                         | 15                            |                           |   |   |   |
| 5         | CO5                                | K4           |                       |                               |                         |                               | 15                        |   |   |   |
| No. of Qu | estions to                         | o be Asked   | 2                     | 2                             | 2                       | 2                             | 2                         |   |   |   |
|           | No. of Questions to be<br>answered |              |                       |                               |                         | 2                             | 2                         | 2 | 2 | 2 |
| Marks     | Marks for each question            |              |                       | 7.5                           | 7.5                     | 7.5                           | 7.5                       |   |   |   |
| Total Ma  | rks for ea                         | ach section  | 15                    | 15                            | 15                      | 15                            | 15                        |   |   |   |
|           |                                    |              |                       | · '                           |                         |                               | ·                         |   |   |   |

(Figures in parenthesis denotes, questions should be asked with the given K level)

|     | Distribution of Marks with K Level CIA |                       |                               |                             |            |                           |                |                                                  |                                   |  |  |  |
|-----|----------------------------------------|-----------------------|-------------------------------|-----------------------------|------------|---------------------------|----------------|--------------------------------------------------|-----------------------------------|--|--|--|
|     | K<br>Level                             | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applicatio<br>ns | Codin<br>g | Debuggi<br>ng &<br>Output | Total<br>Marks | % of<br>(Mar<br>ks<br>witho<br>ut<br>choic<br>e) | Co<br>nso<br>lid<br>ate<br>d<br>% |  |  |  |
|     | K1                                     | 15                    |                               |                             |            |                           | 15             | 20                                               | 20                                |  |  |  |
|     | K2                                     |                       | 15                            |                             |            |                           | 15             | 20                                               | 20                                |  |  |  |
|     | K3                                     |                       |                               | 15                          |            |                           | 15             | 20                                               | 20                                |  |  |  |
| CIA | K4                                     |                       |                               |                             | 15         | 15                        | 30             | 40                                               | 40                                |  |  |  |
|     | Marks                                  |                       |                               |                             |            |                           | 75             | 100                                              | 100                               |  |  |  |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                                | MATHEMATICS FOR COMPETITIVE EXAMINATIONS                                                                                                                                                                                    |       |    |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| Course Code                                                                                | 23PMTNM31 L                                                                                                                                                                                                                 | Р     | С  |
| Category                                                                                   | NON MAJOR 6                                                                                                                                                                                                                 | -     | 3  |
| COURSE OBJEC                                                                               | CTIVES:                                                                                                                                                                                                                     |       |    |
| <ul> <li>To familiarize</li> <li>To convert rea</li> <li>To use these converted</li> </ul> | nowledge on numbers, data interpretation.<br>e the application through various statistical methods.<br>al data into a statistical data interpretation.<br>concepts in competitive examinations.<br>he computational skills. |       |    |
| UNIT — I                                                                                   |                                                                                                                                                                                                                             |       | 18 |
| Ratio and proportio                                                                        | n                                                                                                                                                                                                                           |       |    |
| UNIT – II                                                                                  |                                                                                                                                                                                                                             |       | 18 |
| Simple Interest – Co                                                                       | ompound Interest                                                                                                                                                                                                            |       |    |
| UNIT - III                                                                                 |                                                                                                                                                                                                                             |       | 18 |
| Proportions – Conn                                                                         | ectives – Conditional & Biconditional Proportions – Tautology and Contradic                                                                                                                                                 | ction |    |
| UNIT – IV                                                                                  |                                                                                                                                                                                                                             |       | 18 |
| Equivalence of Prop                                                                        | portions – Duality – Tautological Implications – Truth Table Techniques                                                                                                                                                     |       |    |
| UNIT - V                                                                                   |                                                                                                                                                                                                                             |       | 18 |
| Non Verbal Reason                                                                          | ing and Number Series                                                                                                                                                                                                       |       |    |
|                                                                                            | Total Lecture Hours                                                                                                                                                                                                         | 5     | 90 |

## **BOOKS FOR STUDY:**

> Book Material will be provided by the department

### **BOOKS FOR REFERENCES:**

- **R**.S Agarwal, **Quantitative Aptitude**, 4<sup>th</sup> Edition, Tata McGraw Hill Publications, 2011, New Delhi.
- > T Veerarajan, **Discrete Mathematics**, Mcgraw Hill Publication.

### WEB RESOURCES:

- https://thecompanyboy.com/rs-aggarwal-quantitative-aptitude-pdf-freedownload
- https://www.toprankers.com/exams/quantitative-aptitude-questions-pdf/
- https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmeticability-questions-and-answers.html

| Nature of<br>Course                                                                         | EMPLOYABILITY        |  |  | 1     | SKILL ORIENTED             |         |  | ENTREPRENEURSHIP |        |  |
|---------------------------------------------------------------------------------------------|----------------------|--|--|-------|----------------------------|---------|--|------------------|--------|--|
| Curriculum<br>Relevance                                                                     | LOCAL REG            |  |  | IONAL |                            | NATIONA |  | ~                | GLOBAL |  |
| Changes<br>Made in the<br>Course                                                            | Percentage of Change |  |  | 60    | No Changes Made New Course |         |  |                  |        |  |
| * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |                      |  |  |       |                            |         |  |                  |        |  |

| COURS                                                            | SE OUTCO     | OMES:                                                                 |             |             |            |            |            |            | K          | LEVEL   |
|------------------------------------------------------------------|--------------|-----------------------------------------------------------------------|-------------|-------------|------------|------------|------------|------------|------------|---------|
| After stu                                                        | udying this  | course, th                                                            | ne student  | s will be a | ble to:    |            |            |            |            |         |
| CO1                                                              | Understand   | d the conce                                                           | epts of Ma  | thematics a | along with | analytical | ability    |            | K          | 1 to K5 |
| CO2                                                              | Develop th   | e mathema                                                             | atical prob | lem solvin  | g skill    |            |            |            | K          | 1 to K5 |
| CO3                                                              | Evaluate th  | e problems                                                            | on data int | erpretation |            |            |            |            | K          | 1 to K5 |
| CO4                                                              | Identify the | e time rela                                                           | ted proble  | ms and sol  | ving       |            |            |            | K          | 1 to K5 |
| CO5                                                              |              | llustrate appropriate methods for solving Permutation and Combination |             |             |            |            |            |            |            |         |
|                                                                  | NG WITH      |                                                                       |             | 1           | 1          |            |            | 1          |            |         |
| CO/PC                                                            |              | <b>PO2</b>                                                            | PO3         | PO4         | PO5        | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10    |
| CO1                                                              | 3            | 2                                                                     | 3           | 3           | 3          | 2          |            |            |            |         |
| CO2                                                              | 3            | 2                                                                     | 3           | 3           | 3          | 3          |            |            |            |         |
| CO3                                                              | 3            | 2                                                                     | 3           | 3           | 3          | 2          |            |            |            |         |
| CO4                                                              | 3            | 3                                                                     | 2           | 3           | 3          | 2          |            |            |            |         |
| CO5                                                              | 2            | 3                                                                     | 2           | 3           | 3          | 2          |            |            |            |         |
| S- STR                                                           |              |                                                                       |             | IVI — IVI.  | EDIUM      |            |            | L - L(     | JW         |         |
| CO / P                                                           | O MAPPI      | NG:                                                                   |             |             |            |            |            |            |            |         |
| C                                                                | os           | PSO1                                                                  |             | PSO2        | PS         | 03         | PSO4       | ŀ          | PSC        | )5      |
| C                                                                | D 1          | 3                                                                     |             | 2           | 1          | L          |            |            |            |         |
| C                                                                | 02           | 3                                                                     |             | 2           | 1          | L          |            |            |            |         |
|                                                                  | D 3          | 3                                                                     |             | 2           |            |            |            |            |            |         |
|                                                                  |              |                                                                       |             |             |            |            |            |            |            |         |
| C                                                                | <b>) 4</b>   | 3                                                                     |             | 2           | 1          |            |            |            |            |         |
| CO 5 3                                                           |              |                                                                       |             | 2           | 1          | L          |            |            |            |         |
| WEIGHTAGE 15 10                                                  |              |                                                                       |             |             | 5          | 5          |            |            |            |         |
| WEIGHTED<br>PERCENTAGE<br>OF COURSE 3<br>CONTRIBUTIO<br>N TO POS |              |                                                                       | 2           | 1           | L          |            |            |            |            |         |

| LESSO | N PLAN:                                                                                              |     |                                |
|-------|------------------------------------------------------------------------------------------------------|-----|--------------------------------|
| UNIT  | MATHEMATICS FOR COMPETITIVE EXAMINATIONS                                                             | HRS | PEDAGOGY                       |
| I     | Ratio and proportion.                                                                                | 18  | PPT, Chalk<br>&<br>Talk, quiz  |
| II    | Simple Interest – Compound Interest                                                                  | 18  | Chalk &<br>Talk, PPT           |
| III   | Proportions – Connectives – Conditional & Biconditional Proportions<br>– Tautology and Contradiction | 18  | Chalk &<br>Talk                |
| IV    | Equivalence of Proportions – Duality – Tautological Implications –<br>Truth Table Techniques         | 18  | Chalk &<br>Talk,<br>Assignment |
| v     | Non Verbal Reasoning and Number Series                                                               | 18  | Chalk &<br>Talk, PPT           |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|--|--|--|
| Internal       | Cos                                                                                                                                                      | K Level                         | Section<br>MCC       |              | Section B<br>Either or | Section C        |  |  |  |  |  |  |
| memai          | 005                                                                                                                                                      |                                 | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |  |  |  |
| CI             | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                            | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|-------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|
|           |                                     |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                                 | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |
|           |                                     |                | Questions       | K Level        | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                                 | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                                 | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | lestions to                         | be Asked       | 10              |                | 10                         | 10                     |
| No. of    | No. of Questions to be<br>answered  |                | 10              |                | 10                         | 5                      |
| Marks     | Marks for each question             |                | 1               |                | 1                          | 8                      |
| Total Ma  | <b>Total Marks for each section</b> |                |                 |                | 10                         | 40                     |
|           | (Figu                               | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |

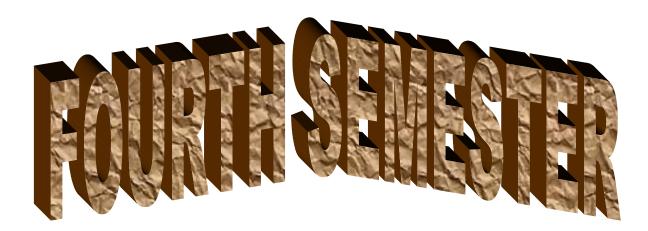
## **Distribution of Marks with K Level**

| Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice           | Section C<br>(Either/ or<br>Choice)                                         | Total<br>Marks                                                                                                    | % of<br>(Marks<br>without<br>choice)                                                                                                   | Consolidated %                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                              |                                             |                                                                             | 5                                                                                                                 | 3.6                                                                                                                                    | 4                                                                                                                                                                                |
| 5                                              | 20                                          |                                                                             | 25                                                                                                                | 17.8                                                                                                                                   | 18                                                                                                                                                                               |
|                                                | 30                                          | 32                                                                          | 62                                                                                                                | 44.3                                                                                                                                   | 44                                                                                                                                                                               |
|                                                |                                             | 48                                                                          | 48                                                                                                                | 34.3                                                                                                                                   | 34                                                                                                                                                                               |
| 10                                             | 50                                          | 80                                                                          | 140                                                                                                               | 100                                                                                                                                    | 100                                                                                                                                                                              |
|                                                | (Multiple<br>Choice<br>Questions)<br>5<br>5 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>Choice555203030 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/ or<br>Choice)520520303248 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks55205520253032624848 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks(Marks<br>without<br>choice)52053.65202517.830326244.3484834.3 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | CO         | K-level |         |                     |
|-----------|----------------|------------|---------|---------|---------------------|
| Answer AL | L the question | ns         | PA      | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I       | CO1        | K1      |         |                     |
| 1.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - I       | CO1        | K2      |         |                     |
| 2.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
| 3.        | Unit - II      | CO2        | K1      |         |                     |
|           |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - II      | CO2        | K2      |         |                     |
| 4.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K1      |         |                     |
| 5.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K2      |         |                     |
| 6.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K1      |         |                     |
| 7.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K2      |         |                     |
| 8.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K1      |         |                     |
| 9.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K2      |         |                     |
| 10.       |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |


Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
|--------|------------|------------|----|----|--|--|--|--|--|--|
|        |            |            |    | OR |  |  |  |  |  |  |
| 11. b) | Unit - I   | CO1        | K2 |    |  |  |  |  |  |  |
| 12. a) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 12. b) | Unit - II  | CO2        | K3 |    |  |  |  |  |  |  |
| 13. a) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 13. b) | Unit - III | CO3        | K2 |    |  |  |  |  |  |  |
| 14. a) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |  |
|        |            |            |    | OR |  |  |  |  |  |  |
| 14. b) | Unit - IV  | <b>CO4</b> | K3 |    |  |  |  |  |  |  |
| 15. a) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |
|        | OR         |            |    |    |  |  |  |  |  |  |
| 15. b) | Unit - V   | CO5        | K3 |    |  |  |  |  |  |  |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|----|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |



# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name        | FUNCTIONAL ANALYSIS |   |   |   |  |  |  |
|--------------------|---------------------|---|---|---|--|--|--|
| Course Code        | 23PMTCC41           | L | Р | С |  |  |  |
| Category           | CORE                | 6 | - | 5 |  |  |  |
| COURSE OBJECTIVES: |                     |   |   |   |  |  |  |

To provide students with a strong foundation in functional analysis, focusing on spaces, operators and fundamental theorems. To develop student's skills and confidence in mathematical analysis and proof techniques.

| UNIT – I Banach Spaces                                                                                                                                                                                      | 18      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem natural imbedding of $N$ in $N^{**}$ . The open mapping theorem – The conjugate of an Operator.              | n – The |
| UNIT – II Hilbert Spaces                                                                                                                                                                                    | 18      |
| The definition and some simple properties–Orthogonal complements–Ortho normal sets–The conjust space <i>H</i> *-The adjoint of an operator–self-adjoint operators-Normal and unitary operators – Projection | 0       |
| UNIT - III Finite-Dimensional Spectral Theory                                                                                                                                                               | 18      |
| Matrices – Determinants and the spectrum of an operator –The spectral theorem.                                                                                                                              |         |
| UNIT – IV General Preliminaries on Banach Algebras                                                                                                                                                          | 18      |
| The definition and some examples – Regular and singular elements – Topological divisors of zero – spectrum – The formula for the spectral radius– The radical and semi-simplicity                           | - The   |
| UNIT - V The Structure of Commutative Banach Algebras                                                                                                                                                       | 18      |
| The Gelfand mapping – Application of the formula $r(x) = \lim   x^n  ^{1/n}$ Involutions in Ba                                                                                                              | nach    |
| algebras-The Gelfand-Neumark theorem                                                                                                                                                                        |         |
| Total Lecture Hours                                                                                                                                                                                         | 90      |

### **BOOKS FOR STUDY:**

G.F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1963

UNIT I: Chapter 9:Sections 46-51 UNIT II: Chapter10:Sections52-59 UNIT III: Chapter 11:Sections 60-62 UNIT IV: Chapter 12:Sections 64-69 UNIT V: Chapter 13:Sections 70-73

#### **BOOKS FOR REFERENCES:**

- > W.Rudin, Functional Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1973.
- **B.V.** Limaye, Functional Analysis, New Age International, 1996.
- C. Goffman and G. Pedrick, First course in Functional Analysis, Prentice Hall of India, NewDelhi,1987.
- E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.
- M. Thamban Nair, Functional Analysis, A First course, Prentice Hall of India, New Delhi, 2002

#### WEB RESOURCES:

- http://mathforum.org
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org,
- http://en.wikiepedia.org

| Nature of<br>Course              | EMPLOYABILITY                                                                               |  |     | ~     | SKILL ORIENTED |           |    | ENTREPRENEURSHIP |            | , |
|----------------------------------|---------------------------------------------------------------------------------------------|--|-----|-------|----------------|-----------|----|------------------|------------|---|
| Curriculum<br>Relevance          | LOCAL REC                                                                                   |  | REG | IONAL | NATIONA        |           | AL | ~                | GLOBAL     |   |
| Changes<br>Made in the<br>Course | Percentage of Change                                                                        |  |     | 75    | No Char        | iges Made |    |                  | New Course |   |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |  |     |       |                |           |    |                  |            |   |

| COURS                                                          | SE OUTC                                     | OMES:                                               |            |             |           |            |            |            | K          | LEVEL   |  |
|----------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|------------|-------------|-----------|------------|------------|------------|------------|---------|--|
| After st                                                       | udying this                                 | course, th                                          | ne student | s will be a | ble to:   |            |            |            |            |         |  |
| <b>CO1</b>                                                     | Understan                                   | d the Bana                                          | ch spaces  | and Transf  | ormations | on Banach  | Spaces.    |            | K          | 1 to K5 |  |
| <b>CO2</b>                                                     | Prove Hah                                   | Prove Hahn Banach theorem and open mapping theorem. |            |             |           |            |            |            |            |         |  |
| CO3                                                            | Describe operators and fundamental theorems |                                                     |            |             |           |            |            |            |            |         |  |
| CO4                                                            | Validate orthogonal and orthonormal sets.   |                                                     |            |             |           |            |            |            |            |         |  |
| CO5                                                            | Analyze an                                  |                                                     |            | -           |           | ents.      |            |            | K          | 1 to K5 |  |
|                                                                | NG WITH                                     |                                                     |            |             |           |            |            |            |            |         |  |
| CO/PC                                                          |                                             | PO2                                                 | PO3        | <b>PO4</b>  | PO5       | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10    |  |
| C01                                                            | 3                                           | 1                                                   | 3          | 2           | 3         | 3          |            |            |            |         |  |
| CO2                                                            | 2                                           | 1                                                   | 3          | 1           | 3         | 3          |            |            |            |         |  |
| CO3                                                            | 3                                           | 2                                                   | 3          | 1           | 3         | 3          |            |            |            |         |  |
| CO4                                                            | 1                                           | 2                                                   | 3          | 2           | 3         | 3          |            |            |            |         |  |
| CO5                                                            | 3                                           | 1                                                   | 2          | 3           | 3         | 3          |            |            | <b></b>    |         |  |
| S- STR                                                         |                                             |                                                     |            | M – M       | EDIUM     |            |            | L - L(     | JW         |         |  |
| CO / P                                                         | O MAPPI                                     | NG:                                                 |            |             |           |            |            |            |            |         |  |
| С                                                              | os                                          | PSO1                                                |            | PSO2        | PSO3      |            | PSO4       |            | PSO5       |         |  |
| C                                                              | <b>D</b> 1                                  | 3                                                   |            | 2           | 1         | L          |            |            |            |         |  |
| C                                                              | 02                                          | 3                                                   |            | 2           | 1         |            |            |            |            |         |  |
|                                                                |                                             |                                                     |            |             |           |            |            |            |            |         |  |
|                                                                | 03                                          | 3                                                   |            | 2           | 1         |            |            |            |            |         |  |
| C                                                              | <b>) 4</b>                                  | 3                                                   |            | 2           | 1         |            |            |            |            |         |  |
| C                                                              | D 5                                         | 3                                                   |            | 2           | 1         | <u> </u>   |            |            |            |         |  |
| WEIG                                                           | WEIGHTAGE 15 10                             |                                                     |            |             |           |            |            |            |            |         |  |
| WEIGHTED<br>PERCENTAGE<br>OF COURSE<br>CONTRIBUTIO<br>N TO POS |                                             | 3                                                   |            | 2           | 1         | L          |            |            |            |         |  |

| LESSO | ON PLAN:                                                                                                                                                                                                        |     |                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------|
| UNIT  | FUNCTIONAL ANALYSIS                                                                                                                                                                                             | HRS | PEDAGOGY                       |
| I     | The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of $N$ in $N^{**}$ - The open mapping theorem – The conjugate of an Operator.            | 18  | PPT, Chalk<br>&<br>Talk, quiz  |
| II    | The definition and some simple properties–Orthogonal complements–<br>Ortho normal sets–The conjugate space H*-The adjoint of an operator–<br>self-adjoint operators-Normal and unitary operators – Projections. | 18  | Chalk &<br>Talk, PPT           |
| III   | Finite-Dimensional Spectral Theory: Matrices – Determinants and the spectrum of an operator –The spectral theorem.                                                                                              | 18  | Chalk &<br>Talk                |
| IV    | The definition and some examples – Regular and singular elements –<br>Topological divisors of zero – The spectrum – The formula for the<br>spectral radius– The radical and semi-simplicity.                    | 18  | Chalk &<br>Talk,<br>Assignment |
| v     | The Structure of Commutative Banach Algebras: The Gelfand mapping – Application of the formula $r(x) = \lim   x^n  ^{1/n}$ . Involutions in Banach algebras-The Gelfand-Neumark theorem.                        | 18  | Chalk &<br>Talk, PPT           |

|                       | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|
| Internal              | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
|                       | 03                                                                                                                                                       |                                 | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |
| CI                    | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI                    | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI                    | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII                   | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                       |                                                                                                                                                          | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |
| Quest                 |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |
| Pattern<br>CIA I & II |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |
|                       |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| I   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

**K2**- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                     | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|
|           |                              |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                          | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |
|           |                              |                | Questions       |                | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                          | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                          | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | iestions to                  | be Asked       | 10              |                | 10                         | 10                     |
| No. of    | f Question<br>answered       |                | 10              |                | 10                         | 5                      |
| Marks     | for each                     | question       | 1               |                | 1                          | 8                      |
| Total Ma  | Total Marks for each section |                | 10              |                | 10                         | 40                     |
|           | (Figu                        | ires in parent | thesis denotes, | questions shou | uld be asked with the give | en K level)            |

## **Distribution of Marks with K Level**

| Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice           | Section C<br>(Either/ or<br>Choice)                                         | Total<br>Marks                                                                                                    | % of<br>(Marks<br>without<br>choice)                                                                                                   | Consolidated %                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                              |                                             |                                                                             | 5                                                                                                                 | 3.6                                                                                                                                    | 4                                                                                                                                                                                |
| 5                                              | 20                                          |                                                                             | 25                                                                                                                | 17.8                                                                                                                                   | 18                                                                                                                                                                               |
|                                                | 30                                          | 32                                                                          | 62                                                                                                                | 44.3                                                                                                                                   | 44                                                                                                                                                                               |
|                                                |                                             | 48                                                                          | 48                                                                                                                | 34.3                                                                                                                                   | 34                                                                                                                                                                               |
| 10                                             | 50                                          | 80                                                                          | 140                                                                                                               | 100                                                                                                                                    | 100                                                                                                                                                                              |
|                                                | (Multiple<br>Choice<br>Questions)<br>5<br>5 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>Choice555203030 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/ or<br>Choice)520520303248 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks55205520253032624848 | (Multiple<br>Choice<br>Questions)Section B<br>(Either or<br>ChoiceSection C<br>(Either/or<br>Choice)Total<br>Marks(Marks<br>without<br>choice)52053.65202517.830326244.3484834.3 |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | CO  | K-level |         |                        |  |  |
|-----------|----------------|-----|---------|---------|------------------------|--|--|
| Answer AL | L the question | ns  | PA      | ART – A | (10  x  1 = 10  Marks) |  |  |
|           | Unit - I       | CO1 | K1      |         |                        |  |  |
| 1.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - I       | CO1 | K2      |         |                        |  |  |
| 2.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - II      | CO2 | K1      |         |                        |  |  |
| 3.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - II      | CO2 | K2      |         |                        |  |  |
| 4.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - III     | CO3 | K1      |         |                        |  |  |
| 5.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - III     | CO3 | K2      |         |                        |  |  |
| 6.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - IV      | CO4 | K1      |         |                        |  |  |
| 7.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - IV      | CO4 | K2      |         |                        |  |  |
| 8.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - V       | CO5 | K1      |         |                        |  |  |
| 9.        |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |
|           | Unit - V       | CO5 | K2      |         |                        |  |  |
| 10.       |                |     |         | a)      | b)                     |  |  |
|           |                |     |         | c)      | d)                     |  |  |

Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2    |    |  |  |  |  |  |  |
|--------|------------|------------|-------|----|--|--|--|--|--|--|
|        |            |            |       | OR |  |  |  |  |  |  |
| 11. b) | Unit - I   | CO1        | K2    |    |  |  |  |  |  |  |
| 12. a) | Unit - II  | CO2        | K3    |    |  |  |  |  |  |  |
|        | OR         |            |       |    |  |  |  |  |  |  |
| 12. b) | Unit - II  | CO2        | K3    |    |  |  |  |  |  |  |
| 13. a) | Unit - III | CO3        | K2    |    |  |  |  |  |  |  |
|        |            |            |       | OR |  |  |  |  |  |  |
| 13. b) | Unit - III | CO3        | K2    |    |  |  |  |  |  |  |
| 14. a) | Unit - IV  | <b>CO4</b> | K3    |    |  |  |  |  |  |  |
|        |            |            |       | OR |  |  |  |  |  |  |
| 14. b) | Unit - IV  | <b>CO4</b> | K3    |    |  |  |  |  |  |  |
| 15. a) | Unit - V   | CO5        | K3    |    |  |  |  |  |  |  |
|        |            |            | · · · | OR |  |  |  |  |  |  |
| 15. b) | Unit - V   | CO5        | K3    |    |  |  |  |  |  |  |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------------|----|----------|--------------------|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |
|          |               |            |    | OR       |                    |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |
|          |               |            |    | OR       |                    |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                                                                | INTEGRAL EQUATIONS                                                                                                                                                                     |           |          |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| Course Code                                                                                                                | 23PMTCC42 L                                                                                                                                                                            | Р         | С        |
| Category                                                                                                                   | CORE 6                                                                                                                                                                                 | -         | 5        |
| COURSE OBJEC                                                                                                               | TIVES:                                                                                                                                                                                 |           |          |
| <ul><li>To understand</li><li>To familiarize</li></ul>                                                                     | the key concept of popular and useful transformations<br>the relationship between integral and differential equations.<br>Fredholm theory<br>gral equation in various transformations. |           |          |
| UNIT – I                                                                                                                   |                                                                                                                                                                                        |           | 18       |
|                                                                                                                            | ns – Special kinds of Kernels – Eigen values and Eigen functions – Convolu<br>Product of Two Functions – Reduction to a System of Algebraic Equations<br>pproximate Method             |           | 0        |
| UNIT – II                                                                                                                  |                                                                                                                                                                                        |           | 18       |
| U                                                                                                                          | tion methods – introduction – Fourier transform – Laplace transform – Lations with Convolution type kernels – examples.                                                                | applica   | tion to  |
| UNIT - III                                                                                                                 |                                                                                                                                                                                        |           | 18       |
| 1                                                                                                                          | en linear differential equations and Volterra integral equations, resolv<br>quations, solution of integral equation by resolvent kernel, the method                                    |           |          |
| approximations                                                                                                             |                                                                                                                                                                                        |           |          |
| approximations                                                                                                             |                                                                                                                                                                                        |           | 18       |
| approximations<br><b>UNIT – IV</b><br>Volterra integral eq                                                                 | uations with limits ( $x$ , $+\infty$ ), Volterra integral equations of the first kind, E el's Integral equations and its generalisations.                                             | Euler int |          |
| approximations<br><b>UNIT – IV</b><br>Volterra integral eq<br>Abel's problem, Abe                                          |                                                                                                                                                                                        | Euler int |          |
| approximations<br><b>UNIT – IV</b><br>Volterra integral eq<br>Abel's problem, Abe<br><b>UNIT - V</b><br>Fredholm equations |                                                                                                                                                                                        |           | tegrals, |

## **BOOKS FOR STUDY:**

Linear Integral Equations: Theory & Technique (Second Ed.) by Ram P. Kanwal, Springer Science& Business Media, 2013. Unit 1: Chapter 1 full, chapter 2.1 to 2.5 Unit 2: Chapter 9.1 to 9.5.

Problems and exercises in Integral Equations by George Yankovsky, MIR Publishers.

Unit 3: Chapter 1 (2,3,4) Unit 4: Chapter 1 (7,8,9,10) Unit 5: Chapter 2 (12,13,14,15)

### **BOOKS FOR REFERENCES:**

- > "Differential Equations" by G.F. Simmons, Tata McGraw-Hill, New Delhi, 1979.
- "Ordinary Differential Equations and Stability Theory" by D.A. Sanchez, Dover, New York, 1968.
- > "Notes on Nonlinear Systems" by J.K. Aggarwal, Van Nostrand, 1972.

### WEB RESOURCES:

- http://mathforum.org,
- http://ocw.mit.edu/oc
- www.web/Mathematics,
- www.physicsforum.com

| Nature of<br>Course              | EMPLOYABILITY        |  |     | ✓       | SKILL ORIENTED |        |    | ENTREPRENEURSHIP |        | ) |
|----------------------------------|----------------------|--|-----|---------|----------------|--------|----|------------------|--------|---|
| Curriculum<br>Relevance          | LOCAL                |  | REG | IONAL   |                | NATION | AL | ~                | GLOBAL |   |
| Changes<br>Made in the<br>Course | Percentage of Change |  | 60  | No Chan | iges Made      |        |    | New Course       |        |   |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COURS      | SE OUTC                                                                             | OMES:      |              |              |              |            |     |     | K          | LEVEL   |
|------------|-------------------------------------------------------------------------------------|------------|--------------|--------------|--------------|------------|-----|-----|------------|---------|
| After st   | udying this                                                                         | course, th | ne students  | s will be al | ble to:      |            |     |     |            |         |
| <b>CO1</b> | Explain various types of kernels                                                    |            |              |              |              |            |     |     |            | 1 to K5 |
| CO2        | Determine a wide range of differential and integral equations by Fourier transforms |            |              |              |              |            |     |     |            | 1 to K5 |
| CO3        | Solve linear Volterra integral equations using appropriate methods                  |            |              |              |              |            |     |     | K          | 1 to K5 |
| CO4        | Solve Euler equations and Abel's problem                                            |            |              |              |              |            |     |     | K          | 1 to K5 |
| CO5        | Solve linear                                                                        | r Fredholm | integral equ | ations using | g appropriat | te methods |     |     | K          | 1 to K5 |
| MAPPI      | NG WITH                                                                             | PROGR      | AM OUT       | COMES:       |              |            |     |     |            |         |
| CO/PC      | <b>PO</b> 1                                                                         | PO2        | PO3          | PO4          | PO5          | <b>PO6</b> | PO7 | PO8 | <b>PO9</b> | PO10    |
| <b>CO1</b> | 3                                                                                   | 1          | 3            | 2            | 3            | 3          |     |     |            |         |
| <b>CO2</b> | 2                                                                                   | 1          | 3            | 1            | 3            | 3          |     |     |            |         |

| CO3                                                            | 3           | 2  | 3 | 1     | 3     | 3  |         |      |  |
|----------------------------------------------------------------|-------------|----|---|-------|-------|----|---------|------|--|
| CO4                                                            | 1           | 2  | 3 | 2     | 3     | 3  |         |      |  |
| CO5                                                            | 3           | 1  | 2 | 3     | 3     | 3  |         |      |  |
| S- STRC                                                        | ONG         |    |   | M - M | EDIUM |    | L - LOW |      |  |
| CO / PO MAPPING:                                               |             |    |   |       |       |    |         |      |  |
| CO                                                             | cos         |    | L | PSO2  | PS    | 03 | PSO4    | PSO5 |  |
| CO                                                             | <b>CO</b> 1 |    |   | 2     | 1     | L  |         |      |  |
| CO                                                             | CO 2        |    |   | 2     | 1     | L  |         |      |  |
| СО                                                             | 3           | 3  |   | 2     | 1     | L  |         |      |  |
| CO                                                             | 4           | 3  |   | 2     | 1     | L  |         |      |  |
| CO                                                             | 5           | 3  |   | 2     | ]     | L  |         |      |  |
| WEIGH                                                          | TAGE        | 15 |   | 10    | 5     | 5  |         |      |  |
| WEIGHTED<br>PERCENTAGE<br>OF COURSE<br>CONTRIBUTIO<br>N TO POS |             | 3  |   | 2     | ]     | L  |         |      |  |

**LESSON PLAN:** 

| UNIT | INTEGRAL EQUATIONS                                                                                                                                                                                                                                                | HRS | PEDAGOGY                       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------|
| I    | Regularity conditions – Special kinds of Kernels – Eigen values and<br>Eigen functions – Convolution Integral – The Inner or Scalar Product of<br>Two Functions – Reduction to a System of Algebraic Equations –<br>Fredholm Alternatives – An Approximate Method | 18  | PPT, Chalk<br>&<br>Talk, quiz  |
| II   | Integral transformation methods – introduction – Fourier transform –<br>Laplace transform – application to Volterra integral equations with<br>Convolution type kernels – examples.                                                                               | 18  | Chalk &<br>Talk, PPT           |
| III  | Relationship between linear differential equations and Volterra integral<br>equations, resolvent kernel of Volterra integral equations, solution of<br>integral equation by resolvent kernel, the method of successive<br>approximations                          | 18  | Chalk &<br>Talk                |
| IV   | Volterra integral equations with limits ( $x$ , $+\infty$ ), Volterra integral equations of the first kind, Euler integrals, Abel's problem, Abel's Integral equations and its generalisations.                                                                   | 18  | Chalk &<br>Talk,<br>Assignment |
| v    | Fredholm equations of the second kind, fundamentals, the method of<br>Fredholm determinants, iterated kernals, constructing the resolvent<br>kernel with the aid of iterated kernals                                                                              | 18  | Chalk &<br>Talk, PPT           |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                               |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|-------------------------------|--|--|--|--|
| Internal       | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C<br>Either or Choice |  |  |  |  |
| inter nur      | 005                                                                                                                                                      | I Level                         | No. of.<br>Questions | K -<br>Level | Choice                 |                               |  |  |  |  |
| CI             | <b>CO1</b>                                                                                                                                               | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)                      |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)                      |  |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                             |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                             |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                             |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16                            |  |  |  |  |

|     | Distribution of Marks with K Level CIA I & CIA II |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|-----|---------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|--|--|--|--|
|     | K<br>Level                                        | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |  |  |  |  |
|     | K2                                                | 2                                              | 10                                      |                                         | 12             | 21.4                              | 20               |  |  |  |  |
| CT. | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| CIA | K4                                                |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |  |  |  |  |
| I   | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |
|     | K1                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |  |  |  |  |
|     | K2                                                | 2                                              |                                         |                                         | 2              | 3.6                               | 1.4              |  |  |  |  |
| CIA | K3                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
| II  | K4                                                |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |  |  |  |  |
|     | K5                                                |                                                |                                         |                                         |                |                                   |                  |  |  |  |  |
|     | Marks                                             | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |  |  |  |  |

**K2**- Basic understanding of facts and stating main ideas with general answers

- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                                                                           | ination – B | lue Print Artic     | culation Map | oping – K Level with Co                | ourse Outcomes (COs)                   |  |  |  |
|-----------|------------------------------------------------------------------------------------|-------------|---------------------|--------------|----------------------------------------|----------------------------------------|--|--|--|
| S. No     | Cas                                                                                | K - Level   | Section A           | (MCQs)       | Section B (Either / or<br>Choice) With | Section C (Either / or<br>Choice) With |  |  |  |
| 5. 110    | S. No Cos                                                                          | K - Level   | No. of<br>Questions | K – Level    | K - LEVEL                              | K - LEVEL                              |  |  |  |
| 1         | CO1                                                                                | K1 – K5     | 2                   | K1,K2        | 2(K2,K2)                               | 2(K3,K3)                               |  |  |  |
| 2         | 2 CO2 K1 – K5                                                                      |             | 2                   | K1,K2        | 2(K3,K3)                               | 2(K4,K4)                               |  |  |  |
| 3         | CO3                                                                                | K1 – K5     | 2                   | K1,K2        | 2(K2,K2)                               | 2(K3,K3)                               |  |  |  |
| 4         | CO4                                                                                | K1 – K5     | 2                   | K1,K2        | 2(K3,K3)                               | 2(K4,K4)                               |  |  |  |
| 5         | CO5                                                                                | K1 – K5     | 2                   | K1,K2        | 2(K3,K3)                               | 2(K4,K4)                               |  |  |  |
| No. of Qu | uestions to                                                                        | be Asked    | 10                  |              | 10                                     | 10                                     |  |  |  |
| No. of    | No. of Questions to be<br>answered                                                 |             | 10                  |              | 10                                     | 5                                      |  |  |  |
| Marks     | for each                                                                           | question    | 1                   |              | 1                                      | 8                                      |  |  |  |
| Total Ma  | Total Marks for each section                                                       |             | 10                  |              | 10                                     | 40                                     |  |  |  |
|           | (Figures in parenthesis denotes, questions should be asked with the given K level) |             |                     |              |                                        |                                        |  |  |  |

(Figures in parenthesis denotes, questions should be asked with the given K level)

| Distribution of Marks with K Level                                                                |                                                |                                   |                     |     |                                      |                |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|---------------------|-----|--------------------------------------|----------------|--|--|
| K Level                                                                                           | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | ther or (Either/ or |     | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |
| K1                                                                                                | 5                                              |                                   |                     | 5   | 3.6                                  | 4              |  |  |
| K2                                                                                                | 5                                              | 20                                |                     | 25  | 17.8                                 | 18             |  |  |
| K3                                                                                                |                                                | 30                                | 32                  | 62  | 44.3                                 | 44             |  |  |
| K4                                                                                                |                                                |                                   | 48                  | 48  | 34.3                                 | 34             |  |  |
| Marks                                                                                             | 10                                             | 50                                | 80                  | 140 | 100                                  | 100            |  |  |
| NB: Higher level of performance of the students is to be assessed by attempting higher level of K |                                                |                                   |                     |     |                                      |                |  |  |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

| Q. No.    | Unit                  | СО  | K-level |         |                     |
|-----------|-----------------------|-----|---------|---------|---------------------|
| Answer AL | <b>L</b> the question | ns  | P       | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I              | CO1 | K1      |         |                     |
| 1.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - I              | CO1 | K2      |         |                     |
| 2.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - II             | CO2 | K1      |         |                     |
| 3.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - II             | CO2 | K2      |         |                     |
| 4.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - III            | CO3 | K1      |         |                     |
| 5.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - III            | CO3 | K2      |         |                     |
| 6.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - IV             | CO4 | K1      |         |                     |
| 7.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - IV             | CO4 | K2      |         |                     |
| 8.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - V              | CO5 | K1      |         |                     |
| 9.        |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |
|           | Unit - V              | CO5 | K2      |         |                     |
| 10.       |                       |     |         | a)      | b)                  |
|           |                       |     |         | c)      | d)                  |

# **Summative Examinations - Question Paper – Format**

| Answei | ALL the que | estions |    | PART – B | (5 x 5 = 25 Marks) |  |  |  |  |  |
|--------|-------------|---------|----|----------|--------------------|--|--|--|--|--|
| 11. a) | Unit - I    | CO1     | K2 |          |                    |  |  |  |  |  |
|        | OR          |         |    |          |                    |  |  |  |  |  |
| 11. b) | Unit - I    | CO1     | K2 |          |                    |  |  |  |  |  |
| 12. a) | Unit - II   | CO2     | K3 |          |                    |  |  |  |  |  |
|        | · · · ·     |         |    | OR       |                    |  |  |  |  |  |
| 12. b) | Unit - II   | CO2     | K3 |          |                    |  |  |  |  |  |
| 13. a) | Unit - III  | CO3     | K2 |          |                    |  |  |  |  |  |
|        | · · · ·     |         |    | OR       |                    |  |  |  |  |  |
| 13. b) | Unit - III  | CO3     | K2 |          |                    |  |  |  |  |  |
| 14. a) | Unit - IV   | CO4     | K3 |          |                    |  |  |  |  |  |
|        | · · · ·     |         |    | OR       |                    |  |  |  |  |  |
| 14. b) | Unit - IV   | CO4     | K3 |          |                    |  |  |  |  |  |
| 15. a) | Unit - V    | CO5     | K3 |          |                    |  |  |  |  |  |
|        |             |         |    | OR       |                    |  |  |  |  |  |
| 15. b) | Unit - V    | CO5     | K3 |          |                    |  |  |  |  |  |

| Answer A | ALL the quest | ions       |    | PART – C | (5 x 8 = 40 Marks) |  |  |  |  |  |
|----------|---------------|------------|----|----------|--------------------|--|--|--|--|--|
| 16. a)   | Unit - I      | CO1        | K3 |          |                    |  |  |  |  |  |
|          | OR            |            |    |          |                    |  |  |  |  |  |
| 16. b)   | Unit - I      | CO1        | K3 |          |                    |  |  |  |  |  |
| 17. a)   | Unit - II     | CO2        | K4 |          |                    |  |  |  |  |  |
|          |               |            |    | OR       |                    |  |  |  |  |  |
| 17. b)   | Unit - II     | CO2        | K4 |          |                    |  |  |  |  |  |
| 18. a)   | Unit - III    | CO3        | K3 |          |                    |  |  |  |  |  |
|          |               |            |    | OR       |                    |  |  |  |  |  |
| 18. b)   | Unit - III    | CO3        | K3 |          |                    |  |  |  |  |  |
| 19. a)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |  |  |  |  |  |
|          |               |            |    | OR       |                    |  |  |  |  |  |
| 19. b)   | Unit - IV     | <b>CO4</b> | K4 |          |                    |  |  |  |  |  |
| 20. a)   | Unit - V      | CO5        | K4 |          |                    |  |  |  |  |  |
|          |               |            |    | OR       |                    |  |  |  |  |  |
| 20. b)   | Unit - V      | CO5        | K4 |          |                    |  |  |  |  |  |



# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 100                                                 |                  |    |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|----|---|
| Viva Voce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | } 75                                                  |                  |    |   |
| Project Repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                                     |                  |    |   |
| External                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                     |                  |    |   |
| Submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                    |                  |    |   |
| Presentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                  |    |   |
| Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  |    |   |
| Course Descript<br>The Project is condu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on<br>cted by the following Course Pattern.           |                  |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sitive attitude towards mathematics                   |                  |    |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | urning environment that simulates and enhances eff    | fective learning |    |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fective mathematical communication.                   |                  |    |   |
| To improve the second secon | inking skills                                         |                  |    |   |
| > To apply and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | adapt a variety of problem – solving strategies to se | olve problems    |    |   |
| COURSE OBJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                  | 10 |   |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CORE PROJECT                                          | -                | 10 | 7 |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23PMTPR41                                             | L                | Р  | ( |

| Nature of<br>Course              | EMPLOYABILITY                                                                               |         | ✓    | SKILL OR | IENTED  |          | ENTREPRENEURSHIP |   | >          |  |
|----------------------------------|---------------------------------------------------------------------------------------------|---------|------|----------|---------|----------|------------------|---|------------|--|
| Curriculum<br>Relevance          | LOCAL                                                                                       |         | REG  | IONAL    |         | NATION   | AL               | ~ | GLOBAL     |  |
| Changes<br>Made in the<br>Course | Percentage                                                                                  | e of Ch | ange |          | No Chan | ges Made | ١                | / | New Course |  |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |         |      |          |         |          |                  |   |            |  |

| COUR                    | SE OUTC                                   | OMES:                                                                     |             |              |              |              |               |            | K          | LEVEL   |
|-------------------------|-------------------------------------------|---------------------------------------------------------------------------|-------------|--------------|--------------|--------------|---------------|------------|------------|---------|
| After st                | udying this                               | course, th                                                                | ne student  | s will be a  | ble to:      |              |               |            |            |         |
| CO1                     | Apply the                                 | skill of pre                                                              | sentation   | and comm     | unication te | echniques    |               |            | K          | 1 to K5 |
| CO2                     | Motive as                                 | an individu                                                               | ual or in a | team in de   | velopment    | of projects  | 5.            |            | K          | 1 to K5 |
| CO3                     | Analyze th                                | e available                                                               | e resources | s and to sel | ect most ap  | opropriate   | one           |            | K          | 1 to K5 |
| CO4                     | Make use                                  | of the fund                                                               | amentals o  | of Mathem    | atics to sea | rch the rela | ated literati | ure survey | K          | 1 to K5 |
| CO5                     | Evaluate the                              | Evaluate the real life problems by using Mathematics and its Application. |             |              |              |              |               |            |            | 1 to K5 |
| MAPPI                   | NG WITH                                   | PROGR                                                                     | AM OUI      | COMES        |              |              |               |            |            |         |
| CO/PC                   | <b>PO1</b>                                | <b>PO2</b>                                                                | PO3         | PO4          | <b>PO5</b>   | P06          | <b>PO7</b>    | <b>PO8</b> | <b>PO9</b> | PO10    |
| <b>CO</b> 1             | 2                                         | 3                                                                         | 3           | 3            | 1            | 3            |               |            |            |         |
| CO2                     | 1                                         | 2                                                                         | 2           | 1            | 2            | 1            |               |            |            |         |
| CO3                     | 2                                         | 2                                                                         | 3           | 3            | 2            | 1            |               |            |            |         |
| CO4                     | 3                                         | 2                                                                         | 3           | 2            | 1            | 2            |               |            |            |         |
| CO5                     | 3                                         | 3                                                                         | 3           | 3            | 3            | 3            |               |            |            |         |
|                         | S- STRON                                  |                                                                           |             |              | M – MEI      | DIUM         |               |            | L - LO     | W       |
| CO / P                  | O MAPPI                                   | NG:                                                                       |             |              |              |              |               |            |            |         |
| С                       | os                                        | PSO1                                                                      |             | PSO2         | PS           | 03           | 3 PSO4        |            | PSO5       |         |
| C                       | <b>D 1</b>                                | 3                                                                         |             | 2            | 1            | _            |               |            |            |         |
| C                       | 0 2                                       | 3                                                                         |             | 2            | 1            |              |               |            |            |         |
|                         |                                           |                                                                           |             |              |              |              |               |            |            |         |
|                         | 03                                        | 3                                                                         |             | 2            | 1            |              |               |            |            |         |
| C                       | <b>0</b> 4                                | 3                                                                         |             | 2            | 1            | -            |               |            |            |         |
| C                       | D 5                                       | 3                                                                         |             | 2            | 1            | -            |               |            |            |         |
| WEIGHTAGE 15            |                                           |                                                                           | 10          | 5            | 5            |              |               |            |            |         |
| PERCE<br>OF CO<br>CONTE | HTED<br>ENTAGE<br>DURSE<br>EIBUTIO<br>POS | 3                                                                         |             | 2            | 1            | -            |               |            |            |         |

|     | Distribution of Marks with COs &K Level for Correction of CIA |           |                                            |           |       |  |  |  |  |  |
|-----|---------------------------------------------------------------|-----------|--------------------------------------------|-----------|-------|--|--|--|--|--|
|     | COs                                                           | K - Level | Distribution of the work of the experiment | K - Level | MARKS |  |  |  |  |  |
|     | CO1                                                           | K1 to K5  | Preliminary Research Problem -             | K1        | 4.0   |  |  |  |  |  |
|     |                                                               | KI W KS   | Introduction                               |           |       |  |  |  |  |  |
|     | CO2                                                           | K1 to K5  | Literature Survey                          | K2        | 5.0   |  |  |  |  |  |
| CIA | CO3                                                           | K1 to K5  | Understanding and Observation of the Data  | K3        | 8.0   |  |  |  |  |  |
| CIA | CO4                                                           | K1 to K5  | Results and Discussion                     | K4        | 4.0   |  |  |  |  |  |
|     | CO5                                                           | K1 to K5  | Interpretation of result and Conclusion    | K5        | 4.0   |  |  |  |  |  |
|     | Total                                                         |           |                                            |           | 25    |  |  |  |  |  |
|     | Marks                                                         |           |                                            |           | 25    |  |  |  |  |  |

|     | Distribution of Marks with K Level CIA |                                                |                |                                   |                     |  |  |  |  |
|-----|----------------------------------------|------------------------------------------------|----------------|-----------------------------------|---------------------|--|--|--|--|
|     | K<br>Level                             | Distribution of the work of the experiment     | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate<br>of % |  |  |  |  |
|     | K1                                     | Preliminary Research Problem -<br>Introduction | 4              | 16.0                              | -                   |  |  |  |  |
|     | K2                                     | Literature Survey                              | 5              | 20.0                              |                     |  |  |  |  |
|     | K3                                     | Understanding and Observation of the Data      | 8              | 32.0                              | 36.0                |  |  |  |  |
| CIA | K4                                     | Results and Discussion                         | 4              | 16.0                              | 68.0                |  |  |  |  |
|     | K5                                     | Interpretation of result and Conclusion        | 4              | 16.0                              | 84.0                |  |  |  |  |
|     | Marks                                  |                                                | 25             | 100                               | 100                 |  |  |  |  |

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

| Distri | Distribution of Marks with COs &K Level for Correction of the Summative |                                             |           |       |  |  |  |
|--------|-------------------------------------------------------------------------|---------------------------------------------|-----------|-------|--|--|--|
|        |                                                                         | Exam                                        | 1         |       |  |  |  |
| COs    | K - Level                                                               | Distribution of the work of the experiment  | K - Level | MARKS |  |  |  |
| CO1    | K1 to K5                                                                | Preliminary Research Problem - Introduction | K1        | 10    |  |  |  |
| CO2    | K1 to K5                                                                | Literature Survey and scope of the problem  | K2        | 10    |  |  |  |
| CO3    | K1 to K5                                                                | Understanding and Observation of the Data   | K3        | 20    |  |  |  |
| CO4    | K1 to K5                                                                | Results and Discussion                      | K4        | 15    |  |  |  |
| CO5    | K1 to K5                                                                | Viva Voce                                   | K5        | 20    |  |  |  |
| Total  |                                                                         |                                             |           | 75    |  |  |  |
| Marks  |                                                                         |                                             |           | 15    |  |  |  |

| Dis     | Distribution of Marks with K Level          |             |                                      |                |  |  |  |  |  |
|---------|---------------------------------------------|-------------|--------------------------------------|----------------|--|--|--|--|--|
| K Level | Parameters for K-Level                      | Total Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |  |  |  |  |  |
| K1      | Preliminary Research Problem - Introduction | 10          | 13.33                                | 13.3           |  |  |  |  |  |
| K2      | Literature Survey                           | 10          | 13.33                                | 13.3           |  |  |  |  |  |
| K3      | Understanding and Observation of the Data   | 20          | 26.67                                | 26.7           |  |  |  |  |  |
| K4      | Results and Discussion                      | 15          | 20.0                                 | 20             |  |  |  |  |  |
| K5      | Viva Voce                                   | 20          | 26.67                                | 26.7           |  |  |  |  |  |
| Marks   |                                             | 75          | 100                                  | 100            |  |  |  |  |  |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name                                                                                                                                                                                                                           | MATHEMATICS FOR SET/ NET & GENERAL STUDIES FOR UPSC/                                                                                                                                                                                                                                                                                                                                          | TNPS             | SC                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|
| Course Code                                                                                                                                                                                                                           | 23PMTEC41 L                                                                                                                                                                                                                                                                                                                                                                                   | Р                | С                               |
| Category                                                                                                                                                                                                                              | ELECTIVE 4                                                                                                                                                                                                                                                                                                                                                                                    | -                | 3                               |
| COURSE OBJEC                                                                                                                                                                                                                          | TIVES:                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                 |
| > The course pr                                                                                                                                                                                                                       | rovides various mathematical aptitude techniques of solving problems                                                                                                                                                                                                                                                                                                                          |                  |                                 |
| UNIT – I Algeb                                                                                                                                                                                                                        | ra                                                                                                                                                                                                                                                                                                                                                                                            |                  | 12                              |
| 1                                                                                                                                                                                                                                     | ps-Quotients groups –Homomorphisms-Cyclic groups-Permutations-C<br>Determinant of matrices-Linear equations-Eigen values and Eigen vectors.                                                                                                                                                                                                                                                   | ombin            | ations-                         |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                  | 12                              |
| UNIT – II Analy                                                                                                                                                                                                                       | /\$1\$                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                 |
| Elementary set theo<br>Differentiability-Unit                                                                                                                                                                                         | <b>vsis</b><br>ory-Countable and Uncountable sets-Sequences and Series-Convergence-Co<br>iform Convergence-Algebra of complex Numbers: Polynomials-Power Se<br>iemann Equations-Calculus of Residues-Singular points.                                                                                                                                                                         |                  | •                               |
| Elementary set theo<br>Differentiability-Un<br>functions-Cauchy Ri                                                                                                                                                                    | ory-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Se                                                                                                                                                                                                                                                  |                  |                                 |
| Elementary set theo<br>Differentiability-Uni<br>functions-Cauchy Ri<br><b>UNIT - III Differ</b><br>Existence and Uniqu<br>linear ODE's-Lagra                                                                                          | ory-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Se iemann Equations-Calculus of Residues-Singular points.                                                                                                                                                                                           | ries-A<br>geneou | nalytic<br>12<br>15             |
| Elementary set theo<br>Differentiability-Uni<br>functions-Cauchy Ri<br><b>UNIT - III Differ</b><br>Existence and Uniqu<br>linear ODE's-Lagra                                                                                          | bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Section Equations-Calculus of Residues-Singular points.<br><b>Tential Equations</b><br>ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separations                       | ries-A<br>geneou | nalytic<br>12<br>15             |
| Elementary set theo<br>Differentiability-Uni<br>functions-Cauchy Ri<br><b>UNIT - III Differ</b><br>Existence and Uniqu<br>linear ODE's-Lagra<br>variables for Laplace                                                                 | bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Section Equations-Calculus of Residues-Singular points.<br><b>Tential Equations</b><br>ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separte, Heat and Wave Equations. | ries-A<br>geneou | nalytic<br>12<br>18<br>of       |
| Elementary set theo<br>Differentiability-Uni<br>functions-Cauchy Ri<br><b>UNIT - III Differ</b><br>Existence and Uniqu<br>linear ODE's-Lagra<br>variables for Laplace<br><b>UNIT - IV</b>                                             | bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Section Equations-Calculus of Residues-Singular points.<br><b>Tential Equations</b><br>ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separte, Heat and Wave Equations. | ries-A<br>geneou | nalytic<br>12<br>18<br>of       |
| Elementary set theo<br>Differentiability-Uni<br>functions-Cauchy Ri<br><b>UNIT - III Differ</b><br>Existence and Uniqu<br>linear ODE's-Lagra<br>variables for Laplace<br><b>UNIT - IV</b><br>Percentage – profit a<br><b>UNIT - V</b> | bry-Countable and Uncountable sets-Sequences and Series-Convergence-Convergence-Algebra of complex Numbers: Polynomials-Power Section Equations-Calculus of Residues-Singular points.<br><b>Tential Equations</b><br>ueness of solutions of IVP-General Theory of Homogeneous and non-homogonge and Charpit Methods for solving first order PDE's-Method of Separte, Heat and Wave Equations. | ries-A<br>geneou | nalytic<br>12<br>1s<br>of<br>12 |

## **BOOKS FOR STUDY:**

> Material will be provided by the department

### **BOOKS FOR REFERENCES:**

- > Upkar's CSIR-UGC NET/JRF/SET Mathematical Science by Dr. Alok Kumar.
- > Agarwal R.S, Publishers: S.Chand and Co "Quantitative Aptitude" 1990

### **WEB RESOURCES:**

- https://www.classcentral.com/course/swayam-operations-research-14219
- https://developers.google.com/optimization/support/resources

| Nature of<br>Course              | EMPLOYABILITY                                                                               |  |     | 1     | SKILL ORIENTED |          |    | ENTREPRENEURSHIP |            |              |  |
|----------------------------------|---------------------------------------------------------------------------------------------|--|-----|-------|----------------|----------|----|------------------|------------|--------------|--|
| Curriculum<br>Relevance          | LOCAL                                                                                       |  | REG | IONAL |                | NATION   | AL |                  | GLOBAL     | $\checkmark$ |  |
| Changes<br>Made in the<br>Course | Percentage of Change                                                                        |  |     |       | No Char        | ges Made |    |                  | New Course | ~            |  |
| * Treat                          | * Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course. |  |     |       |                |          |    |                  |            |              |  |

| COURS                   | SE OUTC                                  | OMES:                                                  |            |              |              |             |            |            | K          | LEVEL   |  |
|-------------------------|------------------------------------------|--------------------------------------------------------|------------|--------------|--------------|-------------|------------|------------|------------|---------|--|
| After stu               | udying this                              | course, th                                             | ne student | s will be a  | ble to:      |             |            |            |            |         |  |
| <b>CO1</b>              | Understan                                | d the basic                                            | concepts   | of Algebra   | and linear   | Algebra.    |            |            | K          | 1 to K5 |  |
| CO2                     | Enhance th                               | neir ability                                           | in Real an | d Complex    | x Analysis   |             |            |            | K          | 1 to K5 |  |
| <b>CO3</b>              | Utilize the                              | knowledg                                               | e to solve | the probler  | ns in Diffe  | rential Equ | ations.    |            | K          | 1 to K5 |  |
| <b>CO4</b>              | Apply for                                | pply for competitive examinations with more confidence |            |              |              |             |            |            |            |         |  |
| CO5                     | Solve math                               | hematical p                                            | problems v | vithin a lin | nited time f | rame.       |            |            | K          | 1 to K5 |  |
| MAPPI                   | NG WITH                                  | PROGR                                                  | AM OUI     | COMES        |              |             |            | l.         |            |         |  |
| CO/PC                   | <b>PO1</b>                               | <b>PO2</b>                                             | PO3        | PO4          | <b>PO5</b>   | <b>PO6</b>  | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10    |  |
| CO1                     | 2                                        | 3                                                      | 1          | 1            | 2            | 2           |            |            |            |         |  |
| <b>CO2</b>              | 1                                        | 2                                                      | 3          | 2            | 3            | 1           |            |            |            |         |  |
| CO3                     | 3                                        | 2                                                      | 2          | 1            | 3            | 1           |            |            |            |         |  |
| <b>CO4</b>              | 1                                        | 2                                                      | 2          | 3            | 2            | 2           |            |            |            |         |  |
| <b>CO</b> 5             | 3                                        | 1                                                      | 2          | 2            | 3            | 1           |            |            |            |         |  |
| S- STR                  |                                          |                                                        |            | M – M        | EDIUM        |             |            | L - L(     | WC         |         |  |
| CO / P                  | O MAPPI                                  | NG:                                                    |            |              |              |             |            |            |            |         |  |
| C                       | os                                       | PSO1                                                   | L          | PSO2         | PSO3         |             | PSO4       | F          | PSO5       |         |  |
| C                       | <b>D</b> 1                               | 3                                                      |            | 2            | 1            | <u>L</u>    |            |            |            |         |  |
| C                       | 02                                       | 3                                                      |            | 2            | 1            |             |            |            |            |         |  |
|                         |                                          |                                                        |            |              |              |             |            |            |            |         |  |
| C                       | <b>D</b> 3                               | 3                                                      |            | 2            | 1            |             |            |            |            |         |  |
| C                       | <b>D</b> 4                               | 3                                                      |            | 2            | 1            | <u> </u>    |            |            |            |         |  |
| C                       | D 5                                      | 3                                                      |            | 2            | 1            | L           |            |            |            |         |  |
| WEIG                    | HTAGE                                    | 15                                                     |            | 10           | 5            | 5           |            |            |            |         |  |
| PERCE<br>OF CO<br>CONTE | HTED<br>NTAGE<br>DURSE<br>RIBUTIO<br>POS | 3                                                      |            | 2            | 1            | L           |            |            |            |         |  |

| LESSO | ON PLAN:                                                                                                                                                                                                                                                                                        |     |                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------|
| UNIT  | Mathematics for SET/ NET & General Studies for<br>UPSC/ TNPSC                                                                                                                                                                                                                                   | HRS | PEDAGOGY                                                       |
| I     | Groups–Sub Groups-Quotients groups –Homomorphisms-Cyclic<br>groups-Permutations-Combinations-Matrices-Rank and Determinant of<br>matrices-Linear equations-Eigen values and Eigen vectors.                                                                                                      | 12  | Chalk and<br>Board,<br>Virtual Class<br>room, LCD<br>projector |
| II    | Elementary set theory-Countable and Uncountable sets-Sequences and<br>Series-Convergence-Continuity and Differentiability-Uniform<br>Convergence-Algebra of complex Numbers: Polynomials-Power Series-<br>Analytic functions-Cauchy Riemann Equations-Calculus of Residues-<br>Singular points. | 12  | Guest<br>Lectures.                                             |
| III   | Existence and Uniqueness of solutions of IVP-General Theory of<br>Homogeneous and non-homogeneous linear ODE's-Lagrange and<br>Charpit Methods for solving first order PDE's-Method of Separation of<br>variables for Laplace, Heat and Wave Equations.                                         | 12  | Chalk & Talk                                                   |
| IV    | Percentage – profit and loss - proportion                                                                                                                                                                                                                                                       | 12  | Chalk & Talk                                                   |
| V     | Simple Interest and Compound interest, Time and Work                                                                                                                                                                                                                                            | 12  | Chalk & Talk                                                   |

|                | Learning Outcome Based Education & Assessment (LOBE)<br>Formative Examination - Blue Print<br>Articulation Mapping – K Levels with Course Outcomes (COs) |                                 |                      |              |                        |                  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--------------|------------------------|------------------|--|--|--|--|
| Internal Cos   | Cos                                                                                                                                                      | K Level                         | Section<br>MC(       |              | Section B<br>Either or | Section C        |  |  |  |  |
|                | COS                                                                                                                                                      | I Level                         | No. of.<br>Questions | K -<br>Level | Choice                 | Either or Choice |  |  |  |  |
| CI             | CO1                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AI             | CO2                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
| CI             | CO3                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K2,K2)               | 2(K3,K3)         |  |  |  |  |
| AII            | CO4                                                                                                                                                      | K1 – K5                         | 2                    | K2           | 2(K3,K3)               | 2(K4,K4)         |  |  |  |  |
|                | 1                                                                                                                                                        | No. of Questions to be asked    | 4                    |              | 4                      | 4                |  |  |  |  |
| Quest<br>Patte |                                                                                                                                                          | No. of Questions to be answered | 4                    |              | 2                      | 2                |  |  |  |  |
| CIA I          |                                                                                                                                                          | Marks for each<br>question      | 1                    |              | 5                      | 8                |  |  |  |  |
|                |                                                                                                                                                          | Total Marks for<br>each section | 4                    |              | 10                     | 16               |  |  |  |  |

|     |            | D                                              | istribution of                          | f Marks with                            | K Level        | CIA I & CIA II                    |                  |
|-----|------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------|------------------|
|     | K<br>Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either /<br>Or<br>Choice) | Section C<br>(Either /<br>Or<br>Choice) | Total<br>Marks | % of (Marks<br>without<br>choice) | Consolidate of % |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 25               |
|     | K2         | 2                                              | 10                                      |                                         | 12             | 21.4                              |                  |
| CIL | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| CIA | K4         |                                                |                                         | 16                                      | 16             | 28.6                              | 28.6             |
| Ι   | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |
|     | K1         | 2                                              |                                         |                                         | 2              | 3.6                               | 7.2              |
|     | K2         | 2                                              |                                         |                                         | 2              | 3.6                               | 1.2              |
| CIA | K3         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
| II  | K4         |                                                | 10                                      | 16                                      | 26             | 46.4                              | 46.4             |
|     | K5         |                                                |                                         |                                         |                |                                   |                  |
|     | Marks      | 4                                              | 20                                      | 32                                      | 56             | 100                               | 100              |

K2- Basic understanding of facts and stating main ideas with general answers

**K3**- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summat    | ive Exam                            | ination – B    | lue Print Artic | culation Map   | ping – K Level with Co     | ourse Outcomes (COs)   |
|-----------|-------------------------------------|----------------|-----------------|----------------|----------------------------|------------------------|
|           |                                     |                | Section A       | (MCQs)         | Section B (Either / or     | Section C (Either / or |
| S. No     | Cos                                 | K - Level      | No. of          | K – Level      | Choice) With               | Choice) With           |
|           |                                     |                | Questions       | II Lever       | K - LEVEL                  | K - LEVEL              |
| 1         | CO1                                 | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 2         | CO2                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 3         | CO3                                 | K1 – K5        | 2               | K1,K2          | 2(K2,K2)                   | 2(K3,K3)               |
| 4         | CO4                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| 5         | CO5                                 | K1 – K5        | 2               | K1,K2          | 2(K3,K3)                   | 2(K4,K4)               |
| No. of Qu | iestions to                         | be Asked       | 10              |                | 10                         | 10                     |
| No. of    | No. of Questions to be<br>answered  |                | 10              |                | 10                         | 5                      |
| Marks     | Marks for each question             |                | 1               |                | 1                          | 8                      |
| Total Ma  | <b>Total Marks for each section</b> |                | 10              |                | 10                         | 40                     |
|           | (Figu                               | ires in parent | thesis denotes, | questions show | uld be asked with the give | en K level)            |

## **Distribution of Marks with K Level**

| K Level | Section A<br>(Multiple<br>Choice<br>Questions) | Section B<br>(Either or<br>Choice | Section C<br>(Either/ or<br>Choice) | Total<br>Marks | % of<br>(Marks<br>without<br>choice) | Consolidated % |
|---------|------------------------------------------------|-----------------------------------|-------------------------------------|----------------|--------------------------------------|----------------|
| K1      | 5                                              |                                   |                                     | 5              | 3.6                                  | 4              |
| K2      | 5                                              | 20                                |                                     | 25             | 17.8                                 | 18             |
| K3      |                                                | 30                                | 32                                  | 62             | 44.3                                 | 44             |
| K4      |                                                |                                   | 48                                  | 48             | 34.3                                 | 34             |
| Marks   | 10                                             | 50                                | 80                                  | 140            | 100                                  | 100            |
| K4      | 10                                             | 50                                | 48                                  | 48<br>140      | 34.3                                 | 34             |

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

## **Summative Examinations - Question Paper – Format**

| Q. No.    | Unit           | CO         | K-level |         |                     |
|-----------|----------------|------------|---------|---------|---------------------|
| Answer AL | L the question | ns         | PA      | ART – A | (10 x 1 = 10 Marks) |
|           | Unit - I       | CO1        | K1      |         |                     |
| 1.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - I       | CO1        | K2      |         |                     |
| 2.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - II      | <b>CO2</b> | K1      |         |                     |
| 3.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - II      | CO2        | K2      |         |                     |
| 4.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K1      |         |                     |
| 5.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - III     | CO3        | K2      |         |                     |
| 6.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K1      |         |                     |
| 7.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - IV      | <b>CO4</b> | K2      |         |                     |
| 8.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K1      |         |                     |
| 9.        |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |
|           | Unit - V       | CO5        | K2      |         |                     |
| 10.       |                |            |         | a)      | b)                  |
|           |                |            |         | c)      | d)                  |

Answer **ALL** the questions

PART – B

(5 x 5 = 25 Marks)

| 11. a) | Unit - I   | CO1        | K2 |    |
|--------|------------|------------|----|----|
|        |            |            |    | OR |
| 11. b) | Unit - I   | CO1        | K2 |    |
| 12. a) | Unit - II  | CO2        | K3 |    |
|        |            |            |    | OR |
| 12. b) | Unit - II  | CO2        | K3 |    |
| 13. a) | Unit - III | CO3        | K2 |    |
|        |            |            |    | OR |
| 13. b) | Unit - III | CO3        | K2 |    |
| 14. a) | Unit - IV  | <b>CO4</b> | K3 |    |
|        |            |            |    | OR |
| 14. b) | Unit - IV  | <b>CO4</b> | K3 |    |
| 15. a) | Unit - V   | CO5        | K3 |    |
|        |            |            |    | OR |
| 15. b) | Unit - V   | CO5        | K3 |    |

| Answer A | ALL the quest | ions |       | PART – C | (5 x 8 = 40 Marks) |
|----------|---------------|------|-------|----------|--------------------|
| 16. a)   | Unit - I      | CO1  | K3    |          |                    |
|          |               |      |       | OR       |                    |
| 16. b)   | Unit - I      | CO1  | K3    |          |                    |
| 17. a)   | Unit - II     | CO2  | K4    |          |                    |
|          |               |      |       | OR       |                    |
| 17. b)   | Unit - II     | CO2  | K4    |          |                    |
| 18. a)   | Unit - III    | CO3  | K3    |          |                    |
|          |               |      |       | OR       |                    |
| 18. b)   | Unit - III    | CO3  | K3    |          |                    |
| 19. a)   | Unit - IV     | CO4  | K4    |          |                    |
|          |               |      |       | OR       |                    |
| 19. b)   | Unit - IV     | CO4  | K4    |          |                    |
| 20. a)   | Unit - V      | CO5  | K4    |          |                    |
|          |               |      | · · · | OR       |                    |
| 20. b)   | Unit - V      | CO5  | K4    |          |                    |

# PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name        | NUMERICAL ANALYSIS USING PYTHON |   |   |   |  |  |  |
|--------------------|---------------------------------|---|---|---|--|--|--|
| Course Code        | 23PMTSP41                       | L | Р | С |  |  |  |
| Category           | SKILL                           | - | 4 | 2 |  |  |  |
| COURSE OBJECTIVES: |                                 |   |   |   |  |  |  |

To introduce the concepts and to develop working knowledge on the numerical methods for Mathematical concepts such as differentiation, integration etc to solve these problems using Python programming language

#### LIST OF PROGRAMMES

- 1. Find the polynomial for the given data using Newton's Forward Difference formula.
- 2. Find the polynomial for the given data using Newton's Backward Difference formula.
- 3. Find the polynomial for the given data using Central Difference formula.
- 4. Find the polynomial for the given data using Modified Newton's formula.
- 5. Solve a system of linear equations using Gauss Elimination method.
- 6. Solve a system of linear equations using Gauss- Jordan method.
- 7. Solve a system of linear equations using Gauss-Jacobi method.
- 8. Solve a system of linear equations using Gauss Seidal method.
- 9. Find a root of a quadratic equation using Newton-Raphson method.
- 10. Find a root of a cubic equation using Newton-Raphson method.
- 11. Compute the value of f(x) using Trapezoidal rule.
- 12. Compute the value of f(x) using Simpson's rule.

#### **Total Lecture Hours**

#### **BOOKS FOR REFERENCES:**

- P.R. Turner, T. Arildsen, K. Kavanagh, Applied Scientific Computing With Python, Springer International Publishing AG, part of Springer Nature, 2018
- > J. M. STEWART, Python for Scientists, Cambridge University Press, 2014
- 2. C. Hill, Learning Scientific Programming with Python, Second Edition, Cambridge University Press, 2020, 2004.

#### WEB RESOURCES:

https://www.w3schools.com/python/python\_math.asp

30

| Nature of<br>Course              | EMPLOYABILITY        |  | ✓     | SKILL ORIENTED |                 |  | ENTREPRENEURSHIP |            | •            |  |
|----------------------------------|----------------------|--|-------|----------------|-----------------|--|------------------|------------|--------------|--|
| Curriculum<br>Relevance          | LOCAL REGION         |  | IONAL |                | NATIONAL        |  |                  | GLOBAL     | $\checkmark$ |  |
| Changes<br>Made in the<br>Course | Percentage of Change |  |       |                | No Changes Made |  |                  | New Course |              |  |

\* Treat 20% as each unit (20\*5=100%) and calculate the percentage of change for the course.

| COURS                   | SE OUTC                                                           | OMES:      |            |                     |             |             |                  |             | K          | LEVEL   |
|-------------------------|-------------------------------------------------------------------|------------|------------|---------------------|-------------|-------------|------------------|-------------|------------|---------|
| After st                | udying this                                                       | course, th | ne student | s will be a         | ble to:     |             |                  |             |            |         |
| CO1                     | Learn four                                                        | dations of | Python an  | d numerica          | al calculus | of Python.  | •                |             | K          | 1 to K5 |
| CO2                     | solve this l                                                      | inear equa | tions      |                     |             |             | _                | n programs  |            | 1 to K5 |
| <b>CO3</b>              | Obtain the Python pro                                             |            |            |                     |             | t iterative | methods a        | nd write th | e K        | 1 to K5 |
| CO4                     | Write the I                                                       | Python pro | grams to f | ind the inte        | rpolation   |             |                  |             | K          | 1 to K5 |
| CO5                     | Write the Python programs to solve quadratic and cubic equatiions |            |            |                     |             |             |                  |             |            |         |
| MAPPI                   | NG WITH                                                           | PROGR      | AM OUT     | COMES:              |             |             |                  |             |            |         |
| CO/PC                   | <b>PO1</b>                                                        | <b>PO2</b> | PO3        | PO4                 | PO5         | <b>PO6</b>  | <b>PO7</b>       | PO8         | <b>PO9</b> | PO10    |
| <b>CO1</b>              | 3                                                                 | 2          | 3          | 2                   | 3           | 3           |                  |             |            |         |
| CO2                     | 3                                                                 | 2          | 3          | 2                   | 3           | 3           |                  |             |            |         |
| CO3                     | 3                                                                 | 2          | 3          | 2                   | 3           | 3           |                  |             |            |         |
| CO4                     | 3                                                                 | 2          | 3          | 2                   | 3           | 3           |                  |             |            |         |
| CO5                     | 3                                                                 | 3          | 3          | 2                   | 3           | 3           |                  |             |            |         |
| S- STR                  | ONG                                                               |            |            | <b>M</b> – <b>M</b> | EDIUM       |             |                  | L - L       | ow         |         |
| CO / P                  | Ο ΜΑΡΡΙ                                                           | NG:        |            |                     |             |             |                  |             |            |         |
| C                       | os                                                                | PSO1       | . ]        | PSO2                | PS          | 03          | PSO <sub>4</sub> | 1           | PSC        | )5      |
| C                       | <b>D</b> 1                                                        | 3          |            | 2                   | 2           |             |                  |             |            |         |
| C                       | 0 2                                                               | 3          |            | 2                   | 2           | 2           |                  |             |            |         |
| C                       | <b>3</b>                                                          | 3          |            | 2                   |             | 2           |                  |             |            |         |
| C                       | <b>)</b> 4                                                        | 3          |            | 2                   | 2           |             |                  |             |            |         |
| C                       | CO 5 3                                                            |            |            | 2                   |             | 2           |                  |             |            |         |
| WEIG                    | WEIGHTAGE 15                                                      |            |            | 10                  | 10          |             |                  |             |            |         |
| PERCE<br>OF CO<br>CONTE | HTED<br>ENTAGE<br>DURSE<br>RIBUTIO<br>D POS                       | 3          |            | 2                   | 2           | 2           |                  |             |            |         |

# **LESSON PLAN:**

| LIST OF PROGRAMMES                                                           | HRS | PEDAGOGY |
|------------------------------------------------------------------------------|-----|----------|
| 1. Find the polynomial for the given data using Newton's Forward Difference  |     |          |
| formula.                                                                     |     |          |
| 2. Find the polynomial for the given data using Newton's Backward Difference |     |          |
| formula.                                                                     |     |          |
| 3. Find the polynomial for the given data using Central Difference formula.  |     |          |
| 4. Find the polynomial for the given data using Modified Newton's formula.   |     |          |
| 5. Solve a system of linear equations using Gauss Elimination method.        |     |          |
| 6. Solve a system of linear equations using Gauss- Jordan method.            | 30  |          |
| 7. Solve a system of linear equations using Gauss-Jacobi method.             |     |          |
| 8. Solve a system of linear equations using Gauss Seidal method.             |     |          |
| 9. Find a root of a quadratic equation using Newton-Raphson method.          |     |          |
| 10. Find a root of a cubic equation using Newton-Raphson method.             |     |          |
| 11. Compute the value of $f(x)$ using Trapezoidal rule.                      |     |          |
| 12. Compute the value of $f(x)$ using Simpson's rule.                        |     |          |

|                |          | Learning Outcon<br>Formativ<br>Articulation Mapping | ve Examinat               | ion - Blue l                      | Print                   | ·                                      |                          |
|----------------|----------|-----------------------------------------------------|---------------------------|-----------------------------------|-------------------------|----------------------------------------|--------------------------|
| Internal       | Cos      | K Level                                             | Syntax &<br>Semantic<br>s | Progra<br>mming<br>principl<br>es | Concept<br>Applications | Codin<br>g &<br>Imple<br>mentat<br>ion | Debug<br>ging &<br>Outpu |
|                | CO1      | K1                                                  | 5                         |                                   |                         |                                        |                          |
|                | CO2      | K2                                                  |                           | 5                                 |                         |                                        |                          |
| CIA            | CO3      | K3                                                  |                           |                                   | 5                       |                                        |                          |
|                | CO4      | K4                                                  |                           |                                   |                         | 5                                      |                          |
|                | CO5      | K4                                                  |                           |                                   |                         |                                        | 5                        |
|                | No. of Q |                                                     | 2                         | 2                                 | 2                       | 2                                      | 2                        |
| Quest          |          | No. of Questions to be answered                     | 2                         | 2                                 | 2                       | 2                                      | 2                        |
| Pattern<br>CIA |          | Marks for each<br>question                          | 2.5                       | 2.5                               | 2.5                     | 2.5                                    | 2.5                      |
|                |          | Total Marks for<br>each section                     | 5                         | 5                                 | 5                       | 5                                      | 5                        |

|     | Distribution of Marks with K Level CIA |                       |                               |                             |            |                           |                |                                                  |                                   |  |  |  |  |
|-----|----------------------------------------|-----------------------|-------------------------------|-----------------------------|------------|---------------------------|----------------|--------------------------------------------------|-----------------------------------|--|--|--|--|
|     | K<br>Level                             | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applicatio<br>ns | Codin<br>g | Debuggi<br>ng &<br>Output | Total<br>Marks | % of<br>(Mar<br>ks<br>witho<br>ut<br>choic<br>e) | Co<br>nso<br>lid<br>ate<br>d<br>% |  |  |  |  |
|     | K1                                     | 5                     |                               |                             |            |                           | 5              | 20                                               | 20                                |  |  |  |  |
|     | K2                                     |                       | 5                             |                             |            |                           | 5              | 20                                               | 20                                |  |  |  |  |
|     | K3                                     |                       |                               | 5                           |            |                           | 5              | 20                                               | 20                                |  |  |  |  |
| CIA | K4                                     |                       |                               |                             | 5          | 5                         | 10             | 40                                               | 40                                |  |  |  |  |
|     | Marks                                  |                       |                               |                             |            |                           | 25             | 100                                              | 100                               |  |  |  |  |

K2- Basic understanding of facts and stating main ideas with general answers

- **K3** Application oriented- Solving Problems
- **K4** Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summati                            | ve Exam                 | ination – B  | lue Print Artic       | culation Map                  | ping – K Level with C   | ourse Outco                   | mes (COs)                 |
|------------------------------------|-------------------------|--------------|-----------------------|-------------------------------|-------------------------|-------------------------------|---------------------------|
| S. No                              | Cos                     | K -<br>Level | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applications | Coding&<br>Impleme<br>ntation | Debuggin<br>g &<br>Output |
| 1                                  | CO1                     | K1           | 15                    |                               |                         |                               |                           |
| 2                                  | CO2                     | K2           |                       | 15                            |                         |                               |                           |
| 3                                  | CO3                     | K3           |                       |                               | 15                      |                               |                           |
| 4                                  | CO4                     | K4           |                       |                               |                         | 15                            |                           |
| 5                                  | CO5                     | K4           |                       |                               |                         |                               | 15                        |
| No. of Qu                          | estions to              | o be Asked   | 2                     | 2                             | 2                       | 2                             | 2                         |
| No. of Questions to be<br>answered |                         | 2            | 2                     | 2                             | 2                       | 2                             |                           |
| Marks                              | Marks for each question |              |                       | 7.5                           | 7.5                     | 7.5                           | 7.5                       |
| Total Ma                           | rks for ea              | ach section  | 15                    | 15                            | 15                      | 15                            | 15                        |

(Figures in parenthesis denotes, questions should be asked with the given K level)

|     | Distribution of Marks with K Level CIA |                       |                               |                             |            |                           |                |                                                  |                                   |  |  |  |  |
|-----|----------------------------------------|-----------------------|-------------------------------|-----------------------------|------------|---------------------------|----------------|--------------------------------------------------|-----------------------------------|--|--|--|--|
|     | K<br>Level                             | Syntax &<br>Semantics | Program<br>ming<br>principles | Concept<br>Applicatio<br>ns | Codin<br>g | Debuggi<br>ng &<br>Output | Total<br>Marks | % of<br>(Mar<br>ks<br>witho<br>ut<br>choic<br>e) | Co<br>nso<br>lid<br>ate<br>d<br>% |  |  |  |  |
|     | K1                                     | 15                    |                               |                             |            |                           | 15             | 20                                               | 20                                |  |  |  |  |
|     | K2                                     |                       | 15                            |                             |            |                           | 15             | 20                                               | 20                                |  |  |  |  |
|     | K3                                     |                       |                               | 15                          |            |                           | 15             | 20                                               | 20                                |  |  |  |  |
| CIA | K4                                     |                       |                               |                             | 15         | 15                        | 30             | 40                                               | 40                                |  |  |  |  |
|     | Marks                                  |                       |                               |                             |            |                           | 75             | 100                                              | 100                               |  |  |  |  |