M.Sc., PHYSICS

Program Code: PPH

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

Re-accredited with "A" Grade by NAAC

PASUMALAI, MADURAI – 625 004

Regulations

Eligibility condition for admission

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years

degree course (under 10 + 2 + 3 pattern) (B.Sc., Physics) recognized by the university as equivalent there to.

Duration

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

Attendance

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

Evaluation procedure:

A mark Statement with CGPA = $\sum (MarksXcredits)$

 Σ (Credits)

Where the summations are over all paper appeared up to the current semester.

Examinations: 3 hours duration. Total marks 100 for all papers

External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives (NME)

Pattern of the questions paper for the Continuous Internal Assessment Note: Duration – 1 hour 30 minutes

The components for continuous internal assessment are:	
Part – A) <i>क</i>
Four multiple choice questions (answer all) 4 x0	1 <mark>= 04 Ma</mark> rks
Part -B	
Three short answers questions (answer all) 3 x02	2 <mark>= 06 M</mark> arks
Part –C	
Two questions ('either or 'type)	5=10 Marks
Part –D	
Two questions out of three 2 x 10	0 =20 Marks
Total	40 Marks

The scheme of Examinations:

The components for continuous internal assessment are:

(40 Marks of two continuous internal assessments will be converted to 15 marks)

Two tests and their average	15 marks
Seminar /Group discussion	5 marks
Assignment	5 marks
Total	25 Marks

Pattern of the question paper for the Summative Examinations:

Note: Duration- 3 hours		
Part –A	1 3	
Ten multiple choice questions	10 x01	= 10 Marks
No Unit shall be omitted: not more than two questions from	om <mark>each unit.</mark>	.)
Part –B	i v	
Short answer questions (one question from each unit)	5 x02	= 10 Marks
Part –C		
Five Paragraph questions ('either or 'type)	5 x 05	= 25 Marks
(One question from each Unit)		
Part –D		
Three Essay questions out of five	3 x 10	=30 Marks
(One question from each Unit)		
Total		75 Marks
	144 A	

Minimum Marks for a Pass

50% of the aggregate (Internal +Summative Examinations).

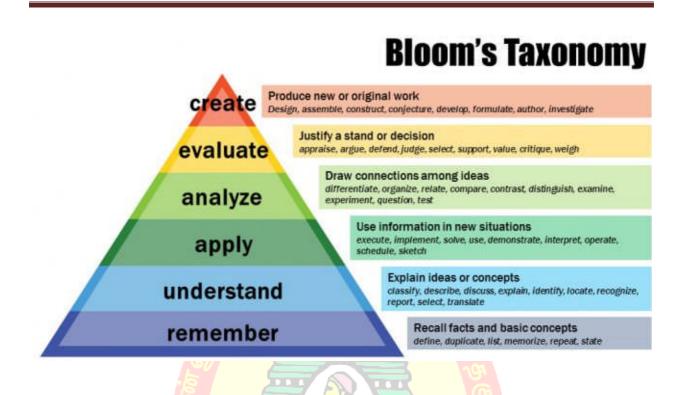
No separate pass minimum for the Internal Examinations.

34 marks out of 75 is the pass minimum for the Summative Examinations.

VISION

The Department of P.G. Physics undertakes the responsibility to preserve and enhance an atmosphere in which scholarly activities in the young minds of the students and thereby improving the total personality.

MISSION


- To produce employable graduates in many areas such as research, teaching, industry etc.
- To inculcate social responsibility.
- To nurture environmental awareness.
- To develop communal harmony & national integration.

The 12 Graduate Attributes:

- 1. (KB) A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
- 2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions
- 3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.
- 4. (Des.) Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
- 5. (Tools) Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
- 6. (Team) Individual and teamwork: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
- 7. (Comm.) Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.

- 8. (Prof.) Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
- 9. (Impacts) Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.
- 10. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.
- 11. (Econ.) Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
- 12. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

WA	Graduate Attributes	Caption as
1	Knowledge Base	KB
2, 3	Problem Analysis & Investigation	PA and Inv.
7,4	Communication Skills & Design	Comm. & Des.
6	Individual and Team Work	Team
8, 10	Professionalism, Ethics and equity	Prof. & Ethics
12	Lifelong learning	LL

PROGE	RAM EDUCATIONAL OBJECTIVES (PEOs)
PEO1 :	Gain broad knowledge on various fields in Physics such as Solid state Physics, Optics,
	Electronics, Quantum Mechanics etc.,
PEO2 :	Develop the interest to take up competitive exams such as GATE, SET and NET and also
	opt for higher education to achieve their dream career.
PEO3:	Communicate effectively by writing reports, speaking fluently, listening to give effective
	response and comprehending the documentations.
PEO4 :	Acquire a wide range of skills such as reasoning, problem solving and soft skills to get
	placement in Educational institutions, Research & Development and Industrial sectors.
PEO5:	Solve societal problems with innovative and creative ideas.
PEO6 :	Upgrade to join as a researcher to work independently by the experience acquired during
	the project period.

PRO	GRAMME OUTCOMES (POs)
PO1	: Demonstrate analytical and practical knowledge in the field of Science, Technology and
	other domains.
PO2	: Make proficiency by using Computer Technology in learning activities and update their
	knowledge, skills to fulfill the requirements at the workplace in their life span.
PO3	: Employ critical and analytical thinking in understanding the concepts of Mathematical
	&Computing Sciences and qualify competitive examinations like CSIR NET/ SET/ TET
	etc.
	6110 6 at
PO4	: Identify Mathematical and Computational methods in order to solve critical problems.
PO5	: Work independently and do detailed study of various concepts of Science.
PO6	Plan, execute, report the results of an experiment/investigation together as a group/team
	with interest and work efficiently as a member of a team.
	9/

PROG	RAM SPECIFIC OUTCOME (PSOs)
PSO1:	Understand, demonstrate and solve the major findings in all branches of Physics
PSO2 :	Employ critical thinking and scientific ideas to design, carry out the work and analyze the
	problems in real time
PSO3:	Communicate effectively and develop skills such as effective oral presentations, writing
	of reports of practical works and documentation work of research projects
PSO4:	Work effectively in a team to use modern techniques, recent equipments and software's in
	Physics in the fields of Electronics, Optics, Condensed Matter Physics and Quantum
	Mechanics
PSO5:	Inculcate the scientific temperament and green route for sustainable development and
	moral values in their profession with active participation
PSO6 :	Extend contemporary research innovations based on societal needs regarding new
	renewable energy harvesting methods

MANNAR THIRUMALAI NAICKER COLLEGE (Autonomous), Madurai DEPARTMENT OF PG PHYSICS

M.Sc., PHYSICS Curriculum

(For the student admitted during the academic year 2021-2022 onwards)

	MESTER			1	1		-
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC11	Mathematical Physics-I	6	4	25	75	100
2	21PPHC12	Classical Mechanics	6	4	25	75	100
3	21PPHC13	Analog Electronics and Communications	6	4	25	75	100
4	21PPHC14	Electrodynamics	6	4	25	75	100
5	21PPHCP1	General Physics Practical	3	-	-	-	-
6	21PPHCP2	Electronics Practical	3	-	-	-	-
-		TOTAL	30	16	100	300	400
II SE	EMESTER		1.3				
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC21	Mathematical Physics-II	6	4	25	75	100
2	21PPHC22	Quantum Mechanics-I	6	4	25	75	100
3	21PPHC23	Digital Electronics	6	45	25	75	100
4	21PPHCP1	General Physics Practical	3	4	40	60	100
5	21PPHCP2	Electronics Practical	3	4	40	60	100
6	21PPHN21	Nanotechnology		6	25	75	100
0	TOTAL			26	180	420	600
III S	EMESTER		30	6	200		000
<u>S.</u> No.	Subject Code	Title of the Subject	Hrs	Cred it	Int.	Ext.	Total
1	21PPHC31	Solid State Physics-I	6	4	25	75	100
2	21PPHC32	Quantum Mechanics-II	6	4	25	75	100
2	21PPHCP3	Practical-III- Electronics-II	6	4	40	60	100
4	211111015	Elective-I		-	40	00	100
-	21PPHE31	Energy Physics	6	6	25	75	100
	21PPHE32	Computational Physics	6	6	25	75	100
	21PPHE33	Physics of Human body	6	6	25	75	100
5	2111111255	Elective-II	0	0	23	15	100
5	21PPHE34	Microprocessor and Microcontroller	6	6	25	75	100
	21PPHE35	Analytical Instrumentation	6	6	25	75	100
	2111111255	Crystal Growth Methods &	0	0	25	15	100
	21PPHE36	Characterization	6	6	25	75	100
		TOTAL	30	24	140	360	500
IVS	EMESTER		50	<u> </u>	140	500	500
<u>S.</u>	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
			1	1	1	i i	1
No.	21PPHC41	Solid State Physics-II	6	4	25	75	100
	21PPHC41 21PPHC42	Solid State Physics-II Nuclear and Particle Physics	6 6	4 4	25 25	75 75	100 100

3	21PPHPR1	Project	6	4	40	60	100
4		Elective-III					
	21PPHE41	Astrophysics	6	6	25	75	100
	21PPHE42	Communication Electronics	6	6	25	75	100
	21PPHE43	Advanced Optics	6	6	25	75	100
5		Elective-IV					
	21PPHE44	Atomic and Molecular Spectroscopy	6	6	25	75	100
	21PPHE45	Bio-medical Instrumentation	6	6	25	75	100
	21PPHE46	Computer Oriented Numerical methods		6	25	75	100
		Total	30	24	140	360	500
		Grand Total	120	90	560	1440	2000

	~ - ~ -	
Semester	Sub Code	List of Elective Courses
Ι		Nil
II	21PPHN21	NME-Nanotechnology
	6	
III	6	Elective-I
	21PPHE <mark>31</mark>	Energy Physics
	21PPHE32	Computational Physics
	21PPHE <mark>33</mark>	Physics of Human body
	6	Elective-II
	21PPHE34	Microprocessor and Microcontroller
	21PPHE35	Analytical Instrumentation
	21PPHE36	Crystal Growth Methods & Characterization
IV		Elective-III
	21PPHE41	Astrophysics
	21PPHE42	Communication Electronics
	21PPHE43	Advanced Optics
		Elective-IV
	21PPHE44	Atomic and Molecular Spectroscopy
	21PPHE45	Bio-medical Instrumentation
	21PPHE46	Computer Oriented Numerical methods

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name **Mathematical Physics-I Course Code 21PPHC11** C L Р Category Core 4 6 EMPLOYBILITY Nature of course: **SKILL ORIENTED ENTREPRENURSHIP Course Objectives:** To recall various matrices and also know to apply characteristic equations for determining the Eigen values and Eigen vectors To remember the basics of vectors and to solve their differentiations • To compare different integrals and to relate their relations between them To perform differentiation and integration operations to bring down complex functions to • analytic forms To determine residues of various complex functions and also can able to evaluate real definite • integrals by contour integration Unit: I Matrix 18 Hrs. Definition - various types of matrices -algebra of matrices -Adjoint of a square matrix -property of adjoint matrix - Inverse of a matrix - elementary transformations - elementary transformations elementary matrices and its theorem - to compute the inverse of a matrix from elementary- the inverse of a symmetric matrix. Consistency of linear system of equations and their solution: Solution of simultaneous equations - types of linear equations - consistency of a system of linear equations. Eigen values, Eigen vectors, Cayley Hamilton theorem: Eigen values - Cayley Hamilton theorem - power of matrix - Eigen vectors and its properties – orthogonal vectors –non symmetric and symmetric matrices with repeated and non-repeated Eigen values – matrix having only one and two Eigen vectors. Unit: II Vectors 15 Hrs. Vectors- Addition of vectors- rectangular resolution of a vectors- unit vectors- position vector of a point- ratio formula- product of two vectors- scalar or dot product- useful results-work done as a scalar product- vector product or cross product- vector product expressed as a determinant - Area of a parallelogram, moment of a force-angular velocity - scalar triple product - geometrical interpretation - co-planarity questions - vector product of three vector - scalar product of four vector - vector product of four vectors. Differentiation of vectors: Vector function - differentiation of vectors - formulae of differentiation - scalar and vector point functions - gradient of a scalar function - geometrical meaning of gradient, normal - normal and directional derivative - divergence of a vector function- physical interpretation of divergence – curl and its physical meaning. Unit: III **Integration of vectors** 21 Hrs. Line integral- surface integral- volume integral- Green's theorem - Stokes theorem -Another method of proving Stokes theorem - Gauss's theorem of divergence - deductions from Gauss

Unit: I	V Complex variables	18 Hrs.
analytic integral formula formula terms-p	x variable – functions and limit of a complex variable –continuity – different function – necessary and sufficient condition for complex function to be analytic- theorem-extension of Cauchy's theorem to multiple connected region-Cauchy -Cauchy integral formula for the derivative of an analytic function-Poisson for a circle. Series: Taylor's and Laurent's series: Convergence of a series of ower series-region of convergence-radius of convergence of a power series-	Cauchy' y integra n integra
expansi U nit: V	on of a function –Taylor's theorem – Laurent's theorem. Calculus of residues	18 Hrs.
Unit: V	Calculus of residues	10 115.
esidues evaluati	analytic function-singular point – residue at a pole-residue at infinity-method of - residue by definition – finding residues of various functions - residue t on of real definite integrals by contour integration – Integration round unit circle of ation of polynomials – Rectangular contour – Indented semi-circular contour.	heorem
	Total Lecture Hours	90
	r study: K. Dass & Dr. Rama Verma, Mathematical Physics, VIII Edition, S. Chand and	
UNIT I UNIT I UNIT I UNIT V	- Chapters 38, 40 (40.1 - 40.3), 41 (41. 1 – 41. 13) - Chapters 1, 2 I - Chapter 3 V - Chapters 22 (22.1-22.11), 24 (24.1-24.6, 24.11), 25(25.1-25.8) V - Chapter 26 For References:	
Aca 2. Adv 3. B. 1	B. Arfken, H. J. Weber and Harris, Mathematical methods for Physicists, IV demic press, India, 2005 anced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publish D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private I hi-55, Reprint 2018.	ners
	esources:	
https://\ https://r	www.coursera.org/courses?query=vector%20calculus ptel.ac.in/courses/111/105/111105122/ ptel.ac.in/courses/111/106/111106100	
	Outcomes	K Leve
On Cor	npletion of this course, the st <mark>udent will be able</mark> to	
CO1:	Determine the rank of a matrix and also apply characteristic equation to find Eigen values and Eigen vectors	K3
C O2:	Solve the differential operations in vectors	K3
CO3:	Understand and compare different integrals such as line, surface and volume exclusively	K4
CO4:	Simplify complex functions through differentiation and integration	K4
	Determine residues of various complex functions and can evaluate the definite	K5

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO 1	2	2	2	3	2	3
CO 2	2	2	2	2	2	2
CO 3	2	3	3	1	2	2
CO 4	2	2	2	2	2	1
CO 5	1	2	1	2	1	2
Weightage	9	11	10	10	9	10

3-Advanced Application; **2** – Intermediate Development; **1** – Introductory Level

LESSON PLAN

UNIT	Course Name	Hrs	Pedagogy
Ι	Matrix Definition, various types of matrices, algebra of matrices, Adjoint of a square matrix, property of adjoint matrix, Inverse of a matrix, elementary transformations, elementary transformations, elementary matrices and its theorem, to compute the inverse of a matrix from elementary, the inverse of a symmetric matrix.	6	
	Rank of matrix: Rank of a matrix, Normal form. Consistency of linear system of equations and their solution: Solution of simultaneous equations, types of linear equations, consistency of a system of linear equations.	6	Chalk & Talk, PPT
	Eigen values, Eigen vectors, Cayley Hamilton theorem: Eigen values, Cayley Hamilton theorem , power of matrix, Eigen vectors and its Properties, orthogonal vectors, non-symmetric and symmetric matrices with repeated and non, repeated Eigen values, matrix having only one and two Eigen vectors	6	
Π	Vectors Vectors, Addition of vectors, rectangular resolution of a vectors, unit vectors, position vector of a point, ratio formula, product of two vectors, scalar or dot product, useful results, work done as a scalar product, vector product or cross product, vector product expressed as a determinant, Area of a parallelogram, moment of a force, angular velocity, scalar triple product, geometrical interpretation, coplanarity questions, vector product of three vector, scalar product of four vector, vector product of four vectors.	4	Chalk, Talk& Assignment
	Differentiation of vectors: Vector function, differentiation of vectors, formulae of differentiation, scalar and vector point functions, gradient of a scalar function, geometrical meaning of gradient, normal, normal and directional derivative.	5	

	Volume II – Science Syllab	ous / 2	020 - 2021
	Divergence of a vector function, physical interpretation of divergence, curl and its physical meaning	6	
III	Line integral, surface integral, volume integral, Green's theorem, area of a plane region by Green's theorem	7	Chalk,
	Stokes theorem, another method of proving Stokes theorem	7	Talk&
	Gauss's theorem of divergence, deductions from gauss divergence theorem, Helmholtz theorem.	7	Exercise
IV	Complex variable, functions and limit of a complex variable, continuity, differentiability, analytic function, necessary and sufficient condition for complex function to be analytic, Cauchy's integral theorem	6	
	Extension of Cauchy's theorem to multiple connected region, Cauchy integral formula, Cauchy integral formula for the derivative of an analytic function, Poisson integral formula for a circle	6	Chalk & Talk, PP
	Series: Taylor's and Laurent's series: Convergence of a series of complex terms, power series, region of convergence, radius of convergence of a power series, method of expansion of a function, Taylor's theorem, Laurent's theorem.	6	
V	Zero of analytic function, singular point- residue at a pole, residue at infinity, method of finding residues, residue by definition, finding residues of various functions, residue theorem	7	Chalk,
	Evaluation of real definite integrals by contour integration, Integration Round unit circle of the type	5	Talk& Seminar
	Evaluation of polynomials, Rectangular contour, Indented Semi- circular contour.	6	

Course Designed by: Dr. D. Ruby Josephine

Mrs. S. Nagadeepa / ///

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print								
	Articulation Mapping – K Levels with Course Outcomes (COs)								
Inte	Cos	K Level	Section	A	Section	B	Section C	Section D	
rnal			MCQ	S	Short Ans	swers	Either or	Open	
			No. of.	К-	No. of.	К-	Choice	Choice	
			Questions	Level	Questions	Level			
CI AI	CO1	K2	2	K1 & K2	1	K1	2 (K2&K2)	1(K2)	
AI	CO2	K3	2	K1 & K2	2	K2	2 (K3&K3)	2(K2 & K3)	
CI AII	CO3	K2	255	K1 & K2	100	K2	2 (K2&K2)	1(K2)	
	CO4	K4	6 ²	K1 & K2		K2	2 (K3&K3)	2(K3 &K4)	
Pat	stion tern	No. of Questions to be asked	4)))/3	\$	4	3	
	I & I	No. of Questions to be answered	4		3	ъ С	2	2	
		Marks fo <mark>r each question</mark>		R G	2	5	5	10	
		Total Marks for each section	4	T	6		10	20	
		5				Ь			

		Dist	ribution of 1	Mar <mark>ks w</mark> ith	K Level C	IA I & O	CIA II	
	K Level	Sectio <mark>n A</mark> (Multiple	Section B (Short	Section C (Either /	Section D (Open	Total Marks	% of (Marks	Consolidate of %
		Choice Questions)	Answer Questions)	Or Choice)	Choice)		without choice)	
	K1	2	2		2211411	4	6.67	67
~	K2	2	5	10	20	36	60	
CIA	K3	-		10	10	20	33.33	33
Ι	K4	-	201	-		-	-	-
	Marks	4	6	20	30	60	100	100
	K1	2	2		-	4	6.67	50
CIA	K2	2	4	10	10	26	43.33	
II	K3	-	-	10	10	20	33.33	33
	K4	-	-	_	10	10	16.67	17
	Marks	4	6	20	30	60	100	100

K1- Remembering and recalling facts with specific answers

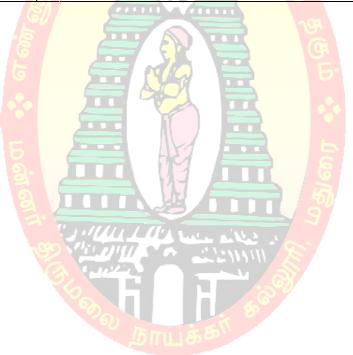
K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

6	ummauv	e Examman	on – Blue Pri O	utcomes	-	ping – ĸ	Level with o	ourse
S.No	COs	K - Level	MCQ)s	Short An	swers	Section C	Section D
•			No. of	K –	No. of	K –	(Either /	(Open
			Questions	Level	Question	Level	or	Choice)
							Choice)	
1	CO1	Up to K 3	2	K1,K2	1	K1	2	1(K3)
							(K3&K3)	
2	CO2	Upto K3	2	K1&K	1	K1	2	1(K3)
				2			(K3&K3)	
3	CO3	Up to K 5	2	K1&K	1	K2	2	1(K3)
			. 53	2	1000		(K5&K5)	
4	CO4	Up to K 3	2	K1&K	1°	K2	2	1(K3)
		_	OXD	2	n A		(K3&K3)	
5	CO5	Up to K 5	2	K1&K	1	K2	2	1(K5)
				2		and -	(K3&K3)	
No.	of Quest	ions to be 🔗	10		5		10	5
	Aske	ed 🖉				101		
No	of Quest	ions to be	10		- 5) (C	5	3
	answe	red				9		
Mar	ks for eac	h ques <mark>tion</mark>	1		2	E	5	10
Total N	Marks for	each section	10	apr	10		25	30
	(Figures	in pa <mark>renthes</mark> i	<mark>is de</mark> notes, qu	lestions s	hould be as	ked with	the given K	level)
		Бa		A			(in the second s	


		2 Dis	stribution of	Marks with	n K Leve	1)		
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5	4 📎		- 5	9	7.5	17	
K2	5	6	JE TETTU	55 ⁵	11	9.16	1/	
K3	-	-	40	40	80	66.67	83	
K4	-	-	-	-	-	-		
K5	-	-	10	10	20	16.6		
Marks	10	10	50	50	120	100	100	
NB: Hi	gher level of p	performance of	f the students i	s to be assess	sed by atte	empting hig	gher level of K	
	levels.							

		Summa	ative Examinations - Question Paper – Format
			Section A (Multiple Choice Questions)
		swer All Q	
Q. No	CO	K Level	Questions
1	CO1	K1	Select a idempotent matrix a) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	CO1	К2	Show AB, if A= $ \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & 1 \\ -3 & 1 & 2 \end{bmatrix} $ and B = $ \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix} $ a) $ \begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 & 6 \\ 3 & 6 & 8 \end{bmatrix} $ $ \begin{bmatrix} 4 & 4 & -2 & 0 & 0 & 1 \\ -1 & 1 & 1 & 0 & 2 \\ -3 & 1 & 2 \end{bmatrix} $ $ \begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ -1 & 5 & -4 & 3 & 0 & 8 \end{bmatrix} $ $ \begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 6 & 8 \end{bmatrix} $
3	CO2	K1	Identify the directional derivative of the function $\Phi = x^2yz + 4xz^2$ at (1, -2, 1) in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$
4	CO2	K2	Express grad Φ at the point (1, -2, -1) Where $\Phi = 3xz^2y-y^3z^2$ a) $-16\hat{i} + 9\hat{j} + 3\hat{k}$ b) $-16\hat{i} + 4\hat{j} + 4\hat{k}$ c) $-16\hat{i} + \hat{j} + 4\hat{k}$ d) $-16\hat{i} + 9\hat{j} + 4\hat{k}$
5	CO3	K1	Which is defined as the integral of the components of F along the normal to the surface a) Surface integral of scalar function b) surface integral of a vector function c) even function d) odd function
6	CO3	K2	Indicate the volume integral a) $\iiint \vec{F} dv$ b) $\int \vec{F} dv$ c) $\iint \vec{F} dv$ d) none of these
7	CO4	K1	Identify the other names of analytic function a) holomorphic b) regular c) monogenic d) all the above
8	CO4	К2	Express the polar form of complex variable a) $z=r(\cos \theta -i \sin \theta)$ b) $z=r(\cos \theta + \sin \theta)$ c) $z=r(\cos \theta + 2i \sin \theta)d)z=r(\cos \theta + i \sin \theta)$
9	CO5	K1	Locate the definition for singular point a) a point at which a function f(z) is not analytic b) a point at which a function f(z) is negative c) a point at which a function f(z) is positive d) none of these
10	CO5	K2	When m=1, the pole is said to be a a) Small pole b) simple pole c) elongated pole d) closed pole
			Section B (Short Answers)
		nswer All (
Q.No	CO	K Level	Questions
11	CO1	K1	Define a singular matrix
12	CO2	K1	Define vector point function

<u> </u>

12	CO2	VЛ	Describe in short on stroke's theorem				
13 14	CO3 CO4	K2 K2	Describe in short on stroke's theorem Write in short on single valued and multi valued function				
14	CO4 CO5	K2 K2	Write in short on single valued and multi valued function Explain in short about isolated singular point				
Section C (Either/Or Type)							
Answer All Questions $(5 \times 5 = 25 \text{ marks})$							
Q. No	CO	K Level	Questions				
16) a	1	K3	Determine AB and BA and show that AB=BA or not, if A= $\begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ and B= $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix}$				
16) b	1	К3	Determine the values of α , β , γ when $\begin{pmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}$ is orthogonal $\begin{pmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}$				
17) a	2	К3	Find the constants a, b, c so that $\vec{F} = (x+2y+az) \hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\vec{k}$ is irrotational and hence find function φ such that $\vec{F} = \delta\varphi$				
17) b	2	K3	Show that $\vec{A} = (6xy + z^3)\hat{\iota} + (3x^2 - z)\hat{j} + (3xz^2 - y)\vec{k}$ is irrotational and find Φ such that $A = \vec{\Delta} \Phi$				
18) a	3	K5	Using stoke s theorem or otherwise evaluate $\int (2x - y)dx - yz 2dy - y2 dz$ where c is the circle $x^2+y^2=1$ corresponding to the surface of sphere of unit radius				
18) b	3	K5	Evaluate $\iint \vec{F}$. \hat{n} ds where $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and s is the surface of the cube bounded by x=0, x=1, y=0, y=1, z=0 and z=1				
19) a	4	K3 01	Find the value $\int_0^{1+i} (x - y + ix^2) dz$ a) Along the straight line from z=0 to z= 1+i b) Along the real axis from z=0 to z=1 and then along a line parallel to the imaginary axis from z=1 to z=1+i				
19) b	4	K3	Find the value of the integral $\int (x + y) dx + x^2 y dy$ (a) Along $y=x^2$ having (0,0), (3,9)end points (b) Along $y=3x$ between the same points Do the values depend upon path				
20) a	5	K3	Determine the poles of the following function and residue at each pole $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\int_c \frac{z^2 dz}{(z-1)^2(z+2)}$ where $c: z = 3$				
20) b	5	K3	Find the value of $\oint z e^{\frac{1}{z}}$ around the unit circle				
NB:	Higher	level of pe	erformance of the students is to be assessed by attempting higher				
_ ,_ ,		P	level of K levels				
			Section D (Open Choice)				
	Ans	wer Any T	Three questions (3x10=30 marks)				
Q. No	CO	K Level	Questions				

21	CO1	K3	1 2 2
			Apply $A= 2$ 1 2 and show that A^2 -4A-5I=0, Where I and 0 are
			2 2 1
			unit and null matrix of order 3 respectively. Use this result to find A^{-1}
22	CO2	K3	If r is the distance of a point (x, y, z) from the origin, solve for curl
			$(k \ast \operatorname{grad} \frac{1}{r}) + \operatorname{grad} \left(k \cdot \operatorname{grad} \frac{1}{r}\right) = 0$, where k is the unit vector in
			the direction OZ
23	CO3	K3	Determine surface integral $\iint \vec{F}$. \hat{n} ds where $\vec{F} = (x^2 + y^2 + z^2)(\hat{i} + \hat{j} + \hat{k})$,
			S is the surface of the tetrahedron $x=0$, $y=0$, $z=0$, $x+y+z=2$ and n is
			the unit normal in the outward direction to the closed surface S
24	CO4	K3	Determine $\int_{1-i}^{2+i} (2x + iy + 1) dz$ along the two paths i) x=t+1,
			$y=2t^2-1$ ii) the straight line joining 1-i and 2 +i
25	CO5	K5	Evaluate $12z - 7$
			i) $\int \frac{12z-7}{(z-1)^2(2z+3)} dz$, where C is the circle $ z =2$ ii) $ z+i =\sqrt{3}$

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course	CLA	ASSICAL MECHANI	ICS	8					
Name Course Code	21PI	PHC12					L	Р	С
Category	Core								
Nature of Cou	rse	EMPLOYBILITY		SKILL ORIENTED	✓	ENTREPR	RENU	RSHI	P
Course Object	ives:								
		e knowledge about Lag	U						
•		solid foundation in th	ie i	motion of particles an	d it	s extension	to Ha	amilto	nian
formulation • To analyze		epler's law in central f	For	na problem					
-		-		motion and stability o	fos	cillatory mo	tion		
				formation and to gain				range	and
Poisson bra		neept of Canonical th		softilation and to gain			I Lag	range	ana
Unit: I La	grang	gian Dynamics				2		18	Hrs
	<u> </u>		Co	ordinates-Principle o	of N	/irtual wor	k-D'A	Alemb	ert's
principle-Lagra	nge's	Equations from I	\mathcal{D}'	Alembert's principle-	Pro	<mark>cedu</mark> re for	form	nation	of
Lagrange's Eq	uatior	n <mark>s-Lagrange's equation</mark>	ns	in presence of non-c	onse	ervative for	ces-G	eneral	ized
potential-Lagra	ngian	for a charged particle	ma	oving in an electromag	neti	<mark>c fie</mark> ld.			
Unit: II Ha	milto	on <mark>ian Dyna</mark> mics				5		16	Hrs
				ates-Conservation the					
	on of	energy: Jacobi's inte	egr	al-Hamilton's Equation	ons-	Examples	in Ha	amilto	nian
Dynamics					1	SV.			
		dy central force prob	_				~		Hrs
				m to the equivalent o					
				n under central force					
				f force-Kepler's laws			otion	and	their
			_	e- artificial satellites-V	ma			20	Hrs
		d body equations of r		tion about a point- Te	ncor	ra Tha inarti	o tone	-	
				inertia tensor and the					
				ations of motion-Torq					
00			-	The Eigen value equ				0	
				and normal coordina					
	-			effect of dissipative for				/1 u 11	noui
		cal transformations				•		18	Hrs
			ı-E	xamples of canonical	tra	nsformation	s-The		
-				onical transformations					
	-			nitesimal canonical tra					
		-		- The angular momen					
		mechanical systems-Li							
		•			To	tal Lecture	Hour	·s 90)
	-	ating Hold on 20.04.20	2.4						200

Academic Council Meeting Held on 29.04.2021

Page 200

Books for study: 1. J.C.Upadhyaya, Classical Mechanics, 2nd Edition, Himalaya Publishing House Ltd, Mumbai, Reprint 2018. UNIT - I: Chapter 2, 2.1-2.10 UNIT – II: Chapter 3, 3.1-3.7 UNIT - III: Chapter 4, 4.1-4.9 2. Herbert Goldstein, Charles P.Poole, John Safko, Classical Mechanics, 3rd Edition, 21st impression, Pearson Education, Inc., Uttar Pradesh, 2018 UNIT – IV: Chapter 5, 5.1-5.6, Chapter 6, 6.1-6.5 UNIT - V: Chapter 9, 9.1-9.9 **Books for References:** 1. Gupta Kumar Sharma, Classical Mechanics, Pragati Prakashan, Meerut, 30th edition 2004 2. S.N.Biswas, Classical Mechanics, Books and Allied Ltd, Kolkata, 3rd Edition 1998 Web Resources: https://nptel.ac.in/courses/115/106/115106123/ https://nptel.ac.in/courses/115/103/115103113/ **Course Outcomes K** Level On Completion of this course, the student will be able to **CO1:** Demonstrate the Lagrangian principles and D'alembert Principle K1 Acquire the fundamental Principles of Hamiltonian principles in various K3 **CO2:** classical mechanical problems. **CO3:** Connect the principles of central body problems into Kepler's law. K2 Analyze the fundamentals of rigid body problem and oscillations. CO4: K4 Apply Hamilton's characteristic function to solve problems in Lagrange's and CO5: K3 Poisson's brackets

CO & PO Mapping:

Course Outcomes (CO's)	I I II'A	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	2	2	2			
CO2	3	1	2	2	2	3			
CO3	2	2	5 1	1	2	2			
CO4	2	5.3	2	2	2	3			
CO5	2	3	1	3	1	1			
Weightage	12	9	8	10	9	11			

*3- Advanced Application 2- Intermediate Development

1-Introductory Level

Units	Classical & Statistical Mechanics	Hrs	Pedagogy
	Basic Concepts-Constraints, Generalized Coordinates, Principle of Virtual work, D'Alembert's principle	6	
I Lagrangian Dynamics	Lagrange's Equations from D'Alembert's principle, Procedure for formation of Lagrange's Equations	6	Chalk & Talk, PPT
Eugrungun Dynamics	Lagrange's equations in presence of non-conservative forces, Generalized potential, Lagrangian for a charged particle moving in an electromagnetic field.	6	
II	Generalized momentum and cyclic coordinates, Conservation theorems	6	Chalk,
Hamiltonian Dynamics	Hamiltonian function H and conservation of energy: Jacobi's integral, Hamilton's Equations	5	Talk& Assignment
	Examples in Hamiltonian Dynamics	5	
	Reduction of Two-body central force problem to the equivalent one-body problem, Central force and motion in a plane	5	
III Two-body central force problem	equations of motion under central force and first integral, Differential equation for an orbit, inverse square law of force, Kepler's laws of Planetary motion and their deduction	6	Chalk, Talk& Exercise
	Stability of orbit under central force, artificial satellites, Virial theorem	7	
IV The rigid body	Angular momentum and Kinetic energy of motion about a point, Tensors, The inertia tensor and the moment of inertia, The Eigen values of the inertia tensor and the principal axis transformation	6	Chalk &
equations of motion and Oscillations	solving rigid body problems and the Euler equations of motion, Torque, free motion of a rigid body Oscillation: Formulation of the problem	6	Talk, PPT
	The Eigen value equation and the principal axis transformation, Frequencies of free vibration and	5	

LESSON PLAN:

	 normal coordinates, Free vibrations of a linear triatomic molecule, Forced vibrations and the effect of dissipative forces. The equations of canonical transformation, Examples 		
	of canonical transformations, The harmonic oscillator, The simplistic approach to canonical transformations-	6	
V Canonical transformations	Poisson brackets and other canonical invariants, Equation of motion, infinitesimal canonical transformations, and conservation theorems in the Poisson Bracket formulation	5	Chalk, Talk& Seminar
	The angular momentum Poisson bracket relations, symmetry groups in mechanical systems, Liouville's theorem	6	

Course Designed by: Mrs. S. Nagadeepa & Dr. P.P. Kannan

			Learning	Outcome Ba	ased Edu	ication & As	sessmen	t (LOBE)				
	Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)											
Internal	Co	S	K Level	Section	1.6.1	Section		Section C	Section D			
			ě. L	MCQ	s K-	Short An		Either or Choice	Open Choice			
			7	No. of. Questions	Level	No. of. Questions	K - Level					
CI	CO)1	K2	2	K1	21111	K 1	2 (K2&K2)	1(K2)			
AI	CO)2	K4 🕥	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)			
CI	CC)3	K2	2	K1	16	K2	2 (K2&K2)	1(K2)			
AII	CC)4	K4	62	K2	2	K2	2 (K3&K3)	2 (K3 & K4)			
Question	n		No. of	4_91	പ്രമം	3		4	3			
Pattern	-	Questions to be										
CIA I &	II		asked									
		No. of		4		3		2	2			
		Q	uestions to be									
			answered									
		Μ	arks for each	1		2		5	10			
			question									
		Τc	otal Marks for	4		6		10	20			
		6	each section									

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice	Section B (Short Answer	Section C (Either / Or	Section D (Open Choice)	Total Marks	% of (Marks without	Consolidate of %		
		Questions)	Questions)	Choice)			choice)			
	K1	2	2	-	-	4	6.67	50		
	K2	2	4	10	10	26	43.33			
CIA	K3	-	-	10	10	20	33.33	50		
Ι	K4	-	-	-	10	10	16.67			
	Marks	4	6	20	30	60	100	100		
	K1	2	2		-	4	6.67	50		
CIA	K2	2	4	5/-10 0	10	26	43.33			
II	K3	-	5.02	10	10	20	33.33	50		
	K4	-		NAAN	10	10	16.67			
	Marks	4	6	20	30	60	100	100		
			9 G			SA 1941				

				-				
S	Summa	tive Exa	amination –		rticulation mes (COs)	Mapping – 1	K Level with (Course
S.No	COs	К-	MO			nswers	Section C	Section D
		Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	K2	2	K1 & K2		K1	2 (K1 & K1)	1 (K2)
2	CO2	K3		K1 & K2		K1	2 (K2 & K2)	1 (K3)
3	CO3	K3		K1 & K2		K2	2 (K2 & K2)	1 (K3)
4	CO4	K4	2	K1 & K2	المد مشاها ا	K2	2 (K3 & K3)	1 (K4)
5	CO5	K5	2	K1 & K2		₩\ K2	2 (K3 & K3)	1 (K5)
	f Questi e Aske		10	001	5	50	10	5
No. of Questions to be answered		10	ு நா	LI 855\\		5	3	
Marks for each question		1		2		5	10	
Total Marks for each section			10		10		25	30
	(Figure	es in pa	renthesis der	not es, questi	ons should l	be asked wit	h the given K	level)

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	10	-	19	15.83	50			
K2	5	6	20	10	41	34.17				
K3	-	-	20	20	40	33.34	50			
K4	-	-	-	10	10	8.33				
K5	-	-	-	-	10	8.33				
Marks	10	10	50	50	120	100	100			
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.									

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)								
	A	Answer All	Questions (10x1=10 marks)						
Q.No	CO	K Level	Questions						
1	CO1	K1	Each parcel in the Lagrangian formulation is tagged using						
		9	a)time-dependent position vector						
			b)time-independent position vector						
			c)time-dependent velocity vector						
			d) time-independent velocity vector						
2	CO1	K2 💆	Scleronomous constraints have:						
		ુર	a) Explicit time dependence.						
		6	b) no explicit time dependence.						
		9	c) both explicit time dependence and no explicit time dependence.						
			d) neither explicit time dependence nor no explicit time dependence.						
			e) a sclerous time dependence.						
3	CO2	K1	Generalized coordinate is defined as coordinates to describe						
			the system						
	GOO	1/2	a) Maximum b) Minimum c) Finite d) Infinite						
4	CO2	K2	Hamilton's equations areorder equations						
	002	17.1	a) first b) second c) third d) fourth						
5	CO3	K1	The electrostatic forces are very muchthan the gravitational						
			forces in the interaction of atomic and subatomic particles.						
	002	V2	(a) Poor (b) Stronger (c) Equal (d) Lower						
6	CO3	K2	All the planet moves around the Sun in orbit.						
			(a) circular(b) parabolic(c) hyperbolic(d) elliptical						
7	CO4	K1	On which of the following factor does the moment of inertia of an						
/	04	IX1	object not depend upon						
			(a) Axis of rotation (b) Angular velocity						
			(c) Distribution of mass d) Mass of an object						
8	CO4	K2	If simple harmonic variations of a pendulum die away after some time,						
0	007	184	in simple harmonie variations of a pendatum die away after some time,						

ation is inates d							
nates							
d							
<u>d</u>							
d							
oach.							
ear the							
e some							
level							
10,61							
of K levels Section D (Open Choice)							
ıle. 1?							

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name Analog Electronics and Communications 21PPHC13 С **Course Code** L Р Core 4 Category 6 SKILL ORIENTED **ENTREPRENURSHIP** Nature of Course: EMPLOYBILITY **COURSE OBJECTIVES:** To summarize different type of transistors and amplifiers and to be explained how it works To demonstrate the knowledge of operational amplifiers in both linear and non-linear analog systems and their applications To relate the oscillators which are constructed with operational amplifiers To understand the various modulation and demodulation techniques To compare the type of modulations and make use of them for communications Unit: I JFETs and MOSFETs 19 Hrs Basic Ideas- Drain curves- Transconductance curves- Biasing in the ohmic region, Biasing in the active region, Voltage-Divider bias, Current-source bias. Transconductance- JFET amplifiers-Depletion mode MOSFET: Amplifiers-Enhancement mode MOSFET- Ohmic regions. Unit: II **Operational amplifiers and linear applications** 17 Hrs Bias and offsets- CMRR- Slew rate- Inverting amplifier- Virtual ground- Voltage gain- Band width- Non-inverting amplifier- Op-amp applications: Summing amplifier, Voltage follower, Linear IC amplifier- Differential amplifiers and Instrumentation amplifiers. Unit: III Non-linear OPAMP circuit and Oscillators 17 Hrs Integrator- Wave form conversion- Wave form generation-Triangular generator- Active diode circuits- Differentiator. Type of Oscillators: Sinusoidal, Wien bridge, RC type, phase shift, Colpitt and Hartley (CE-connection only) Oscillators. Unit: IV **Amplitude Modulation** 19 Hrs Need for frequency translation- Double side band - Suppressed carrier modulation- Double side band with carrier- Single side band modulation-Angle modulation Tone modulated FM signal-Arbitrary modulated FM signal. **Modulators and Communications** Unit: V 18 Hrs

Variation method-Armstrong's direct method- Frequency multiplication- Armstrong FM system-FM demodulator- SSB-AM, SSB-FM- Stereophonic FM broadcasting. Optical communication -Mobile communication - Satellite communication- Radar system.

Total Lecture Hours 90

Books for study:

1. Albert Malvino and David J Bates, Electronic Principles, VII Edition, McGraw Hill Education(India) Pvt. Ltd, New Delhi-16, Seventeenth Reprint, 2015.

Unit I – Chapter 13, Sec.13.1-13.7, Chapter 14, Sec.14.1 - 14.5

Unit II – Chapter 18, Sec.18.1 -18.6, Chapter 20, Sec.20.4 -20.5

Unit III – Chapter 22, Sec.22.5-22.10, Chapter 23, Sec.23.1 -23.5

2. Herbert Taub, Donald L Schilling and Goutam Saha, Principles of Communication Systems, III Edition, Tata McGraw- Hill Publishing Company Limited, New Delhi-8, 2008.

Unit IV – Chapter 3, Sec.3.1-3.4, Chapter 4, Sec.4.1-4.3

Unit V – Chapter 4, Sec.4.4-4.6, Chapter 16, Sec. 16.3-16.6

Books for References:

- B.L. Theraja, Basic Electronics, Ist. Multicolour Edition, 2005, S.Chand & Company Pvt.Ltd, New Delhi-55, Reprint 2014.
- V.K.Mehta and Rohit Mehta, Principles of Electronics, First Edition, 1980, S.Chand &Company Pvt.Ltd, New Delhi-55, Reprint 2013.
- **3.** B.P.Lathi and ZhiDing , Modern Digitaland Analog Communication systems, International IVth Edition, 2010, Oxford University Press, New York, Reprint 2011

Books for References:

https://www.mooc-list.com/tags/analogue-electronics

https://www.classcentral.com/course/swayam-digital-electronic-circuits-12953

https://nptel.ac.in/courses/108/105/108105132/

COUR	COURSE OUTCOMES		
On Co	mpletion of this course, the student will be able to		
CO1:	Recognize the working of different semiconductor devices and describe their	K2	
	functions		
CO2:	Acquire the knowledge of operations of OP-AMP to perform the various	K1	
	mathematical logics		

CO3:	Use the significance of Op-amps and their importance in oscillator circuits	K4
CO4:	Appraise the use of amplitude and frequency modulation techniques	K3
CO5:	Construct devices used for various Communication systems efficiently	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO s)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	3	2	2	1		
CO2	5 3	5 1000	3	2	2	3		
CO3	1	2	1	2	2	2		
CO4	~ 20	3	2	2	2	3		
CO5	3/17		20	2	3	1		
Weightage	111	11/	11	10	11	10		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	21PPHC13- ANALOG ELECTRONICS AND	Hrs	Pedagogy
	COMMUNICTIONS		
Unit-1	Basic Ideas- Drain curves- Transconductance curves- Biasing		Chalk
JFETs and	in the ohmic region, Biasing in the active region.	6	&Talk,
MOSFETs			PPT
	Voltage-Divider bias, Current-source bias. Transconductance	6	
	JFET amplifiers-Depletion mode MOSFET: Amplifiers-		
	Enhancement mode MOSFET- Ohmic regions.	7	
Unit-2	Bias and offsets- CMRR- Slew rate- Inverting amplifier-	6	Chalk
Operational	Virtual ground- Voltage gain.		&Talk,
amplifiers and	Band width- Non-inverting amplifier- Op-amp applications:	5	Assignment
linear	Summing amplifier, Voltage follower.		
applications	Linear IC amplifier- Differential amplifiers and	6	
	Instrumentation amplifiers.		
Unit-3	Integrator- Wave form conversion- Wave form generation-	5	Chalk
Non-linear	Triangular generator.		&Talk,
OPAMP circuit	Active diode circuits- Differentiator. Type of Oscillators:	6	Class test
and Oscillators	Sinusoidal, Wien bridge		
	RC type, phase shift, Colpitt and Hartley(Ce-	6	
	connectiononly)Oscillators.		
Unit-4	Need for frequency translation- Double side band – Suppressed	6	Chalk
Amplitude	carrier modulation.		&Talk,
Modulation	Double side band with carrier- Single side band modulation	6	PPT
	Angle modulation Tone modulated FM signal- Arbitrary	7	

	modulated FM signal		
Unit-5	Variation method-Armstrong's direct method- Frequency	6	Chalk
Modulators and	multiplication.		&Talk,
Communications	Armstrong FM system- FM demodulator- SSB-AM, SSB-FM-	6	Seminar
	Stereophonic FM broadcasting.		
	Optical communication - Mobile communication - Satellite	6	
	communication- Radar system.		

Course Designed by: Dr. M. Alagar & Dr.D.Ruby Josephine

		Articulation N		xaminati <mark>Levels v</mark>	on - Blue Pr vith Course (int Outcom	es (COs)	1
Internal	Cos	K Level	Section	A	Section	B	SectionC	Section D
			MCQ	S	Short Ans	swers	Either or	Open
			No. of. Questions	K – Level	No. of. Questions	K - Leve l	Choice	Choice
CI	CO1	K2	2	K1	1	K1	2 (K2&K2)	1(K2)
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)
CI	CO3	K2		K1		K2	2 (K2&K2)	1(K2)
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)
Questi	ion	No. of	- 4		3		4	3
Patter CIA I &		Questions to be asked				Б		
		No. of Questions to be answered	4	N.	3	0 द्वि	2	2
		Marks for each question			2.1.2		5	10
		Total Marks for each section			6		10	20

		Dist	ribution of 1	Marks with	n K Level C	CIAI& (CIA II	
	K	Section A	Section B	Section C	Section D	Total	% of	Consolidate
	Level	(Multiple	(Short	(Either /	(Open	Marks	(Marks	of %
		Choice	Answer	Or	Choice)		without	
		Questions)	Questions)	Choice)			choice)	
	K1	2	2	-	-	4	6.67	50
	K2	2	4	10	10	26	43.33	
CIA	K3	-	-	10	10	20	33.33	50
Ι	K4	-	-	-	10	10	16.67	
	Marks	4	6	20	30	60	100	100
	K1	2	2	evil 5 45	-	4	6.67	50
CIA	K2	2	4 5	10	10	26	43.33	
II	K3	-	1.857	10	10	20	33.33	50
	K4	-	/ 6- / F	XXXXX	10 %	10	16.67	
	Marks	4	6 /	//20 (0)	30	60	100	100
			d d			·9.		

			121	<u></u>	V V CEREIR							
S	umma	tive Exa	amination –			Mapping – I	K Level with (Course				
G N	Outcomes (COs)											
S.No	COs	_K -	MC		14	nswers	Section C	Section D				
		Leve	No. of	K – Level	No. of	K – Level	(Either / or	(Open				
		1	Questions		Question		Choice)	Choice)				
1	CO1	K1	2	K1 & K2	1	K1	2 (K1 &	1 (K2)				
			- 6				K1)					
2	CO2	K2	2 🧲	K1 & K2	1	K1	2 (K2 &	1 (K3)				
			12. L				6 K2)					
3	CO3	K3	62	K1 & K2	1	K2	2 (K2 &	1 (K3)				
			<u>9</u>		8		K2)					
4	CO4	K3	2	K1 & K2	1	K2	2 (K3 &	1 (K4)				
			000		A COLOR AND		K3)					
5	CO5	K4	2	K1 & K2	1	K2	2 (K3 &	1 (K5)				
			20			-	K3)					
No. of	Questi	ons to	10		5	20	10	5				
	e Aske			20,		9.						
No. of	Questi	ons to	10	<u>.</u> 5П	5		5	3				
	be answered											
Mar	Marks for each		1		2		5	10				
C	question											
Total Marks for		10		10		25	30					
ead	ch secti	on										
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	be asked wit	h the given K	level)				

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	4	10	_	19	15.83	50				
K2	5	6	20	10	41	34.17					
K3	-	-	20	20	40	33.34	50				
K4	-	-	-	10	10	8.33					
K5	-	-	-	-	10	8.33					
Marks	10	10	50	50	120	100	100				
NB: H	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.										

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)							
		nswer All						
Q.No	CO	K Lev <mark>e</mark> l	Questions					
1	CO1	K1 📀	The modulation index lies between 0 and 1					
		9	a) 0-100 b) 0-5c) 0-16 d)0-90					
2	CO1	K2 💽	The total power in a amplitude modulated wave to the unmodulated					
			carrier power is related by					
			a) $Pt/Pc=1+m2/2$ b) $Pt/Pc=1-m2/2$ c)					
			c) $Pt/Pc=1+m2$ d) $Pt/Pc=1+13m2/2$					
3	CO2	K1	A differential amplifier					
		ച.	a) is a part of an Op-amp b) is a part of an Op-amp					
		3	c) has two outputs description of the description o					
4	CO2	K2	With zero volts on both inputs, an OP-amp ideally should have an					
		2	output					
			a) equal to the positive supply voltage b) equal to the positive supply					
			voltagec) equal to zero					
5	CO3	K1	FET is a device					
			a) unipolar b) bipolarc) tripolar d) all the above					
6	CO3	K2	What is the output waveform of an integrator?					
			a) sine wave b) square wave c) sawtooth wave d) triangle wave					
7	CO4	K1	diodes are recently employed as microwave mixers					
			a) Schottky barrier b) Varacter diode					
			c) Crystal diodes d) Light emitting diode					
8	CO4	K2	The first magnetron was discovered by					
			a) E. W. Hull b) Faradayc) Gunn d) schottky					
9	CO5	K1	Colpitt oscillator contains					
			a) Two capacitors and one inductor b) Two capacitor and two					
			inductors					
			c) One capacitor and two inductors d) One capacitor and one					
			inductor					
10	CO5	K2	LC tuned oscillator produces					
			a) Cos wave b) Square wave c) Triangular d) Sine wave					
Acadomi	a Course	il Mooting I	Teld on 29.04.2021 Page 212					

			Section B (Short Answers)				
	Ar	nswer All (
Q.No	CO	K Level	Questions				
11	CO1	K1	What are the characteristics of an ideal Op-Amp?				
12	CO2	K1	Give the principle of a mono-stable multivibrator.				
13	CO3	K2	Write a note on Armstrong oscillator.				
14	CO4	K2	Define SSB				
15	CO5	K2	List examples for communication in real time				
			Section C (Either/Or Type)				
	A	Answer All	Questions $(5 \times 5 = 25 \text{ marks})$				
Q.No	CO	K Level	Questions				
16) a	CO1	K1	Write elaborately on the representation and power of a amplitude modulated wave				
16) b	CO1	K1	Explain about the effect of noise on carrier noise triangle				
17) a	CO2	K2	Draw the equivalent circuit of an op-amp and explain the various parameters used in the equivalent circuit				
17) b	CO2	K2	Explain how addition and subtraction may be accomplished using of amp				
18) a	CO3	K2	Discuss in detail on the characteristic parameters of JFET?				
18) b	CO3	K2 🕝	How high pass RC circuit be used as a differentiator?				
19) a	CO4	K3	Describe the detail behind isolators?				
19) b	CO4	K3	Explain about Schottky - Barrier diode and about backward diode in detail				
20) a	CO5	K3	RC phase shift oscillator using high pass filters				
20) b	CO5	K3	Draw the circuit of Hartley oscillator using FET				
NB: Hi	igher le	vel of <mark>per</mark> f	ormance of the students is to be assessed by attempting higher level of K levels				
			Section D (Open Choice)				
			nswer Any Three questions (3x10=30 marks)				
Q.No	CO	K Level	Questions				
21	CO1	K2	Describe the direct method involve in the generation of frequency modulation				
22	CO3	К3	Explain the Instrumentation amplifier. Draw a system whose gain is controlled by a variable resistance?				
23	CO4	K3	Draw the Schmitt trigger circuit and explain with wave forms				
24	CO2	K4	Elaborate on the detailed theory on Gunn effect with illustrations				
25	CO5	K5	Evaluate the circuit of Colpitts oscillator. How is the feedback requirements met in it?				

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	ELECTRODYNAM	AICS							
Course Code	21PPHC14				L	P	С		
Category	Core				6	-	4		
Nature Of	EMPLOYBILITY	SKILL ORIENTED	\checkmark	ENTREPREN	NURS	HI	P		
Course:									
Course objectiv	ves:								
 To analyze t To derive N through diff To acquire waveguides To apply ar matter Unit: I 	he theory of magnetor Maxwell's equation in erent media the knowledge of the d analyze the concep ctrostatics and Elect		and m form gation omag	agnetic vector ns, propagation n of electromagnetic waves with	poten 1 of E gnetic	tial EM w	wave aves i	in ic	
energy of point Laplace's equa theorem – cor potentials at la	Poisson's equation and Laplace's equation – potential of a localized charge distribution – electrostatic boundary conditions. Work and energy in electrostatics: work done to move charge - energy of point charge distribution - energy of continuous charge distribution. Laplace's equation: Laplace's equation in one, two, and three dimensions - boundary conditions and uniqueness theorem – conductors and second uniqueness theorem. Multipole expansion: Approximate potentials at large distances - monopole and dipole terms. Polarization: Dielectrics - induced dipoles - alignment of polar molecules								
		gnetic Fields in Matter				19			
magnetic field comparison of magnetostatic b	of steady current. D magnetostatics and e oundary conditions – ramagnets and ferrom	magnetic forces – currents ivergence and curl of B lectrostatics. Magnetic y multipole expansion of t agnets - torques and force	: App vector the ve	plications of A potential: Ve ector potential.	ampero ctor p Magr	e's ote neti	law ential izatior	- - n:	
	ctrodynamics and Co					18			
Maxwell's equi boundary condi Newton's third angular moment	ations: Ampere's law ions. Charge and end law in electrodynamic	v – magnetic charge – ergy: Continuity equation cs. Maxwell's stress tenso	- Poy	nting's theorem	n Mo	me	ntum um an	_	
		Vave equation for E and	B _ 1	nonochromatic	nland			_	
energy and mon linear media – oblique incidend conducting surfa	nentum in electromag reflection and transmice. Absorption and di ace, frequency depend	netic waves. Electromagneticsion at normal incidence spersion: Electromagnetic	etic w ce – wave	vaves in matter reflection and	Prop transr	aga nis	ation i sion a ion at	in at	
Academic Counc	il Meeting Held on 29.	04.2021				Pa	nge 21	4	

Guided	waves: Wa	ve guides	s - waves in a rectangular wave guide – coaxial transmission	line. The					
	potential formulation – Scalar and vector potential Gauge transformation, Coulomb's Gauge and								
	Lorentz Gauge. Relativistic electrodynamics: Magnetism as a relativistic phenomenon, field								
	transform, field tensor, electrodynamics in tensor notation, relativistic potentials.								
	Total Lecture Hours 90								
Books f	or Study:								
D.J., G	riffiths, Intro	oduction	to Electrodynamics, 3 rd Edition, Prentice Hall of India Pvt.	Ltd., New					
	Reprint 1999			,					
	UNIT I	:	Chapter 2: Sections 2.3.3 to 2.4						
			Chapter 3: Sections 3.1 to 3.4						
			Chapter 4: Sections 4.1						
	UNIT II	:	Chapter 5, Chapter 6: Sections 6.1						
	UNIT III	:	Chapter 7: Sections: 7.33 to 7.36						
			Chapter 8: Section 8.1 and 8.2						
	UNIT IV	:	Chapter 9: Sections 9.2 to 9.4						
	UNIT V	:	Chapter 9: Section 9.5						
			Chapter 10: Sections 10.1.1, 10.1.2 and 10.1.3						
		L.S.	Chapter 12: Section 12.3						
	for Referen		191						
			, P.V., Introduction to Electrodynamics, 3 rd Edition, Rep	orint 2006,					
			e, New Delhi.						
		Classical	Electrodynamics, 3 rd Edition, Reprint 2007, Wiley India Pvt	. Ltd. New					
	hi, 2007.	0.0							
			lectrodynamics, First Edition, Reprint 2011, Narosa Publish	ing House					
	Ltd., New	Delhi.							
	esources:	/1.1	5/101/115101004/						
	*		<u>5/101/115101004/</u>						
			arn/electrodynamics-electric-magnetic-fields						
			n/course/swayam-electromagnetism-17586 en/mooc/electrodynamics-an-introduction/						
<u>mups.//v</u>	<u>www.my-me</u>		en/mooc/electrodynamics-all-mitoduction/						
Course	Outcomes			K Level					
CO1:	Solve elec	trostatic	boundary value problems using Poisson's and Laplace	K3					
	equations								
CO2:									
	Magnetostatics								
CO3:	Derive Maxwell's equation in differential and integral form K4								
CO4:	Discuss the propagation of electromagnetic waves in different medium K2								
CO5:		-	interactions in electromagnetic waves with macroscopic	K5					
	matter for s	ociety							

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	2	2	2		
CO2	3	1	2	2	2	3		
CO3	2	2	1	1	2	2		
CO4	2	1	2	2	2	2		
CO5	1	3	1	3	1	1		
Weightage	11	9	8	10	9	10		

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

LESSON PLAN								
UNIT	Electrodynamics	Hrs	Pedagogy					
	Poisson's equation and Laplace's equation, potential of a localized charge distribution, electrostatic boundary conditions.	4						
I	Work and energy in electrostatics: work done to move charge, energy of point charge distribution, energy of continuous charge distribution.	5						
Electrostatics and Electric Fields in Matter	Laplace's equation: Laplace's equation in one, two, and three dimensions, boundary conditions and uniqueness theorem, conductors and second uniqueness theorem.	5	Chalk, Talk& Assignment					
	Multipole expansion: Approximate potentials at large distances, monopole and dipole terms. Polarization: Dielectrics, induced dipoles, alignment of polar molecules.	5						
	Lorentz force law: Magnetic fields, magnetic forces, currents. Biot-Savart law: Steady currents, magnetic field of steady current.	6						
II Magnetostatics and Magnetic Fields in Matter	Divergence and curl of B : Applications of Ampere's law, comparison of magnetostatics and electrostatics. Magnetic vector potential: Vector potential, magnetostatic boundary conditions, multipole expansion of the vector potential.	7	Chalk, Talk& Exercise					
	Magnetization: Diamagnets, paramagnets and ferromagnets, torques and forces on magnetic dipoles, effect of a magnetic field on atomic orbits.	6						
III Electrodynamics and	Maxwell's equations: Ampere's law, magnetic charge, Maxwell's equations in matter, boundary conditions.	6	Chalk, Talk&					
Conservation Laws	Charge and energy: Continuity equation, Poynting's theorem Momentum, Newton's third law in electrodynamics.	6	PPT					
Academic Council Meetin	ng Held on 29.04.2021		Page 216					

	Maxwell's stress tensor, Conservation of momentum and angular momentum.	6	
	Electromagnetic waves in vacuum: Wave equation for E and B , monochromatic plane waves, energy and momentum in electromagnetic waves.	6	
IV Electromagnetic Waves	Electromagnetic waves in matter: Propagation in linear media, reflection and transmission at normal incidence, reflection and transmission at oblique incidence.	6	Chalk, Talk, PPT & Seminar
	Absorption and dispersion: Electromagnetic waves in conductors, reflection at a conducting surface, frequency dependence of permittivity.	5	
	Guided waves: Wave guides, waves in a rectangular wave guide, coaxial transmission line.	6	
V Electric Potential and Relativistic	The potential formulation, Scalar and vector potential Gauge transformation, Columb's Gauge and Lorentz Gauge.	6	Chalk, Talk, PPT &Assignment
Electrodynamics	Relativistic electrodynamics: Magnetism as a relativistic Phenomenon, field transform, field tensor, electrodynamics in tensor notation, relativistic potentials.	5	

Course Designed by: Dr. P.P. Kannan & Mrs. S. Nagadeepa

	U	5		19		្ត្រី					
	Learning Outcome Based Education & Assessment (LOBE)										
	Formative Examination - Blue Print										
Tradarumal	Articulation Mapping – K Levels with Course Outcomes (COs) Internal Cos K Level Section A Section B Section C Section D										
Internal	Cos	K Level			-		SectionC Either or	Section D Open			
		Ta la	MCQ			Short Answers		Choice			
			No. of. K - No. of. K -		/	Choice	Choice				
			Questions	Level	Questions	Leve					
CI	C01	K2	2	K1	1	K1	2 (K2&K2)	1(K2)			
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)			
CI	CO3	K2	2	K1	1	K2	2 (K2&K2)	1(K2)			
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)			
Questi	ion	No. of	4		3		4	3			
Patte	rn	Questions to									
CIA I &	& II	be asked									
		No. of	4		3		2	2			
		Questions to									
		be answered									
		Marks for	1		2		5	20			

each question				
Total Marks	4	6	10	20
for each				
section				

	Distribution of Marks with K Level CIA I & CIA II										
	K	Section A	Section B	Section C	Section D	Total	% of	Consolidate			
	Level	(Multiple	(Short	(Either /	(Open	Marks	(Marks	of %			
		Choice	Answer	Or	Choice)		without				
		Questions)	Questions)	Choice)			choice)				
	K1	2	2	துடைக	Om-	4	6.67	50			
	K2	2	42.2	10	10	26	43.33				
CIA	K3	-		10	10	20	33.33	50			
Ι	K4	-			10	10	16.67				
	Marks	4	5 6 0	20	30	<u>60</u>	100	100			
	K1	2	2		<u>, , , , , , , , , , , , , , , , , , , </u>	4	6.67	50			
CIA	K2	2 6	4 🗲	10	10	26	43.33				
II	K3	- 15		10	10	20	33.33	50			
	K4	- 6			10	10	16.67				
	Marks	4 6	6	20	30	60	100	100			
				apr							

Summative Examination -	- Blue Print Articulation Mapping	– K Level with Course
	Outcomes (COs)	

	Outcomes (COs)										
S.No	COs	K -	5 MC	CQs	Short A	nswers	Section C	Section D			
		Leve l	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)			
1	CO1	K2	62	K1 & K2		K1	2 (K1&K1)	1 (K2)			
2	CO2	K3	2	K1 & K2	-1	K1 -	2 (K2&K2)	1 (K3)			
3	CO3	K3	259	K1 & K2	- F.	K2	2 (K2&K2)	1 (K3)			
4	CO4	K4	2	K1 & K2		K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1 & K2	1	K2	2 (K3&K3)	1 (K5)			
	f Questi e Aske		10	60	5	50	10	5			
	f Questi answei		10	றா	L 05°		5	3			
Marks for each question		Marks for each question			2		5	10			
Total Marks for each section		10		10		25	30				
	(Figur	es in pa	renthesis der	notes, questi	ons should l	be asked wit	h the given K	level)			

		Dis	tribution of	Marks with	n K Leve	1			
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	10	-	19	15.86	50		
K2	5	6	20	10	41	34.17	-		
K3	-	-	20	20	40	33.34	50		
K4	-	-	-	20	10	8.33			
K5	-	-	-	-	10	8.33			
Marks	10	10	50	50	120	100	100		
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper – Format

		. Li	Section A (Multiple Choice Questions)						
	Α	nswer All							
Q.No	CO	K Level	Questions						
1	CO1	K1	From the below equations, which one is correct Poisson's equation?						
			a) $\nabla^2 V=0$ b) $\nabla^2 V=\rho/\epsilon 0$ c) $\nabla^2 V=-\rho/\epsilon 0$ d) $\nabla V=0$						
2	CO1	K2	The solutions of spherical co ordinates are Legendre polynomials in						
		E.	the variable of						
			a) $\sin \theta b$) $\tan \theta c$) $\cos \theta d$) $\cot \theta$						
3	CO2	K1	Steady currents produce a magnetic filed in a constant time are called						
		્ર	as the second seco						
			Electrostatics b) Magnetostatics						
	GOO	1/2	c) Continuity equation d) Uniqueness theorem						
4	CO2	K2	Biot-Savart law plays a role analogous to law in electrostatics						
	002	17.1	a) Gauss b) Coloumb's c) Maxwell d) Ampere						
5	CO3	K1	The component of D is perpendicular to the interfaces between						
			a) Continuous b) Discontinuous c) Infinity d) All the above						
6	CO3	K2	The Maxwell's equation $\nabla \mathbf{x} \mathbf{E}$ could be derived from						
0	005	K2	a) Faraday lawb) Coloumb's lawc) Maxwell law d) Ampere's law						
7	CO4	K1	The value of Reflection+Transmission=for the electromagnetic						
,	0.04	IX1	wave at normal incidence						
			a) Constant b) Infinity d) Unity d) Zero						
8	CO4	K2	The divergence of H will be						
			a) 1 b) Infinityc) -1 d) Zero						
9	CO5	K1	The dominant mode in a rectangular wave guide is						
			a) TE9 b) TE8c) TE10 d) TE6						
10	CO5	K2	If the propagation constant of an electromagnetic wave $v=\alpha+j\beta$ then α						
			is called						
			a) Real propagation constant b) Phase constant						

			c) Attenuation constant d) None of the above		
			Section B (Short Answers)		
	Ar	nswer All (Questions (5x2=10 marks)		
Q.No	CO	K Level	Questions		
11	CO1	K1	List out the Poisson's equations in electrostatics		
12	CO2	K1	Define the term magnetization		
13	CO3	K2	Describe about Ampere's law		
14	CO4	K2	Discuss about absorption and dispersion		
15	CO5	K2	Explain the concept of guided waves		
			Section C (Either/Or Type)		
			Questions (5 x 5 = 25 marks)		
Q.No	CO	K Level	Questions		
16) a	CO1	K1	Show the potential of a uniformly charged spherical shell of radius R		
16) b	CO1	K1	Define the boundary conditions and uniqueness theorem		
17) a	a CO2 K2		a CO2 K2 Explain the term currents in magnetostatics		
17) b	b CO2 K2		Describe the effect of a magnetic field on atomic orbits		
18) a	CO3 K2		Explain Maxwell's equations in matter one		
18) b	CO3 K2		Write Maxwell's equations in differential form		
19) a	CO4	K3	Build the energy and momentum in electromagnetic waves		
19) b	CO4	K3	Compute the phenomena of electromagnetic waves in conductors		
20) a	CO5	K3	Manipulate TE waves in a rectangular wave guide		
20) b	CO5	K3 [©]	Identify the theory of relativistic phenomenon in magnetism		
NB: Hi	igher le	vel of perf	ormance of the students is to be assessed by attempting higher level of K levels		
			Section D (Open Choice)		
O No	CO		nswer Any Three questions (3x10=30 marks) Ouestions		
Q.No 21	CO CO1	K Level K2			
		10,	Elaborate the electric potentials for Laplace's equations in one, two and three dimensions		
22	CO3	K3	Use the straight line currents in magnetostatics and divergence & curl of B		
23	CO4	K3	Build the Poynting theorem in electrodynamics.		
24	CO2	K4	Categorize the reflection and transmission at oblique incidence		
25	CO5	K5	Evaluate the theory about magnetic dipole radiation		

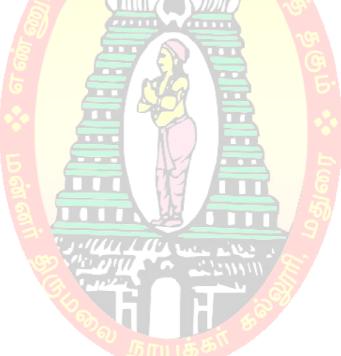
MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course	se Name GENERAL PHYSICS PRACTICAL											
Course	e Code	21PP	PHCP1					L	P	С		
Catego	ory	Core						-	3	-		
Nature	of the Co	ourse	EMPLOYBILITY	_	SKILL ORIENTED	SKILL ORIENTED 🖌 ENTREPRENURSHIP						
Course	e Objecti	ives:	6.8		0 5 mm							
 To To To To 	acquire t prepare g interpret evaluate NY TWE 1. Erro 2. Refr	he app graphic findin possib CLVE r analy active	ropriate data accurate cal presentations of lat gs using the physical le causes of discrepan EXPERIMENTS: vsis of experimental dat index of a liquid hold	ly sci sci icy ata	in practical experimen	cor atio	d of laboratory onal results.					
	 Dete Resc Dete scale Lase Dete using Dete 10. Wien Rung Rung Rung Rung New Simp 	erminat plving prminat e by fo er based erminat g Ande erminat ge-Kut ss Elin vton Ra pson's	power of a prism tion of Young's modu rming Elliptical fringe d diffraction experime tion of the co-efficient erson's Bridge	the lus ents t of g C g C g C	e prominent lines by gr and Poisson's ratio of a 'coupling between the e of a pair of coils by for ++Programming ++Programming - Programming	a I pai	Perspex r of coils					
	SE OUT				LL00			ł	K Le	evel		
			course, the student w				, , 1 • • •		170			
CO1	Gain pra & effect			etic	cal concepts and invest	1ga	te the principles	5	K3			
CO2	determi	ne acci	urate results.		ot the errors in various				K1			
CO3	Examin	e the s	trength of material by	do	ing Young's modulus	exp	periment.		K4			
CO4	^				cal components and the				K2			
CO5				<u> </u>	or Numerical method	oro	blems		K5			
Course	Designe	d by: I	Mrs. S. Nagadeepa &	k I	Dr.M.Alagar							

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)


Course	e Name ELECTRONICS PRACTICAL								
Course	e Code	21PPHCP2	L	Р	С				
Catego	ory	Core	-	3	-				
Nature	of cours	e: EMPLOYABILITY 🖌 SKILL ORIENTED 🖌 ENTRE	PRENUF	SHIP					
Course	e Objecti	ives:							
• To	• To acquire knowledge of semiconductor devices and their applications.								
• To	understa	nd the concepts of OPAMPS and their uses.							
• To	study os	cillator and amplifier circuits.							
		the skills in handling instruments and measuring devices.							
• To	prepare t	the students for the real life with electronic instruments.							
ANY 7	WELVI	E EXPERIMENTS							
	amplifie								
	character								
0	•	Amplifier - Frequency response and bandwidth determination							
	4. IC Regulated Power Supply [Single (5V) and Dual (12-0-12V)]								
	e shift os								
	•	oscillator							
		ave generator							
	ter follow	wer contraction of the contracti							
		ation oscillator							
		ng circu <mark>its – Clipping and Clamping</mark>							
11. Pas	sive RC	filter circuits – Low, High and Band pass filters – using OP AM	ЛР						
		ltivibrators – using OP AMP							
		lltivibrators – using IC 555							
		and Demultiplexer circuits.							
15. Ch	aracterist	ics of LED and Photo diode							
		ГСОМЕ		KL	evel				
At the		e programme, the student will be able to							
CO1:	Demons	strate UJT behavior in the detailed form with the electronic circ	cuits.	K3					
CO2:	Summa	rize different structural oscillators with their wave forms.		K2					
CO3:	Develop	p the knowledge to construct various multivibrators and their us	ses.	K3					
CO4:	Analyze	e the circuit performances with theoretical formulae.		K4					
CO5:	Use the	importance of applications of electronics in real life situations.	,	K5					

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
course outcomes (co s)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	1	2	2	2		
CO2	3	2	3	2	2	2		
CO3	2	1	1	2	2	1		
CO4	2	2	2	2	2	2		
CO5	2	3	2	3	1	3		
Weightage	211	9.07	9	11	9	10		

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. M. Alagar

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	MA	THEMATICAL PH	IYS	SICS-II						
Course Code	21P	PHC21					L	Р	С	
Category	Cor	e					6	-	4	
Nature of cours	se:	EMPLOYBILITY		SKILLORIENTED	~	ENTREPRE	ENU	SHI	P	
Course Objecti	ives:		3	10 5 as	•					
 To recall and solve various types of differential equations To solve various complex functions by Fourier series and also to determine its transforms To explore about the concepts of different types of tensors To analyze special functions using Legendre and Laguerre polynomials To evaluate the functions using Bessel and Hermite functions 										
Unit: I Dif	feren	tial equations of firs	st a	nd second order	170	a		19 F	Irs	
methods of diffequations reduced linear and exact Linear and exact Linear and vor constant coeffices superposition of Existence of line for any different Unit: II Tra Fourier Transfor Fourier's comple Fourier transfor for cosine trans relationship bet using integral tr	fferer cible t forr n-line cients r line early tial early tial tial tial tial tial tial tial tial	tial equation: varial to homogenous form n – exact differential ar differential equati s - dimension of s arity principle equati independence –meth quation. rms ntegral transforms-Fo tegral - Fourier trans convolution – Persey – Perseyal's identity Fourier and Laplac orm.	ble: 1 - econs pac ons od ouri form val y form	cometrical meaning of a s separable - Homog linear differential equi- puation. Linear differen- s - linear differential of the of solution - Non s - linear independence to find complementary fer integral theorem-Fo ms - Fourier sine and of s' identity for Fourier or sine transform - Fo ransforms - solution of	enou ation ntial equa -hon e and fund ourier cosin trans urier	as differenting equations of equations of tions of sec nogenous – I dependence ction and pa	ial ea ns re f seco ond a Hor e –W rticul osine s - pro rseval of de	quatic ducit ond corder noge ronsl ar int 20 H integ opert 's ide rivati	ons - ole to order: with nous- cian - tegral Hrs rals – ies of entity ives - ns by	
Unit: III Veo	ctor s	pace and tensors	h	mu in 55				15 H	Irs	
Introd linear dependen – fundamental s transformation - Tensor relation betwee delta – algebra invariant of a se	Unit: IIIVector space and tensors15 HrsIntroduction – definition of real vector space – sub space – construction of vector space –linear dependence and independence – linear dependence and independence – basis and dimension– fundamental subspaces of a matrix – transformation – linear transformation – properties of linear transformation.Tensors of rank zero, one and two – dummy suffix- transformations – Cartesian tensors –relation between the direction cosines and kroneckar delta – substitution property of kroneckar delta – algebra of Cartesian tensor – quotient law – symmetric and antisymmetric tensor –scalar invariant of a second rank tensor.									
		functions I						18 H		
				al $p_n(x)$ - Legendre's f e's formula - Legendre						

£	an of Learn lar's polymonial soften and its of Learn lar's polymonial										
	on of Legendre's polynomial - orthogonality of Legendre's polynomial - a	0 0									
	on of Legendre's polynomial, orthogonality of Legendre polynomials -recurrence										
-	Laplace's first definite integral - Laplace second definite integral- Fourier Legendre expansion – Strum – Liouville equation – orthogonality – orthoganility of Eigen function -Laguerre's function –										
	rre's function for different values of n - generating function of Laguerre p	olynomial -									
	ence relation - orthogonal property	10.11									
Unit:	L L	18 Hrs									
	's function: Bessel's equation - solution of Bessel's equation- Bessel's function	•									
	on of the second kind of order n - recurrence formulae - equations reducible										
	on - orthogonality of Bessel function - a generating function for $j_n(x)$ - the second secon										
-	sion involving Bessel function - Bessel integral -Fourier-Bessel expansion - I										
	ons. Hermite function: Hermite's equation - generating function of Hermite po	olynomials -									
orthog	onal property - recurrence formula for $h_n(x)$ of Hermite equation.										
	Total Lecture Hours	s 90									
	for Study:										
	K. Dass & Rama Verma, Mathematical Physics, VIII Edition, S. Chand an	d Company									
	nited, Ram Nagar, N <mark>ew Delhi – 5</mark> 5, Reprint 2019										
	I (Chapter 12 (12.1 -12.13), 13)										
	II (Chapter 45(45.1-45.15)										
	IV (Chapter 28, 31)										
	V(Chapter 29, 30)										
	od K. Sharma, Matrix methods and vector spaces in Physics, 2009, PHI Learning	g private									
	l, New Delhi -15										
	III (Chapter 3(3.1-3.7) 4 (4.1-4.4, 4.7), 8 (8.1-8.11),										
Books	for References:										
	B. Arfken, H. J.Weber and Harris, Mathematical methods for Physicists, ademic press, 2005,	IV edition,									
	lvanced Engineering Mathematics, Erwin Kreyszig, IX Edition, Wiley publishers	2014									
	D. Gupta, Mathematical Physics, IV edition, Vikas Publishing House private										
	elhi-55, Reprint 2018.										
	Resources:										
1. htt	ps://www.grc.nasa.gov/www/k12/Numbers/Math/documents/Tensors_TM20022	11716.pdf									
	ps://doi.org/10.1121/1.4776198										
	ps://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html										
	e Outcomes	K Level									
	ompletion of this course, the student will be able to										
CO1:	Define differential equations of first and second order respectively	K3									
CO2:	Express various complex functions into simplified Fourier series form and as	K3 K3									
		љ.									
CO2.	transforms										
CO2:	Distinguish tensors into different order and types	K3									
		K3 K4									

CO & PO Mapping:

11	0					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	2	2
CO 2	2	2	3	2	2	2
CO 3	1	2	1	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	2	1	1	2	2
Weightage	10	10	10	9	9	10

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	Order, degree, formation, solution and the geometrical meaning of a differential equation, solving methods of differential equation: variables separable, Homogenous differential equations, equations reducible to homogenous form, linear differential equations, equations reducible to linear and exact form, exact differential equation.	6	Chalk &
	Linear differential equations of second order: Linear and Non- linear differential equations, linear differential equations of second order with constant coefficients, dimension of space of solution, Non-homogenous, Homogenous, superposition or linearity principle equations, linear independence and dependence, Wronskian, Existence of linearly independence	7	Talk, PPT
	Method to find complementary function and particular integral for any differential equation.	6	
II	Fourier Transform: Integral transforms, Fourier integral theorem, Fourier sine and cosine integrals, Fourier's complex integral, convolution	7	
	Fourier transforms, Fourier sine and cosine transforms, properties of Fourier transforms	6	Chalk, Talk&
	Perseval's identity for Fourier transforms, Parseval's identity for cosine transform, Perseval's identity for sine transform, Fourier transform of derivatives, relationship between Fourier and Laplace transforms, solution of boundary value problems by using integral transform	7	Assignment
III	Introduction, definition of real vector space, sub space, construction of vector space, linear dependence and independence, linear dependence and independence, basis and dimension	4	Chalk, Talk&

	Volume II – Science Syllal	bus / 2	020 - 2021
	fundamental subspaces of a matrix, transformation, linear transformation, properties of linear transformation, matrices of linear transformation. Tensors of rank zero, one and two, dummy suffix, transformations	4	Exercise
	Cartesian tensors – relation between the direction cosines and kroneckar delta – substitution property of kroneckar delta – algebra of Cartesian tensor – quotient law – symmetric and antisymmetric tensor –scalar invariant of a second rank tensor.	7	
IV	Legendre's equation, Legendre's polynomial $p_n(x)$, Legendre's function of second kind, general solution of Legendre's equation, Rodrigue's formula, Legendre's polynomial, a generating function of Legendre's polynomial	6	
	Orthogonality of Legendre's polynomial, a generating function of Legendre's polynomial, orthogonality of Legendre polynomials, recurrence formulae, Laplace's first definite integral , Laplace second definite integral, Fourier Legendre expansion, Strum – Liouville equation	6	Chalk & Talk, PPT
	Orthogonality, orthogonality of Eigen function, Laguerre's function, Laguerre's function for different values of n, generating function of Laguerre polynomial, recurrence relation, orthogonal property	6	
V	Bessel's function: Bessel's equation , solution of Bessel's equation, Bessel's function $j_{n(x)}$, Bessel function of the second kind of order n, recurrence formulae, equations reducible to Bessel's equation	6	Chalk,
	Orthogonality of Bessel function, a generating function for $j_n(x)$, trignomentric expansion involving Bessel function, Bessel integral, Fourier Bessel expansion, Ber and Bei functions.	6	Talk& Seminar
	Hermite function: Hermite's equation , generating function of Hermite polynomials , orthogonal property , recurrence formula for $h_n(x)$ of Hermite equation	6	

Course Designed by: Dr. D. Ruby Josephine & Mr. P. Dharmaraja

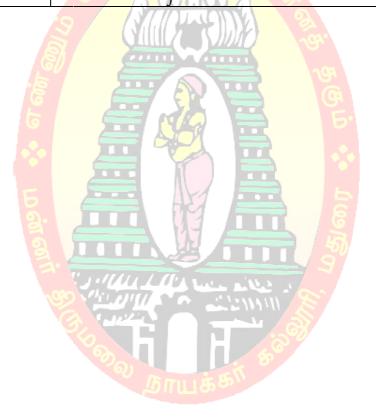
	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print											
	Articulation Mapping – K Levels with Course Outcomes (COs)											
Inte	Cos	K Level	Section A		Section		Section C	Section D				
rnal			MCQ	S	s Short Ans		Either or	Open				
			No. of. Questions	K - Level	No. of. Questions	K - Level	Choice	Choice				
CI AI	CO1	К3	2	K1 & K2	1	K1	2 (K3&K3)	1(K3)				
	CO2	К3	255	K1 & K2	2	K2	2 (K3&K3)	2(K3& K3)				
CI AII	CO3	К3	2	K1 & K2	1 20	K2	2 (K3&K3)	1(K3)				
	CO4	K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)				
Pat	estion tern I & II	No. of Questions to be asked			3	5	4	3				
		No. of Questions to be answered	4	B	3	G Б	2	2				
		Marks for each question		F)	2	1	5	10				
		Total Marks for each section	4		6	Бœ	10	20				
		2		124		1 a						

		Dist	ribution of 1	Marks with	K Level C	IAI& (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-0	4	6.67	17
	K2	2	4 0		<u> </u>	6	10	
CIA	K3	-	-	2080	30	50	83.33	83
Ι	K4	-	-	-	-	-	-	
	Marks	4	6	20	30	60	100	100
	K1	2	2	-	-	4	6.67	17
CIA	K2	2	4	-	-	6	10	
II	K3	-	-	20	20	40	66.67	83
	K4	-	-	-	10	10	16.67	
	Marks	4	6	20	30	60	100	100

S	ummativ	ve Examinatio		int Articu utcomes		ping – K	Level with (Course
S.No	COs	K - Level	MCQs Short Answers				Section C	Section D
			No. of	K –	• No. of K –		(Either /	(Open
			Questions	Level	Question	Level	or Choice)	Choice)
1	CO1	Up to K 3	2	K1K2	1	K1	2	1(K3)
							(K3&K3)	
2	CO2	Up to K3	2	K1&K	1	K1	2	1(K3)
				2			(K3&K3)	
3	CO3	Up to K 3	2 < 8	K1&K	2 Mat	K2	2	1(K3)
			NR S	2	S 6		(K3&K3)	
4	CO4	Up to K 4	6 2 D	K1&K	M A	K2	2	1(K3)
			. / /3	//2		2	(K3&K3)	
5	CO5	Up to K 5	2 ()	K1&K	()))/1)	K2	2	1(K5)
				2			(K5&K5)	
No.	of Quest Aske	ions to be	10		5	जि	10	5
No. of Questions to be answered			10	SP?	5	E	5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
	(Figures	in pa <mark>renthes</mark> i	<mark>is d</mark> enotes, qu	iestions s	hould be as	ked with	<mark>th</mark> e given K	level)

	Distribution of Marks with K Level										
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated				
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%				
	Choice	Answer	Choice)	Choice)	24	without					
	Questions)	Questions)	201	2 8		choice)					
K1	5	4	் தாய	8.81	9	7.5	16.66				
K2	5	6	-	-	11	9.16	10.00				
K3	-	-	40	40	80	66.67	83.27				
K4	-	-	-	-	-						
K5	-	-	10	10	20	16.6					
Marks	10	10	50	50	120		100				
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.										

Summative Examinations - Question Paper – Format


			Section A (Multiple Choice Questions)					
	A	nswer All						
Q. No	CO	K Level	Questions					
1	CO1	K1	 Identify from the following, order of a differential equation can be obtained from a) Highest order of the derivative involved b) Lowest order of derivative involved c) Constants d) All the above 					
2	CO1	K2	Show an example for linear differential equation from the following a) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2 + x + 1$ b) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = e^x$ c) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = \sin x$ d) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = f(t)$					
3	CO2	K1	Identify the fourier cosine integral a) $f(x) = \frac{2}{\pi} \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$ b) $f(x) = \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$ c) $f(x) = \frac{2}{\pi} \int_0^\infty 8\sin ux du \int_0^\infty f(t) \sin ut dt$ d) $f(x) = 6 \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$					
4	CO2	K2	 Locate the function of integral transforms a) Solve partial differential equations with boundary condition b) Solve partial integral equations with boundary condition c) Solve non boundary problems d) All the above 					
5	CO3	K1	Identify is the element of a vector space a) tensor b) scalar c) vector d) all the above					
6	CO3	K2	Linear operator are also known to be a) Linear transformation b) non linear transformation c) symmetric transformation d) all the above					
7	CO4	K1	Legendre equation can be expressed as a) $(1-x^2) d^2y/dx^2-2x dy/dx+n(n+1)y=0$ b) $(1-x) d^2y/dx^2-2x dy/dx+2n(n+1)y=0$ c) $(1-2x) d^2y/dx^2-2x dy/dx+4n(n+1)y=0$ d) $(1-x) d^2y/dx^2-2x dy/dx+8n(n+1)y=0$					
8	CO4	K2	The general solution of Legendre equation can be expressed as a) y=APn(x) +BQn(x) b) 2y=APn(x) +BQn(x) c) y=APn(x) d) y=BQn(x)					

Volume II - Science Syllabus / 2020 - 2021 9 CO5 K1 Hermite polynomial can be expressed as a) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0$ b) $\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} + 2ny = 6$ c) $\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} + 2ny = 3$ d) $\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} + 2ny = 0$ Bessel differential equation can be expressed as 10 CO5 K2 a) $X^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2}) = 0$ b) $X_2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$ c) $X \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$ d) $3X \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$ Section B (Short Answers) **Answer All Questions** (5x2=10 marks) CO **Ouestions** K Level Q. No CO1 K1 Define Homogenous equation 11 12 CO₂ **K**1 Express Laplace transform 13 CO3 K2 Define first order tensor 14 CO4 K2 Describe in short about Bessel function 15 CO5 **K**2 Describe in short about Legendre function Section C (Either/Or Type) **Answer All Questions** $(5 \times 5 = 25 \text{ marks})$ Q.No CO K Level Questions 16) a CO1 K3 Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ K3 Find the value of λ for the differential equation 16) b CO1 $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where a>0 17) a CO2 K3 17) b CO₂ K3 Find the Fourier transform of $\frac{1}{2}$ 18) a CO3 K3 Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent 18) b CO3 K3 Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre CO₄ K3 19) a Polynomials 19) b CO4 K3 Express the polynomial $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre Polynomials K5 20) a CO5 Prove that $J_{-n}(x) = (-1)^n J_n(x)$, Where n is a positive integer 20) b CO5 K5 Show that (a) $J_{n+3}+J_{n+5} = 2/x$ (n+4) Jn+4 NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels Section D (Open Choice)

Academic Council Meeting Held on 29.04.2021

Page 232

		A	nswer Any Three questions (3x10=30 marks)
Q.No	CO	K Level	Questions
21	1	K3	Find the complete solution of
			$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$
22	2	K3	Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find fourier sine
			transform of $\frac{x}{1+x^2}$
23	3	K3	Discuss about the transformations in two dimensions
24	4	K3	Express the function
			$f(x) = \begin{cases} 0, -1 < x < 0 \\ x & 0 < x < 1 \end{cases}$ in Fourier Legendre expansion
25	5	K5	Prove that
			$\int x Jo(x) dx = x 2 \{ j2 + j1(x) \} + c$

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	QUANTUM MECH	ANI	CS – I								
Course Code	21PPHC22					L	Р	С			
Category	Core					6	-	4			
Nature of course	EMPLOYABILITY		SKILL ORIENTED	\checkmark	ENTREPREN	NURS	HIP				
Course Objectiv	es:		ம்கல		1						
• To develop familiarity with the physical concepts and facility with the mathematical methods											
of quantum mechanics.											
	To endote the statement, found the constant of foundation internations.										
	he skills at formulating	N # 1 # 1									
·	ired expe <mark>rience in usin</mark>	-		-			probl	ems.			
11,	approximation method					•	1 7 1	×			
	ERAL FORMALISM					•	17 H				
	ace – Linear operator - uantum Mechanics –										
	tion <u>–Dirac's Notation</u>			•							
-	sentations and Interacti				-	-	senta	uons,			
· · · · ·	CTLY SOLUBLE EI				Tepresentatio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19 H	Irs			
	l Ei <mark>gen value proble</mark>				it <mark>h rig</mark> id wal	ls- So					
	nite walls – Square Por		· · · · · · · · · · · · · · · · · · ·		•		A				
	thod-Linear Harmonic										
dimensional Eige	n valu <mark>e probl</mark> ems: Part	icle	moving in a spherica	lly s	ymmetric pote	ential	- Sys	stems			
	ng par <mark>ticles – Rigid</mark>										
	are- Wel <mark>l pote</mark> ntial – Th			7_							
	RESENTATIONS, T.						18 H				
Ū.	od- Matrix representa				-		-				
	rix elements-Schrodin										
	inear harmonic oscillat										
	on of linear momentu							on in			
	on of angular momentu ROXIMATION MET					e reve	17 H	Iro			
	Independent) Perturbat					order		115.			
•	generate Case-Stark Eff		•					m			
	pplication to excited st					-					
	B APPROXIMATION						19 H				
	ORY										
Classical limit-	approximate solutions	s-asy	mptotic nature of	th	e solutions-7	Time-	Deper	ndent			
*	ry: First order perturba				-		•				
*	n-Fermi's golden rule				-	ases-	conne	ection			
with perturbation	theory-discontinuous of	chan	ge in H-Sudden appro								
				Tot	al Lecture H	ours	90				

Books for Study:

1. G.Aruldhas, Quantum Mechanics, PHI Learning Private Limited, Second Edition, 2013

UNIT – I

Chapter 3 (Section3.1 to 3.10)

$\mathbf{UNIT} - \mathbf{II}$

Chapter 4 (Section 4.1 to 4.4 & 4.7 to 4.9) Chapter 5 (Section 5.1 to 5.8)

UNIT-III

Chapter 6 (Section 6.1 to 6.8) Chapter 7(Section 7.1 to 7.6)

2. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, MacGraw-Hill Kogakusha, Tokyo, 2015.

Unit-IV

Chapter 8(Section 31 & 32)

Unit-V

Chapter 8(Section 34 & 35)

Books for Reference:

- 1. P. M. Mathews and K. Venkatesan, 1976, A Text book of Quantum Mechanics, Tata McGraw-Hill, New Delhi.
- V. Devanathan, 2005, Quantum Mechanics, Narosa Publishing House, New Delhi.
 J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1993
- 4. Kakani, Quantum Mechanics, Third Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2012.
- 5. B.K. Agarwal and Hari Prakash: Quantum Mechanics-Prentice-Hall of India, New Delhi, 2004.
- 6. Ghatak A., Introduction to Quantum Mechanics, MacMillan India Ltd., Madras, 2002 Web Resources:
- <u>http://bookboon.com/Introduction to Quantum Mechanics, Intermediate Quantum Mechanics, Chemistry: Quantum Mechanics and Spectroscopy I, Chemistry: Quantum Mechanics and Spectroscopy II</u>
- 2. https://swayam.gov.in/courses/3485-quantum-chemistry

3. <u>http://freevideolectures.com/Course/2876/Fundamentals-of-Physics-III/191.</u>

Course	e Outcomes	K Level
The stu	ident will be able to	
CO1:	Have a clear understanding of the foundation of Quantum Mechanics	K1
CO2:	Express the Schrodinger equation to exactly solvable problems.	K2
CO3:	Determine the effects of symmetries in quantum mechanics	K3
CO4:	Classify the properties of operators in quantum mechanics	K4
CO5:	Deduct the various perturbation methods to solve the quantum mechanical	K5
	problems.	

CO & PO Mapping:

$C_{\text{outrop}} O_{\text{utop}} (CO'_{\text{o}})$	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	1	1	2	1	2		
CO2	2	2	3	2	2	2		
CO3	1	3	2	2	2	1		
CO4	2	2	2	1	2	2		
CO5	1	3	2	3	3	1		
Weightage	9	9	10	10	10	8		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	Quantum Mechanics-I	Hrs	Pedagogy
	GENERALFORMALISMOFQUANTUMMECHANICS:Linear Vector Space, Linear operator ,Eigenfunctions and Eigen values, Hermitian Operator ,Postulates ofQuantum Mechanics	5	Chalk &
Unit-1	Simultaneous Measurability of Observables, General Uncertainty Relation, Dirac's Notation	6	Talk, Test
	Equations of Motion: Schrodinger representations, Heisenberg representations and Interaction representations, momentum representation.	6	
	EXACTLY SOLUBLE EIGEN VALUE PROBLEM: One Dimensional Eigen value problem: Square Well Potential with rigid walls- Square Well Potential with finite walls	7	Chalk &
Unit-2	Square Potential Barrier, Alpha emission, Linear Harmonic oscillator: Schrodinger method, Linear Harmonic oscillator: Operator method, The free particle , Three dimensional Eigen value problems: Particle moving in a spherically symmetric potential	6	Talk, PPT
	Systems of two Interacting particles ,Rigid rotator ,Hydrogen atom,The Free particle, Three dimensional Square,Well potential ,The Deuteron	6	

Unit-3	REPRESENTATIONS, TRANSFORMATIONS ANDSYMMETRIES: Heisenberg Method,Matrix representationof wave function,Matrix representation of operator,propertiesof matrix elements, equation in matrix formEigen value problem,Unitary transformations,linear harmonicoscillator:Matrixmethod,Symmetrytransformation,Translation in space: conservation of linear	6	Chalk & Talk, seminar
	momentum translation in time: conservation of energy,Rotation in space: conservation of angular momentum, space inversion: parity conservation,time reversal	6	
	APPROXIMATION METHODS FOR BOUND STATES: Stationary (Time Independent) Perturbation Theory in Non- Degenerate Case	7	Chalk &
Unit-4	First-order perturbation,Degenerate Case,Stark Effect in Hydrogen atom ,Variation Method ,expectation value of energy	5	Talk, Assignment
	application to excited states,Ground state of Helium,variation of the parameter Z.	5	
	Classical limit, approximate solutions, asymptotic nature of the solutions, Time–Dependent perturbation theory: First	6	Chalk &
Unit-5	order perturbation Harmonic Perturbation, Transition probability, second order perturbation, Fermi's golden rule, Adiabatic approximation	6	Talk , Exercise, test
	choice of phases, connection with perturbation theory, discontinuous change in H-Sudden approximation	7	

Course Designed by: Mrs. S. Nagadeepa & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE)										
	Formative Examination - Blue Print										
Internal	Articulation Mapping – K Levels with Course Outcomes (COs) Internal Cos K Level Section A Section B Section Section										
memai	CUS	K Level	MC		Short Ans		Section C	Section D			
			No. of.	<u>V</u> s K-	No. of.	K -	Either or	Open			
			Questions	Level	Questions	Level	Choice	Choice			
CI	CO1	K2	2	K1 & K2	1	K1	2(K2&K2)	1(K2)			
AI	CO2	K3	2	K1 & K2	2	K2	2(K3&K3)	2(K2&K3)			
CI	CO3	K2	2	K1 & K2	1	K2	2(K2&K2)	1(K2)			
AII	CO4	K4	2	K1 & K2	2	K2	2(K3&K3)	2(K3&K4)			
Quest	ion	No. of	4.2	00	3		4	3			
Patte	rn	Questions to	185		6						
CIA I d	& II	be asked	6 D	m n m	1 20						
		No. of	4	7/17.00	3		2	2			
		Questions to									
		be answered									
		Marks <mark>for</mark>	1		2	ROA	5	10			
		each question									
		Total Marks	4		6	G.	10	20			
		for each		NA.		р.					
		section									

		Di	istribution of	Marks with	K Level CI	A I & CI	A II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2/1/1	1 Maria		4	6.67	67
	K2	2	80 V4	10	20	36	60	
CIA	K3	-		10	10	20	33.33	33
1	K4	-		-	9	-	-	-
	Marks	4	6	20	30	60	100	100
	K1	2	2 0	-	- N	4	6.67	50
CIA	K2	2	4	b1_10 do '	10	26	43.33	
II	K3	-	-	10	10	20	33.33	33
	K4	-	-	_	10	10	16.67	17
	Marks	4	6	20	30	60	100	100

S	ummativ	ve Examinatio		rint Articı Dutcomes		ping – K	Level with C	ourse
S.No	COs	K - Level	MO	Qs	Short An	swers	Section C	Section D
			No. of	K –	No. of	K –	(Either /	(Open
			Question	Level	Question	Level	or Choice)	Choice)
			S					
1	CO 1	Up to K 2	2	K1K2	1	K1	2(K1&K1)	1(K2)
2	CO 2	K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO 3	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
4	CO 4	Up to K 5	2	K1&K2	1	K2	2 (K4&K4)	1(K5)
5	CO 5	Up to K 3	2	K1&K2	1	K2	2 (K2&K2)	1(K3)
No.	of Quest	ions to be	10	8/m e	b 675		10	5
	Aske	ed	50.	-				
No.of Questions to be			10	MAN.	5 9		5	3
answered								
Marks for each question 🦯			1/1/3		2	3	5	10
Total Marks for each section			10 🗸		10	1-94.1	25	30
	(Figures	in parenthesi	s denotes, c	uestions s	hould be as	ked with	the given K l	evel)

Distribution of Marks with K Level									
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated		
Level	(Multiple	(Short)	(Either/ or	(Open	Marks	(Marks	%		
	Choice	Answer	Choice)	Choice)		without			
	Questions)	Questions)				choice)			
K1	5	6 🧲	10		19	15.83	42		
K2	5	2 4	10	10	31	25.83	42		
K3	-	9	20	30	50	41.67	42		
K4	-		10		10 9	8.3	8		
K5	-	- *	HULL OUN	10	10	8.3	8		
Marks	10	10	50	50	120	100	100		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.									
De tre									

	Ange	ver All Qu	Section A (Multiple Choice Questions) estions (10x1=10 marks)
Q.No	CO	K Level	Questions (10x1=10 marks)
1	C01	K Level K1	The state vector changes with time but the operator remains
1	COI	IX1	constant which is called Picture
			a) Heisenberg b) Schrodinger
			c) Interaction d) dual
2	CO1	K2	The Eigen values of Hermitian operators are
_	001		a) real b) imaginary c) constant d) varying
3	CO2	K1	In $\lambda = A + BE$
			Where A& B are constants. This is calledlaw
			a) Bragg law b) Newton's law
			c) Geiger-Nuttal law d) Bloch law
4	CO2	K2	is the smallest nucleus in which a proton and a
			neutron are held together by the nuclear potential
		5	a) Deuteron b) Proton
		(G/)	c) neutron d) electron
5	CO3	K1	In discrete symmetry transformation, the reflection through the
		9	origin called
		6	a) parity inversion (b) space operation
		TTO	c) space inversion c) parity operator
6	CO3	K2	The time reversal invariance of the Schrodinger equation results
			only if the commutator [T,H]=
		5	a) 0 b) ih
7	CO4	K1	c) 1 c) h The helium atom consists of two electrons and a nucleus with a
/	04		(a) One proton & one neutron (b) two protons & one neutron
		9.	(c) Two protons & two neutrons (d) one proton & two
			neutrons (
8	CO4	K2 🕓	The solution of the angular part of the equation called the
			(a) Linear harmonics (b) an harmonics
			(c) Spherical harmonics (d) circular harmonics
9	CO5	K1	A relation between β and V _o is called
			(a) WKB method (b) variation method
			(c) Range depth relation (d) Rayleigh – Ritz method
10	CO5	K2	The point at which $E = V(x)$ is called the
			(a) Classical turning point (b) quantum turning point
			(c) Barrier penetration point (d) all the above
	Ans	wer All Qu	Section B (Short Answers) estions (5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1 K1	Write any two postulates of Quantum Mechanics
12	CO2	K1	What is meant by hydrogenic orbitals?
13	CO3	K2	Define the symmetry transformation
14	CO4	K2	Explain non-degenerate case in quantum mechanics?

Summative Examinations - Question Paper – Format

15	CO5	K2	What is meant by harmonic perturbation?			
	000		Section C (Either/Or Type)			
	Answe	r All Ques	•••			
Q.No	CO	K Level	Questions			
16) a	CO1	K1	What are the properties of Orthogonal functions in the formalism of quantum mechanics?			
16) b	CO1	K1	Describe the theorems involving in the Hermitian operator.			
17) a	CO2	K3	Determine the Eigen value of Bloch waves in periodic potential			
17) b	CO2	K3	Estimate the energy value of Rigid rotator.			
18) a	CO3	K3	Calculate the space inversion with parity conservation			
18) b	CO3	K3	Determine the energy with translation in time.			
19) a	CO4	K4	Illustrate the first order stark effect in Hydrogen.			
19) b	CO4	K4	Analyze the variation method to find the energy Eigen values.			
20) a	CO5	K2	Describe the time independent perturbation theory.			
20) b	CO5	K2	Summarize the adiabatic approximation.			
NB: I	Higher lo	evel of p <mark>er</mark> l	<mark>formance</mark> of the students is to <mark>be assessed</mark> by attempting higher			
		a	level of K levels			
			Section D (Open Choice)			
			ree questions (3x10=30 marks)			
Q.No	CO	K Level	Questions			
21	CO1	K2	Classify the different types of equation of motion and explain any			
		0.0	two of them.			
22	CO2	K3	Calculate the energy Eigen values and energy functions for			
			Hydrogen atom.			
23	CO3	K4	Analyze the linear harmonic oscillator by matrix method.			
24	CO4	K5	Evaluate the ground state energy values of Helium.			
25	CO5	K3	Compute the energy levels using WKB approximation.			

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	DIGITAL ELECTRONICS			
Course Code	21PPHC23	L	Р	С
Category	Core	6	-	4
Nature of cours	e: EMPLOYABILITY 🖌 SKILL ORIENTED 🖌 ENTREPRENU	URS	HIP	
Course Object	ves:			-
 To formulate of To understand To give an in Flip-flops. 	the combinational logic circuits and Karnaugh map simplifications. lata processing circuits and programmable logics. the basic principles of arithmetic and timing circuits. sight about fundamental concepts, techniques and applications of Dig ne constructions of registers and counters for our regular use.	gital	elect	ronic
	mbinational Logic Circuits		19	Hrs
theorems-Exclusion of-products metric variable and a overlapping group overlapping group overlapping group overlapping the series of the serie	and theorems: Basic laws-OR and AND operations-De Morgan's sive-OR and Exclusive-NOR operations-Consensus and Shanan's th hod: Sum-of-products equation. Truth table to Karnaugh map: Three Entered variable maps. Pairs, Quads and Octets- Karnaugh si bups, Rolling the map and Eliminating redundant groups. Don't ca ms method: Converting a truth table to an equations-Logic circu and POS. Product-of-sums simplification: Sum-of-products and C NOR circuit-Duality. Five variable Karnaugh maps- Minimizatio Quine-McClusky method. Ta processing circuits g circuits: Multiplexers – de-muliplexers - 1-of-16 decoder – BC en segment decoders – encoders – exclusive-OR gates – parity g agnitude comparator – read-only memory – programmable a	e vari impl are c uit-C omp n of CD te gener	ms. able ification onve leme mu 17	Sum- four tions: tions. rrsion ntary ltiple Hrs cimal s and
· ·	ogic arrays – troubleshooting with a logic probe. thmetic Circuits, Clocks and Timing circuits		17	Hrs
complement ariAdder-Subtractastable and morUnit: IVFlipRS flip-flop: B	Binary subtraction-Unsigned binary numbers-Sign magnitude number thmetic-Arithmetic building blocks: Half-adder, Full-adder, Controlle er. Clocks: Clock wave forms-TTL clocks-Schmitt trigger. Multivibra to stable b - flop, D/A conversion and A/D conversion asic idea, NOR-gate latch, NAND-gate latch. Gated flip-flops: Clo D flip-flops. Edge-triggered RS flip-flops: Positive-edge-triggered	d Inv tor: :	verter 555ti 19 1 RS	mer, Hrs flip-

	Volume II – Science Syllabus / 20	020 - 2021
divider	Binary ladder. D/A converters: Multiple signals, D/A converter testing and ava	nilable D/A
	ers. D/A accuracy and resolution. A/D converter: Simultaneous conversion.	
Unit: V		18 Hrs
Types	of registers: Serial in-serial out, serial in-parallel out, parallel in-serial out,	narallal in
	out. Asynchronous Counters: Ripple Counters. Decoding gates-Synchronou	
	r modulus-Mod-3 and mod-6 counters. Decade counters: Mod-5mod-10 counters.	
	Total Lecture Hours	s 90
	oks for Study: ch, D.P., Malvino, A.P. and Saha, G., Digital Principles and Applications, V.	
Tat U U U	a McGraw Hill Education Pvt. Ltd, New Delhi, 2015. nit I – Chapter 3, Sec.3.1-3.11 nit II – Chapter 4, Sec.4.1 -4.13 nit III – Chapter 6, Sec.6.1-6.8 Chapter 7, Sec.7.1-7.5 nit IV – Chapter 8, Sec.8.1-8.8 Chapter 12, Sec.12.1-12.5 Unit V – Chapter 9, Sec. 9.1-9.5 Chapter 10, Sec.10.1-10.5	
	for References:	
	ivahanan, S. and Arivazhagan, S.,Digital Circuits and Design, Fourth Edit	ion, Vika
	olishing House P <mark>vt. Ltd., New Delhi-14, 2012.</mark> ob Millman, Christos C. Halkias and Chetan Parith, Integrated Electronics, TaT	'a McGraw
	Education Pvt. Ltd., New Delhi-8, 2008.	
	ob Millman and Herbert Taub, Pulse, Digital and Switching Wave forms, 28 th Re	eprint,TaTa
Mc	Graw Hill Education Pvt. Ltd., New Delhi-8, 2005.	
Web R	esources:	
COUR	SE OUTCOME	K Leve
CO1:	Apply Boolean algebra and the Karnaugh map as tools in designing and to simplifying digital logic circuits.	K3
CO2:	Know the fundamental concepts and techniques used in data storage elements.	K2
CO3:	Construct arithmetic circuits and Digital Clocks in an accurate manner.	K5
CO4:	Demonstrate the basic logic gates used in the formation of memory devices.	K2
CO5:	Understand the behavior of a register with additional control signals and counters implementations.	K2

Course Outcomes (CO's)	Programme Outcomes (PO's)									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	1	2	2	2				
CO2	3	3	3	2	2	2				
CO3	2	2	1	2	2	1				
CO4	2	2	2	2	2	2				
CO5	1	3	2	3	2	3				
Weightage	5 10	511000	9	11	10	10				

CO & PO Mapping:

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	21PPHC23- Digital Electronics	Hrs.	Mode					
Unit-1 Combinational Logic Circuits	Boolean laws and theorems: Basic laws, OR and AND operations, De Morgan's and Duality theorems, Exclusive-OR and Exclusive-NOR operations-Consensus and Shanan's theorems	5	Chalk &Talk, PPT					
	Sum-of-products method: Sum-of-products equation. Truth table to Karnaugh map: Three variable, four variable and Entered variable maps. Pairs, Quads and Octets- Karnaugh simplifications: overlapping groups, Rolling the map and Eliminating redundant groups.	5						
	Don't care conditions. Product –of-sums method: Converting a truth table to an equations-Logic circuit-Conversion between SOP and POS.							
	Product-of-sums simplification: Sum-of-products and Complementary circuits- NOR-NOR circuit-Duality. Five variable Karnaugh maps- Minimization of multiple output function-Quine-McClusky method.	5						
Unit-2 Data processing	Data processing circuits: Multiplexers – de-muliplexers - 1- of-16 decoder – BCD to decimal decoders – seven segment decoders.	5	Chalk &Talk, PPT					
circuits	encoders – exclusive-OR gates – parity generators and checkers – magnitude comparator.	6						
	Read-only memory – programmable array logic – programmable logic arrays – troubleshooting with a logic probe.	6						
Unit-3 Arithmetic Circuits, Clocks	Binary addition-Binary subtraction-Unsigned binary numbers-Sign magnitude numbers-2's complement arithmetic.	5	Chalk &Talk, Assignment					
and Timing circuits	Arithmetic building blocks: Half-adder, Full-adder, Controlled Inverter-Adder-Subtracter. Clocks: Clock wave	6						

	forms-TTL clocks.									
	Schmitt trigger. Multivibrator: 555timer – astable and monostable.	6								
Unit-4 Flip - flop, D/A conversion and A/D	RS flip-flop: Basic idea, NOR-gate latch, NAND-gate latch. Gated flip-flops: Clocked RS flip-flops, clocked D flip-flops. Edge-triggered RS flip-flops: Positive-edge-triggered RS flip- flops, negative-edge-triggered RS flip-flops. Edge-triggered D flip-flops.	5	Chalk &Talk, PPT, Class Test							
conversion	conversion Edge-triggered JK flip-flops: Positive-edge-triggered JK flip- flops, negative-edge-triggered JK flip-flops. Flip-flops timing circuits. JK master-slave flip-flops.									
	Variable resistor networks: Binary equivalent weight, resistive divider. Binary ladder.	4								
	D/A converters: Multiple signals, D/A converter testing and available D/A converters. D/A accuracy and resolution. A/D converter: Simultaneous conversion.	5								
Unit-5 Registers and	Types of registers: Serial in-serial out, serial in-parallel out, parallel in-serial out, parallel in-parallel out.	6	Chalk &Talk,							
Counters	Asynchronous Counters: Ripple Counters. Decoding gates- Synchronous counters.	6	PPT							
	Counter modulus-Mod-3 and mod-6 counters. Decade counters: Mod-5mod-10 counters.	6								

Course Designed by: Dr. M. Alagar & Dr. D. Ruby Josephine

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)											
Internal	Cos	6 K Le <mark>vel</mark>	Section	on A	Section		Section	Section				
		12.1	MC	MCQs		swers	Section C	Section D				
		9	No. of. Questions	K - Level	No. of. Questions	K - Level	Either or Choice	Open Choice				
CI	CO	1 K2 🧹	2	K1 & K2		K1	2(K2&K2)	1(K2)				
AI	COź	2 K3	2	K1 & K2	2	K2	2(K3&K3)	2(K2&K3)				
CI	CO.	3 K2	2)	K1 & K2	1	K2	2(K2&K2)	1(K2)				
AII	CO ₄	4 K4	2	K1 & K2	2	K2	2(K3&K3)	2(K3&K4)				
Questic Patter	n	No. of Questions to be asked	4		3		4	3				
CIA I &	: II	No. of Questions to be answered	4		3		2	2				
		Marks for each question	1		2		5	10				
		Total Marks for each section	4		6		10	20				

	Distribution of Marks with K Level CIA I & CIA II												
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	2	2	-	-	4	6.67	67					
	K2	2	4	10	20	36	60						
CIA	K3	-	-	10	10	20	33.33	33					
Ι	K4	-	-	-	-	-	-	-					
	Marks	4	6	20	30	60	100	100					
	K1	2	2	-	-	4	6.67	50					
CIA	K2	2	4	10	10	26	43.33						
II	K3	-	50-	10	10	20	33.33	33					
	K4	-		NAAN .	10	10	16.67	17					
	Marks	4	6	20	30	60	100	100					

S	ummativ	ve Examinatio		rint A <mark>rt</mark> icı Dutcomes		ping – K	Level with (Course
S.No	COs	K - Level	MOQs Short Answers				Section C	Section D
			No. of	K-	No. of	K –	(Either /	(Open
			Question	Level	Question	Level	or	Choice)
			s				Choice)	
1	CO 1	Up to K 2	2	K1K2	1.1.1	K1	2	1(K2)
		ഉ.		17		- 1 E	(K1&K1)	
2	CO 2	K3	2	K1&K		K1	2	1(K3)
		3		2		2	(K3&K3)	
3	CO 3	Up to K 4	2	K1&K	1	K2	2	1(K4)
				2		· Ar	(K3&K3)	
4	CO 4	Up to K 5	-2	K1&K		K2	2	1(K5)
				2		2	(K4&K4)	
5	CO 5	Up to K 3	2	K1&K	- 1 6	K2	2	1(K3)
			20	2	1 8		(K2&K2)	
No.	of Quest	tions to be	10	Jamu 18	5 5		10	5
	Aske	ed						
No.	of Quest	ions to be	10		5		5	3
answered								
Mar	Marks for each question				2		5	10
Total N	Marks for	each section	10		10		25	30
	(Figures	in parenthesi	is denotes, q	uestions s	hould be as	ked with	the given K	level)

		D	istribution of	Marks with	K Level		
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%
	Choice	Answer	Choice)	Choice)		without	
	Questions)	Questions)				choice)	
K1	5	6	10	-	19	15.83	12
K2	5	4	10	10	31	25.83	42
K3	-	-	20	30	50	41.67	42
K4	-	-	10	-	10	8.3	8
K5	-	-	-	10	10	8.3	8
Marks	10	10	50	50	120	100	100
NB: Hi	igher level of	performance	of the studen	ts is to be as:	sessed by	attemptin	g higher level
	0	-	of K le	evels.	·	•	0 0

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)										
	A	Answer All	Questions (10x1=10 marks)								
Q.No	CO	K Level	Ouestions Ouestions								
1	CO1	K1	Any two minterms in adjacent squares that are together will								
		9	cause a removal of the different variable.								
			a) NOTed b) ANDed								
			c) ORed d) NORed								
2	CO1	K2	Eight adjacent squares represent a term of literal.								
		D D	a) one b) two								
2	<u> </u>	IZ 1	c) three d) four								
3	CO2	K1	A combinational circuit that performs the addition of two bits is called a a) half-adder b) full-adder								
			c) half-subtractor d) full-subtractor								
4	CO2	K2	The bubbled Or gate is equivalent to thegate.								
	001		a) AND b) OR								
			c) NAND d) NOR								
5	CO3	K1	A BCD adder is a circuit that adds two BCD digits in parallel and								
			produces a sum digit also in								
			a) MSI b) BCD								
	GOO	1/2	c) LSI d) Decimal								
6	CO3	K2	The is a combinational circuit with AND gates connected as a								
			decoder and a number of OR gates equal to the number output in the unit								
			a) RAM b) CPU								
			c) ROM d) EAROM								
7	CO4	K1	A Flip-flop has inputs								
			a) 4 b) 2								
	CO (T/O	c) 5 d) 1								
8	CO4	K2	The memory elements used in clocked sequential circuits are called								
			-								

			a) counter b) register a) relay d) flip flop								
9	CO5	K1	c) relay d) flip flop								
9	COS	N1	A group of flip flops sensitive to pulse duration is called a a) dynamics b) memory entangle								
			c) latch d) array								
10	CO5	K2	A group of flip flops sensitive to pulse transition is called as								
10	COJ	K2	a) shifting b) register								
			c) transfer d) memory								
			Section B (Short Answers)								
	А	nswer All									
Q.No	CO	K Level	Questions								
11	CO1	K1	Define two variable map in the simplification of boolean functions								
12	CO2	K1	Draw the three graphic symbol of invertor gate								
13	CO3	K2	Describe half Adder with exclusive OR gate								
14	CO4	K2	Why is NAND gate called as a universal gate								
15	CO5	K2	What are BCD numbers, why is it called so?								
			Section C (Either/Or Type)								
	Answer All Questions $(5 \times 5 = 25 \text{ marks})$										
Q.No	CO	K Level	Questions								
16) a	1	K3	Obtain the simplified expression in sum of products for the given								
ŕ		9	Boolean function: a'b'+bc+a'bc'								
16) b	1	K3 💿	Narrate the NAND implementation procedure in the digital circuits.								
17) a	2	K4 📀	Give the construction details of full-adder and also present the map and								
,			logic circuits for it.								
17) b	2	K4	How is the multilevel NOR circuits used as universal gate? Explain								
		5	with an example.								
18) a	3	K3 🕥	Show the designing procedure of a BCD-to-excess-3 code converter in								
		57.9	brief.								
18) b	3	K3	Discuss about the details of decoder in detail.								
19) a	4	K3	Provide a detailed note on flip flop excitation table.								
19) b	4	K3	Write about state equation in elaborate.								
20) a	5	K5	Discuss a complete note on Shift registers.								
20) b	5	K5	Give a detailed account on BCD counter.								
NB: H	ligher l	evel of per	form <mark>ance of the students is to be assess</mark> ed by attempting higher level								
			of K levels								
			Section D (Open Choice)								
O N	CO		Answer Any Three questions (3x10=30 marks)								
Q.No	CO	K Level	Questions								
21	CO1	K3	Discuss the product of sums simplifications with the following $f(x,y) = F(x,y) = F(x,y) + F$								
22	CO3	17.0	function: $F(A,B,C,D) = \Pi(0,1,2,5,8,9,10)$								
22	CO2	К3	Explain the exclusive OR function and equivalence function for the								
22	CO2	T7 E	map with four variable.								
23	CO3	K5	Narrate the function of magnitude comparator with 4 bit formations.								
24	CO4	К3	Provide a detailed note on JK flip flop with logic diagram, graphical								
25	COF	V2	symbol, characteristic table and equation.								
25	CO5	K3	Discuss about the working of Binary counter and binary up down								
			counter.								

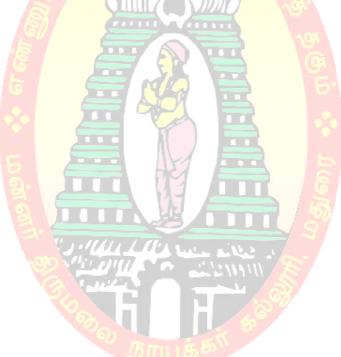
MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course	e Name GENERAL PHYSICS PRACTICAL									
Course	e Code	21PP	PHCP1					L	P	С
Catego	ory	Core						-	3	4
Nature	of the Co	ourse	EMPLOYBILITY		SKILL ORIENTED	\checkmark	ENTREPREN	UR	SHI	Р
Course	e Objecti	ives:	× 5		0 5 000					
 To To To To To 	acquire t prepare g interpret evaluate NY TWE 1. Erro 2. Refr 3. Dete 4. Dete 5. Reso 6. Dete scale 7. Lase 8. Dete usin 9. Dete 10. Wie 11. Run 12. Gau 13. New 14. Simp	he app graphic findin <u>possib</u> CLVE r analy active ermina ermina ermina ermina e by fo er base ermina g Ande ermina g Ande gerMina g S Elin vton Ra pson's	propriate data accurate cal presentations of lal gs using the physical ble causes of discrepan EXPERIMENTS: vsis of experimental da index of a liquid hollo tion of Cauchy's consti- tion of Wavelength of power of a prism tion of Young's modu rming Elliptical fringed d diffraction experimen- tion of the co-efficient erson's Bridge tion of mutual inducta dge and Owen's bridge that Method I& II using innation Method using aphson's method using one third rule using C	ly a bor sciency ata ow tan the lus es. t of nce g C g C g C g C	prism t prominent lines by gr and Poisson's ratio of and Poisson's ratio of coupling between the of a pair of coils by for ++Programming ++Programming ++Programming -Programming	cor atic atin atin a F	d of laboratory onal results. observations g-Oblique incid Perspex r of coils	len	ce	es.
COUR	SE OUT		al rule using C++ Prog	<u>,1 ai</u>				I	K Le	evel
			course, the student w	ill	be able to					
		actical	exposure about theore		cal concepts and invest	iga	te the principles	3	K3	
CO2	Cultivat	te tech		hoo	ot the errors in various	ins	truments and		K1	
CO3	Examin	e the s	trength of material by	do	ing Young's modulus	exp	periment.		K4	
CO4	Interpre	t the s	cience behind the elec	tric	cal components and the	eir p	properties.		K2	
CO5				-	or Numerical method	pro	blems		K5	
Course	Designe	d by: I	Mrs. S. Nagadeepa	k I	Dr.M.Alagar					

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)


Course	Name	ELECTRONICS PRA	ACI	FICAL							
Course	Code										
Catego	ry	Core					-	3	4		
Nature	of cours	e: EMPLOYABILITY	✓	SKILL ORIENTED	\checkmark	ENTREPREN	UR	SHIP			
Course	Objecti	ves:	8	ும் க							
• To	• To acquire knowledge of semiconductor devices and their applications.										
• To											
• To	study oso	cillator and amplifier cir	cuit	s.							
		the skills in <mark>handling in</mark> s									
• To	prepare t	he students for the real	ife	with electronic instrun	nent	S.					
		E EXPE <mark>RIMENTS</mark>									
	amplifie										
	character					6					
0	3. Single Stage Amplifier - Frequency response and bandwidth determination										
	4. IC Regulated Power Supply [Single (5V) and Dual (12-0-12V)]										
	5. Phase shift oscillator										
	0	oscillator									
	tooth Wa	ave generator									
		tion oscillator									
		ng circuits – Clipping an	dC								
		filter circuits – Chipping and			usir	OP AMP					
12 Ast	able Mul	tivibrator <mark>s – using OP A</mark>	MF	band pass mens	usii						
		ltivibrator <mark>s – using IC 5</mark>		and the set of a							
		and Demultiplexer circu									
		ics of LED and Photo di									
COUR	SE OUT	COME						KL	evel		
At the e	end of the	e programme, the studer	it wi	ill be able to							
CO1:	Demons	strate UJT behavior in th	e de	etailed form with the e	elect	ronic circuits.		K3			
CO2:	Summa	rize different structural of	osci	llators with their wave	for	ms.		K2			
CO3:	Develop	the knowledge to cons	truc	t various multivibrator	rs an	d their uses.		K3			
CO4:	Analyze	the circuit performance	es w	ith theoretical formula	ie.			K4			
CO5:	Use the	importance of application	ons	of electronics in real li	ife s	ituations.		K5			

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)									
course outcomes (co s)	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	1	2	2	2				
CO2	3	2	3	2	2	2				
CO3	2	1	1	2	2	1				
CO4	2	2	2	2	2	2				
CO5	2	3	2	3	1	3				
Weightage	211	9.07	9	11	9	10				

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. M. Alagar

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Nam	e NA	NOTECHNOLOGY							
Course Code	21	PPHN21			L	Р	С		
Category	NN	ЛЕ			6	-	6		
Nature of co	urse:	EMPLOYBILITY 🗸	SKILL ORIENTED	ENTREPRE	ENUR	SHI	P		
Course Obje	Course Objectives:								
 To explai To list di To elabor To undersiti 	 To describe the detailed aspects of nanomaterials of various dimension To explain different techniques and application of nanomaterials To list different measurement tools used in the analyze of nanomaterials To elaborate the extended application of nanomaterials To understand the influence of applications in nanomaterials 								
		mentals of nanotechnolo		03		l 8 Hı			
Core concept - new forms nanomaterials dimension.	s of na of cart s - on	notechnology: nanotech on – nanocomposites - p e dimensional and two	century -19 th century an generation- nanoscale – p olymer nanocomposites dimensional nanomateri	nanoscience -r - nanomaterial	nateri s, pro terials	al sc operti s in	ience es of three		
	-	sis and Application				l 8 Hı			
material by s molecular ele coupled devic	elf ass ctronic ces – p	em <mark>bly - na</mark> nophotonics- cs - biomedical science - 1 hotometry - giant magnet	ntronics, molecular nano - electronics and optoele nanodevice can do in mec o resistance.	<mark>ctroni</mark> cs - pla	stic e opore	electr s - cl	onics narge		
		rement tools	all we all a			l 8 hr			
fabrication – microscopy - solved - uses modification	Tools and fabrication - tools and techniques microscopy, metrology, carbon nanotube fabrication – purification of CNTs – Dispersion – scanning probe microscopy – atomic force microscopy – scanning tunneling microscope – challenges for STM – how the challenges are solved - uses and capabilities of STM – near field scanning optical microscopy- electrical surface modification								
Unit: IV A	Applica	ations of Nanotechnolog	y]	l 8 hr	s.		
energy produ solar – Nano	Potential applications- types of applications- Nanotechnology addresses the challenges – new energy producers I and II – new applications - Nanotechnology for energy – portable power and solar – Nanotechnology for hydrogen energy- medicine : prevention, implants, artificial skin, nanocapsules, monitoring and treatment. Security – other applications								
Unit: V A	Applic	ations of Nanotechnolog	y in nanoelectronics]	l 8 hr	s.		
nano electron transport - or based on crys	nic ap ganic talline	plications - Ambient in semiconductor materials	o Electronics, - nanocircu atelligence – cleaner - s for opto and microelectro o needles – complementat	safer and mo conic devices	re co – nan	mfor oswi	table tches		

Total Lecture Hou	urs 90
Books for Study:	
I. Er. Rakesh Rathi, Nanotechnology, technology revolution of 21 st century, V	ikas Publishin
House Pvt. Ltd, Ghaziabad –201010, Reprint 2019	
Unit 1 - chapter 2, 3	
Unit 2 - chapter 3	
Unit 3 - chapter 4	
Unit 4 - chapter 5	
Unit 5 – chapter 7	
Books for References:	
 Richard Boker and Earl Baysen, Nano technology, Ist Edition, Wiley Dreamtech Bangaluru, 2005. C. Binns, Introduction to Nanoscience and Nanotechnology, Vol. 14, John V 2010 N. Alian, An Introduction to Nanoscience and Nanotechnology, First Edition, V Ltd. New Delhi 2015 	Wiley and sons
Ltd., New Delhi, 2015. Web Resources:	
1.https://nptel.ac.in/courses/104/106/10410612	
2.https://hptch.ac.in/courses/104/100/10410012	
3.https://epgp.inflibnet.ac.in/	
Course Outcomes	K Level
At the end of the program, the student will be able to	I
CO1: Develop a detailed knowledge about the origin of nanomaterials and its timeline	K3
CO2: Identify different synthesis techniques and learn about the applications of	K3
nanomaterials CO3: Develop knowledge about analyzing tools of nanomaterials	K3
CO4: Analyze various applications of nanomaterials in nanotechnology	K4
CO5: Use the importance of learnt application of nanomaterials extensively in nanoelectronics	K5
CO & PO Mapping:	

CO & PO Mapping:

	O '					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	3 5	ПЦ (2 ^{со})	2	2	2
CO 2	2	2	2	2	2	2
CO 3	2	1	2	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	3	2	1	2	2
Weightage	10	10	10	9	10	10

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
Ι	Fundamentals of nanotechnology and timeline Nanotechnology timeline: Pre 18 th century, 19 th century and 20 th century, 21 st century.	6	CI 11 0
	Core concepts of nanotechnology: nanotech generation, nanoscale, nanoscience, material science, new forms of carbon, nanocomposites, polymer nanocomposites, nanomaterials, properties of nanomaterials,	6	Chalk & Talk, PPT
	one dimensional and two dimensional nanomaterials, nanomaterials in three dimension.	6	
II	Synthesis and ApplicationTwo types of construction, spintronics, molecular nanotechnology,nano structures material by self assembly, nanophotonics	6	Chalk,
	electronics and optoelectronics, plastic electronics molecular electronics, biomedical science, nanodevice can do in medical field,	6	Talk& Assignment
	nanopores, charge coupled devices, photometry, giant magnetoresistance	6	
III	Measurement tools		
	Tools and fabrication, tools and techniques microscopy, metrology, carbon nanotube fabrication	6	Chalk,
	purification of CNTs, Dispersion , scanning probe microscopy, atomic force microscopy	6	Talk& class test
	scanning tunneling microscope, challenges for STM, how the challenges are solved, uses and capabilities of STM, near field scanning optical microscopy, electrical surface modification	6	
IV	Applications of Nanotechnology Potential applications, types of applications, Nanotechnology addresses the challenges, new energy producers I and II, new applications	6	Chalk &
	Nanotechnology for energy, portable power and solar, Nanotechnology for hydrogen energy	6	Talk, PPT
	medicine: prevention, implants, artificial skin, nanocapsules, monitoring and treatment, Security, other applications	6	-
V	Applications of Nanotechnology in nanoelectronicsPlastic Electronics, processes for nano Electronics, nanocircuitry, nanoelectronic devices, nano electronic applications,	6	Chalk, Talk&
	Ambient intelligence, cleaner, safer and more comfortable transport, organic semiconductor materials for opto and microelectronic devices	6	Seminar

nanoswitches based on crystalline conductive polymer nano needles -		
complementary metal oxide semiconductor - 45 nanometer - system	6	
on a chip.		

Course Designed by: Dr. D. Ruby Josephine & Dr. P.P. Kannan

			g Outcome E Formative E Mapping – K	xaminatio	on - Blue Pri	nt		
Inte	Cos	K Level	Sectio		Section		Section C	Section D
rnal			MC	Qs	Short An	swers	Either or	Open
			No. of.	K - 5	No. of.	К-	Choice	Choice
			Questions	Level	Questions	Level		
CI	CO1	K2	2	K1&K2	10	K1	2 (K2&K2)	1(K2)
AI	CO2	K3	2	K1&K2	2	K2	2 (K3&K3)	2(K2&K3)
CI	CO3	K2 🚫	2 5/17	K1&K2	1	K2	2 (K2&K2)	1(K2)
AII	CO4	K4 🚫	2 —	K1&K2	2	K2	2 (K3&K3)	2(K3&K4)
Que	stion	No. of	4		3	191	4	3
Pat	tern	Questions to be				G		
CIA	I & II	asked				121		
		No <mark>. of</mark>	4	YAN	- 3	Б.	2	2
		Questions to be						
		answered				26 2		
		Marks <mark>for each</mark>			2		5	10
		question		4177		6		
		Total M <mark>arks f</mark> or	4	UF	6	16	10	20
		each section		127		1 in		

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2	2_00	Bruite	51 -	4	6.67	67	
	K2	2	4	10	20	36	60		
CIA	K3	-	-	10	10	20	33.33	33	
Ι	K4	-	-	-	-	-	-	-	
	Marks	4	6	20	30	60	100	100	
	K1	2	2	-	-	4	6.67	50	
CIA	K2	2	4	10	10	26	43.33		
II	K3	-	-	10	10	20	33.33	33	
	K4	-	-	_	10	10	16.67	17	
	Marks	4	6	20	30	60	100	100	

Sumn	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
S.No	COs	K - Level	MO	Qs	Short An	swers	Section C	Section D
			No. of	K –	No. of	К –	(Either /	(Open
			Questions	Level	Question	Level	or Choice)	Choice)
1	CO1	Up to K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K4&K4)	1(K4)
5	CO5	Up to K 5	2	K1&K2	1	K2	2 (K3&K3)	1(K5)
No.	of Quest	ions to be	10		5		10	5
	Aske	ed		silD d	E COL			
No.	of Questi	ions to be	10 5		5		5	3
	answe	red	1.635		N 9/2			
Marl	ks for eac	h question	<u>с 1/ Г</u>	$(\mathbf{X})(\mathbf{X})$	1/2	2	5	10
Tot	tal Marks	for each	10	(//)IA	10	2	25	30
	sectio	on 🔶			(Mk)	and a		
	(Figures	s in parenthe	sis denotes,	questions	should <mark>be as</mark>	ked with	n the given K	level)

		Dis	tribution of	Marks with	ı K Leve	1		
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated	
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%	
	Choice	Answer _	Choice)	Choice)		without		
	Questions)	Questions)				choice)		
K1	5	5 4 🦲			9	7.5	16.67	
K2	5	8 6	-		11	9.16	10.07	
K3	-	2 -	40	30	70	58.3	83.23	
K4	-	A-	10	10	20 5	16.6		
K5	-			10	10	8.33		
Marks	10	10	50	50	120		100	
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level							
		No.	🛛 of K le	evels.	8			

		Summa	ative Examinations - Question Paper – Format					
			Section A (Multiple Choice Questions)					
	Answer All Questions (10x1=10 marks)							
Q.No	CO	K	Questions					
		Level						
1	CO1	K1	1. Identity the size of – silver and gold nanoparticles exhibiting					
			unusual optical effects					
-	001	170	a) 80 nm b) 70 nm c) 30 nm d) 25 nm					
2	CO1	K2	Locate property of metal nanoparticles produces colour					
			variations					
3	CO2	K1	a) size b) shape c) colour d) surface Identify that the ferromagnetic and non ferro magnetic layers in					
3	002	KI	GMR are of —thickness					
			a) macroscale b) microscale c) nanoscale d) bulk scale					
			a) interoscute of interoscute of interoscute a) outile scute					
4	CO2	K2	Magnetic nuclei are also referred to as					
			a) magnetic spin b) colloidal spin c) electron spin d) electron affinity					
5	CO3	K1	AFM is identified as very a second se					
			a) atomic force microscopy b) added force microscopy c) acquired					
(<u> </u>	- KO	force microscopy d) additional force microscopy					
6	CO3	K2	NSOM is located as a) near field scanning optical microscopy b) net field scanning optical					
			microscopy c) narrow field scanning optical microscopy d) noted					
		1232	field scanning optical microscopy					
			nera seaming optical microscopy					
7	CO4	K1	A self assembling nanoscale polymer carries across the blood					
		2.	brain carrier					
		16	a) anti cancer drug b) virus c) bacteria d) all the above					
		19	a) and cancer arag o) (nas c) succerta a) an are above					
8	CO4	K2	LED is identified as					
			a) Light Emitting diode b) low emissive diode c) lateral emissive					
			diode d) longitudinal emission diode					
9	CO5	K1	Nanocircuits are electrical circuits are on the scale identified as					
,	005		a) nano b) micro c) pico c) femto					
10	CO5	K2	OTFT is identified as					
-			a) organic thin film transistors b) ordinary thin film transistor c) only					
			thin film transistor d) open thin film transistor					
			Continue D (Charat Americana)					
	A	wor All C	Section B (Short Answers)					
Q.No	CO	K K	Questions (5x2=10 marks) Questions					
2.10	co	Level	Questions					
11	CO1	K1	Define in short about C60					
12	CO2	K1	Draw the schematic of multilayered magnetoresistive structure					
13	CO3	K2	Describe electrical surface modification					

15	CO5	K2	Describe CMOS?				
			Section C (Either/Or Type)				
Answer All Questions(5 x 5 = 25 marks)							
Q.No	СО	K	Questions				
		Level					
16) a	CO 1	K3	Prepare a detailed note on Single electron tunneling transistor				
16) b	CO1	K3	Collectively write about Quantum dots				
17) a	CO2	K3	Prepare an elaborate note on nanophotonics in detail				
17) b	CO2	K3	Develop a detailed description on Giant magnetoresistance				
18) a	CO3	K3	Built details pertaining to tools and techniques that are used to measure and make nanostructures				
18) b	CO3	K3	Prepare a detailed description about laser method				
19) a	CO4	K4	Comment on artificial skin				
19) b	CO4	K4	Comment on solar energy harvesting in nanotechnology in elaborate				
20) a	CO5	K3	Identify and provide a detailed note on nanoelectronic devices				
20) b	CO5	K3	Prepare a detailed note on nanoswitches				
NB:	Higher lo	evel of pe	erformance of the students is to be assessed by attempting higher				
			level of K levels				
		. b	Section D (Open Choice)				
			nswer Any Three questions (3x10=30 marks)				
Q. No	CO	K Level	Questions 5				
21	CO1	K3	Describe about the impact of Nanotechnology in human lives in 21 st century comprising any 5 significant achievements				
22	CO2	K3	Develop details about scanning tunneling microscope and the challenges in STM				
23	CO3	K3	Collectively write about top down and bottom up approaches				
24	CO4	K4	Comment on the importance of the prevention and implant techniques in medical nanotechnology				
25	CO5	K5	Provide the importance of phase change memory, metal insulator metal technology, flexible substrate, photonic crystal and functional substrate packing technology				
		1	biostate packing technology				