B.Sc., PHYSICS

Program Code: UPH

2023-2024 onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

GUIDLINESS FOR OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

(FOR UG PROGRAM FROM 2023 -2024 ONWARDS)

ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the UG Degree program must have passed the Higher Secondary Education (respective groups – Arts / Science) of the Government of Tamil Nadu or any other state or its equivalent qualification.

DURATION OF THE COURSE

The duration of the course shall be three academic years comprising six semesters with two semesters in each academic year.

Subjects of Study Part I : Tamil / Hindi / Part II : English Part III : 1.Core Subjects 2.Allied Subjects 3.Electives Part IV: 1.Non Major Electives (I Year) 2.Skill Based Subjects 3.Environmental Studies - Mandatory Subject 4.Value Education - Mandatory Subject Part V :

Extension Activities

ARTS & SCIENCE

CBCS COURSE STRUCTURE FOR UG PROGRAMS

Sem I	Cre dit	Sem II	Cre dit	Sem III	Cre dit	Sem IV	Cre dit	Sem V	Cre dit	Sem VI	Cre dit
1.1. Language - Tamil	3	2.1. Language - Tamil	3	3.1. Language - Tamil	3	4.1. Language - Tamil	3	5.1 Core Course - \CC IX	4	6.1 Core Course – CC XIII	4
1.2 English	3	2.2 English	3	3.2 English	3	4.2 English	3	5.2 Core Course – CC X	4	6.2 Core Course – CC XIV	4
1.3 Core Course – CC I	4	2.3 Core Course – CC III	4	3.3 Core Course – CC V	4	4.3 Core Course – CC VII Core Industry Module	4	5. 3.Core Course CC -XI	4	6.3 Core Course – CC XV	4
1.4 Core Course – CC II	4	2.4 Core Course – CC IV	4	3.4 Core Course – CC VI	4	4.4 Core Course – CC VIII	4	5. 3.Core Course -/ Project with viva- voce CC - XII	4	6.4 Elective -VII Generic/ Disciplin e Specific	3
1.5 Elective I Generic/ Discipline Specific	3	2.5 Elective II Generic/ Discipline Specific	3	3.5 Elective III Generic/ Discipline Specific	3	4.5 Elective IV Generic/ Discipline Specific	3	5.4 Electiv e V Generi c/ Discipl ine Specifi c	3	6.5 Elective VIII Generic/ Disciplin e Specific	3
1.6 Skill Enhance ment Course SEC-1 (NME)	2	2.6 Skill Enhance ment Course SEC-2 (NME)	2	3.6 Skill Enhanceme nt Course SEC-4, (Entreprene urial Skill)	1	4.6 Skill Enhance ment Course SEC-6	2	5.5 Elective VI Generic/ Discipli ne Specific	3	6.6 Extensio n Activity	1
1.7Ability Enhance ment Compulso ry Course (AECC) Soft Skill-1	2	2.7 Skill Enhance ment Course – SEC- 3(NME)	2	3.7 Skill Enhanceme nt Course SEC-5	2	4.7 Skill Enhance ment Course SEC-7	2	5.6 Value Educati on	2	6.7 Professio nal Compete ncy Skill	2
1.8 Skill Enhance ment - (Foundati on Course)	2	2.8 Ability Enhancem ent Compulsor y Course (AECC) Soft Skill-2	2	3.7 Ability Enhanceme nt Compulsory Course (AECC) Soft Skill-3 3.8 E.V.S	2	4.7 7Ability Enhancem ent Compulsor y Course (AECC) Soft Skill-4 4.8 E.V.S	2	5.5 Summer Internsh ip /Industri al Training	2		
	23		23	J.0 E.V.J	- 22	4.0 E.V.S	2 25		26		21
				T		dit Points		•			140

QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL ASSESSMENT

Note: Duration – 1 hour (FOR PART I, PART II & PART III)

The components for continuous internal assessment are:Part -A4 x01=04 MarksFour multiple choice questions (answer all)4 x01=04 MarksPart -B2 x05=10 MarksTwo questions ('either or 'type)2 x05=10 MarksPart -CTwo questions ('either or 'type)Two questions ('either or 'type)2 x 08=16 MarksTotal30 Marks

THE COMPONENTS FOR CONTINUOUS INTERNAL ASSESSMENT ARE:

(60 Marks of two continuous internal assessments will be converted to 15 marks)

Two tests and their aver	age15 mark	S
Seminar /Group discussio	on / Quiz Test5 marks	5
Assignment	5 marks	3
Tot	al 25 Mark	 KS

QUESTION PAPER PATTERN FOR THE SUMMATIVE EXAMINATIONS:

Note: Duration- 3 hours

Part –A			
Ten multiple choice questions]	10 x01	= 10 Marks
No Unit shall be omitted: not more than two qu	sestions from	each unit.)	
Part –B			
Five Paragraph questions ('either or 'type)	4	5 x 05	= 25 Marks
(One question from each Unit)			
Part –C			
Five Paragraph questions ('either or 'type)	4	5 x 08	= 40 Marks
(One question from each Unit)			
	- 1		
	Total		75 Marks

PART-IV- SKILL BASED PAPERS / NME:

The Scheme of Examination for Skill Based Papers: (Except Practical Lab Subjects)

QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL ASSESSMENT (SKILL BASED AND NME COURSES) DURATION - 1 HOUR

50 MCQs will be asked for each internal assessment tests (50 x 1=50 Marks) and converted for 15 marks

THE COMPONENTS FOR CONTINUOUS INTERNAL ASSESSMENT ARE:

Two tests and their average	15 marks
Seminar /Group discussion / Quiz Test	5 marks
Assignment	5 marks
Total	25 Marks

SUMMATIVE EXAMINATION PATTERN (SKILL BASED AND NME COURSES) DURATION – 3 HOURS

Pattern of the Question Paper for Skill Based and Non-Major Elective courses (External)

75 Multiple choice questions will be asked from five units (75 x 1=75 Marks)

(15MCQ's from each unit)

PART-IV- ENVIRONMENTAL STUDIES AND VALUE EDUCATION QUESTION PAPER PATTERN (INTERNAL ASSESSMENT)

Pattern of the Question Paper for Environmental Studies & Value Education (Internal)

50 MCQs will be asked for each internal assessment tests (50 x 1=50 Marks) and converted for 15 marks

	Total	25 Marks
Project		 10 marks
Two tests and their average		 15 marks

* The students as Individual or Group must visit a local area to document environmental assets – river / forest / grassland / hill / mountain – visit a local polluted site – urban / rural / industrial / agricultural – study of common plants, insects, birds – study of simple ecosystem – pond, river, hill slopes, etc.

SUMMATIVE EXAMINATION PATTERN

Pattern of the Question Paper for Environmental Studies & Value Education only) (External)

75 Multiple choice questions will be asked from five units (75 x 1=75 Marks)

(15MCQ's from each unit)

PART V EXTENSION ACTIVITIES: (MAXIMUM MARKS: 100)

- 1. NCC
- 2. NSS
- 3. Physical Education
- 4. YRC
- 5. RRC
- 6. Health & Fitness Club
- 7. Eco Club
- 8. Human Rights Club

Internal Examinations - - 25 Marks

Summative Examinations - - 75 Marks

100

OUTCOME BASED EDUCATION:

OBE starts with the identification and articulation of clear and measurable learning outcomes for each course or program. These outcomes describe the skills, knowledge, and abilities that students are expected to acquire. The curriculum, instructional methods, and assessments are aligned with the defined learning outcomes. This ensures that everything taught and evaluated is directly related to what students are expected to learn.

The Learning Outcomes-Based Approach to curriculum planning and transaction in our institution ensures whether the teaching-learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome based approach, particularly in the context of undergraduate studies, requires a significant shift from teacher-centric to learner-centric pedagogies and from passive to active/participatory pedagogies.

Assessment Method: The students are assessed with 2 internal examination and the summative examination which includes problem based assignments; practical assignment laboratory reports; observation of practical skills; individual project reports ,case-study reports; team project reports; oral presentations, including seminar presentation; viva voce interviews; computerized adaptive testing; etc. and any other pedagogic approaches as per the context.

INSTITUTIONAL VISION

To Mould the learners into accomplished individuals by providing them with a stimulus for social change through character, confidence and competence.

INSTITUTIONAL MISSION

1. Enlightening the learners on the ethical and environmental issues.

2. Extending holistic training to shape the learners in to committed and competent citizens.

3. Equipping them with soft skills for facing the competitive world.

4. Enriching their employability through career oriented courses.

5. Ensuring accessibility and opportunity to make education affordable to the underprivileged.

Highlights of the Revamped Curriculum:

- Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.

- The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004 B.SC PHYSICS CURRICULUM

(For the student admitted during the academic year 2023-2024 onwards)

Course Code	Title of the Course	Hrs	Credits	Maximum Marks		
Course Coue		1115	Cicuits	Int	Ext	Total
	FIRST SEMESTER					
Part – I	Tamil / Alternative Course					
23UTAGT11	தமிழ் இலக்கிய வரலாறு - I	6	3	25	75	100
Part – II	English					
23UENGE11	GENERAL ENGLISH - I	6	3	25	75	100
Part - III	Core Courses					
23UPHCC11	PROPERTIES OF MATTER AND ACOUSTICS	5	5	25	75	100
23UPHCP11	PHYSICS PRACTICAL - I	4	4	25	75	100
Part - III	Elective Course					
23UMTEA11	ALLIED MATHEMATICS - I	5	4	25	75	100
Part IV	Non Major Elective					
23UPHNM11	PHYSICS FOR EVERY DAY LIFE	2	2	25	75	100
Part IV	Foundation Course					
23UPHFC11	INTRODUCTORY PHYSICS	2	2	25	75	100
	Total	30	23	175	525	700
	SECOND SEMESTE	R				
Part – I	Tamil / Alternative Course					
23UTAGT21	தமிழ் இலக்கிய வரலாறு – II	6	3	25	75	100
Part – II	English					
23UENGE21	GENERAL ENGLISH - II	6	3	25	75	100
Part - III	Core Courses					
23UPHCC21	HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS	5	5	25	75	100
23UPHCP21	PHYSICS PRACTICAL 2	4	4	25	75	100
Part - III	Elective Course					
23UMTEA21	ALLIED MATHEMATICS - II	5	4	25	75	100
Part IV	Non Major Elective					
23UPHNM21	PHYSICS OF MEDICAL INSTRUMENTS	2	2	25	75	100
Part IV	Skill Enhancement course					
23UPHSC21	FUNDAMENTALS OF ASTROPHYSICS	2	2	25	75	100
	Total	30	23	175	525	700

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PROPERTIES OF MATTER AND ACOUSTICS			
Course Code	23UPHCC11	L	Р	С
Category	CORE PAPER	5	-	5

COURSE OBJECTIVES:

Study of the properties of matter leads to information which is of practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.

UNIT - I ELASTICITY

Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)

UNIT - II BENDING OF BEAMS

Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope

UNIT - III FLUID DYNAMICS

Surface tension: Definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method– variation of surface tension with temperature

Viscosity: Definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature

UNIT - IV WAVES AND OSCILLATIONS

Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance.

Laws of transverse vibration in strings – sonometer – determination of AC frequency using sonometer – determination of frequency using Melde's string apparatus

UNIT - V ACOUSTICS OF BUILDINGS AND ULTRASONICS

Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings.

Ultrasonic waves: Production of ultrasonic waves – Piezoelectric crystal method –magneto striction effect – application of ultrasonic waves

Total Lecture Hours

15

15

15

15

15

75

BOOKS FOR STUDY:

- > D.S.Mathur, 2010, Elements of Properties of Matter, S.Chandand Co.
- > BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co
- > D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons
- BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House.
- > R.Murugesan,2012, Properties of Matter, S.Chand and Co.

BOOKS FOR REFERENCES:

- C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers
- > H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co.
- A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India.

WEB RESOURCES:

- https://www.biolinscientific.com/blog/what-are-surfactants-and-how-dothey-work
- http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
- https://www.youtube.com/watch?v=gT8Nth9NWPM
- https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s
- https://www.biolinscientific.com/blog/what-are-surfactants-and-how-dothey-work
- https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
- http://www.sound-physics.com/
- http://nptel.ac.in/courses/112104026/

Nature of Course	EMPLOYABILITY 🖌 SI			SKILL OF	SKILL ORIENTED			ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REGIO	ONAL		NATIONAL			GLOBAL	\checkmark
Changes Made in the Course	Percentage of Change		ange	40	No Chang	jes Made		Ne	ew Course	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

After stu CO1 CO2 CO3 CO4	pendulum Able to ap and under Explain th phenomer	stic behavi ppreciate co stand natur ne surface t	or in terms	s of three n		lasticity ar	nd working	of torsion	K				
CO2 CO3	pendulum Able to ap and under Explain th phenomer	opreciate co stand natur ne surface t	oncept of b		noduli of e	lasticity ar	nd working	of torsion					
CO3	and under Explain th phenomer	stand natur		ending of	Relate elastic behavior in terms of three moduli of elasticity and working of torsion pendulum.								
	phenomen				beams and	analyze th	e expressi	on, quantif	y K	1 to K4			
CO4			Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.										
	concept of	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up K1 to K4 experiment to evaluate frequency of ac mains											
CO5	Understan acoustics.	d the conce Able to ap assimilate c	ept of acouply their k	istics, imponenties in the second sec	ortance of of ultrason	ic in real l	ife, especia			1 to K4			
MAPPII	NG WITH	PROGR	AM OUT	COMES:									
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	3	3	2	2	3	2	2	3	2	3			
CO2	2	3	3	3	2	2	3	2	3	3			
CO3	3	2	3	2	3	3	2	3	3	3			
CO4	3	3	3	3	3	2	3	2	2	2			
CO5	2	2	3	3	2	3	3	3	3	2			
3	- STRO	NG			2 – MEI	DIUM			1 - LO	W			
CO / P(O MAPPI	NG:			1								
CC	DS	PSO1	J	PSO2	PS	03	PSO4	ł	PSC)5			
CO) 1	3		1	3	6	-		2				
CO	2	3		1	3	6	-		2				
CO	3	3		1	3	;	-		2				
CO) 4	3		1	3	}	-		2				
CO) 5	3		1	3	3	-		2				
WEIT	AGE												
WEIG PERCE OF CO CONTR N TO	NTAGE DURSE IBUTIO												
LESSO	N PLAN:												
UNIT	PF	ROPERTI	ES OF N	IATTER	AND AC	OUSTIC	S	HRS	PEDA	AGOGY			

I	Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)	15	Chalk & Talk, Videos, PPT and Demonstration
п	Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope	15	Chalk & Talk, Videos, PPT and Demonstration
III	Surface tension: Definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method– variation of surface tension with temperature Viscosity: Definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature	15	Chalk & Talk, Videos, PPT and Demonstration
IV	Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde's string apparatus	15	Chalk & Talk, Videos, PPT and Demonstration
v	Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves</i> : Production of ultrasonic waves – Piezoelectric crystal method –magneto striction effect – application of ultrasonic waves	15	Chalk & Talk, Videos, PPT and Demonstration

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal Co	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice			
	0.05		No. of. Questions	K - Level	Choice				
CI	CO1	K1 – K4	2	K1, K2	K1 OR K1	K3 OR K3			
AI	CO2	K1 – K4	2	K1,K2	K2 OR K2	K4 OR K4			
CI	CO3	K1 – K4	2	K1, K2	K2 OR K2	K3 OR K3			
AII	CO4	K1 – K4	2	K1,K2	K3 OR K3	K4 OR K4			
	1	No. of Questions to be asked	4		4	4			
Quest Patte		No. of Questions to be answered	4		2	2			
CIA I		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

		Dis	tribution of	Marks with	K Level	CIA I & CIA I	I
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	10	-	12	21.43	
	K2	2	10	-	12	21.43	-
CIA	K3	-	-	16	16	28.57	42.86
I	K4	-	-	16	16	28.57	71.43
-	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2	10		12	21.43	-
CIA	K3		10	16	26	46.43	25.00
Π	K4			16	16	28.57	71.43
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	ination – B	ue Print Artic	culation Map	ping – K Level with C	ourse Outcomes (COs)	
		К-	Section A	(MCQs)	Section B (Either /	Section C (Either / or	
S. No	COs	5 Level	No. of	K – Level	or Choice) With	Choice) With	
			Questions	K – Level	K - LEVEL	K - LEVEL	
1	CO1	K1 – K4	2	K1, K2	K1, K1	K2, K2	
2	CO2	K1 – K4	2	K1, K2	K2, K2	K2, K2	
3	CO3	K1 – K4	2	K1, K2	K2, K2	K3, K3	
4	CO4	K1 – K4	2	K1, K2	K3, K3	K3, K3	
5	CO5	K1 – K4	2	K1, K2	K4, K4	K4, K4	
No. of Qu	estions to	o be Asked	10		10	10	
	Question answered	_	10		5	5	
Marks	for each	question	1		5	8	
Total Ma	Total Marks for each section				25	40	
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	given K level)	

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	10		15	10.72	-				
K2	5	20	32	57	40.71	51.43				
K3		10	32	42	30.00	30.00				
K4		10	16	26	18.57	18.57				
Marks	10	50	80	140	100	100				
NB: Higher le levels.	NB: Higher level of performance of the students is to be assessed by attempting higher level of K									

Q. No.	Unit	СО	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	ALL the questi	ons	I	PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K1		
				OR	
11. b)	Unit - I	CO1	K1		
12. a)	Unit - II	CO2	K2		
				OR	
12. b)	Unit - II	CO2	K2		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K4		
				OR	
15. b)	Unit - V	CO5	K4		

Answer	ALL the que	stions		PART – C	(5 x 8 = 40 Marks)						
16. a)	Unit - I	CO1	K2								
	OR										
16. b)	Unit - I	CO1	K2								
17. a)	Unit - II	CO2	K2								
	OR										
17. b)	Unit - II	CO2	K2								
18. a)	Unit - III	CO3	K3								
				OR							
18. b)	Unit - III	CO3	K3								
19. a)	Unit - IV	CO4	K3								
				OR							
19. b)	Unit - IV	CO4	K3								
20. a)	Unit - V	CO5	K4								
				OR							
20. b)	Unit - V	CO5	K4								

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS PRACTICAL 1			
Course Code	23UPHCP11	L	Р	C
Category	CORE PRACTICAL	_	4	4
COURSE OBJE	CTIVES:			
	ous physics concepts to understand Properties of Matter antify and analyse, able to do error analysis and correla		ation to	verif
SEMESTER - I	LIST OF EXPERIMENTS			45
Minimum of Eig	ght Experiments from the list:			
1. Determination	on of rigidity modulus without mass using Torsional pe	endulum.		
	on of rigidity modulus with masses using Torsional per			
	on of moment of inertia of an irregular body.			
	of parallel axes theorem on moment of inertia.			
	of perpendicular axes theorem on moment of inertia.			
	on of moment of inertia and g using Bifilar pendulum.			
	on of Young's modulus by stretching of wire with know	wn masses.		
	of Hook's law by stretching of wire method.			
9. Determination	on of Young's modulus by uniform bending – load dep	ression graph.		
10. Determination	on of Young's modulus by non-uniform bending – scal	e and telescope.		
11. Determination	on of Young's modulus by cantilever – load depression	ı graph.		
12. Determination	on of Young's modulus by cantilever – oscillation meth	nod		
13. Determination	on of Young's modulus by Koenig's method - (or unk	nown load)		
14. Determination	on of rigidity modulus by static torsion.			
15. Determination	on of Y, n and K by Searle's double bar method.			
16. Determination	on of surface tension and interfacial surface tension by	drop weight method	1.	
17. Determination	on of co-efficient of viscosity by Stokes' method - tern	ninal velocity.		
18. Determination	on of critical pressure for streamline flow.			
19. Determination	on of Poisson's ratio of rubber tube.			
	on of viscosity by Poiseullie's flow method.			
	on of radius of capillary tube by mercury pellet method	l.		
22. Determination	on of g using compound pendulum.			

BOOKS FOR STUDY:

Srinivasan.M.N., Balasubramanian.S., Ranganathan.R., A Text Book of Practical Physics, 2017 Edition, Sultan Chand & Sons

BOOKS FOR REFERENCES:

> Ouseph.C., Practical Physics and Electronics, 2013, S.Viswanathan.P.Ltd.

WEB RESOURCES:

- https://nptel.ac.in/course.html/physics/experimental physics I, II and III
- https://nptel.ac.in/courses/115/105/115105110/
- https://www.youtube.com/playlist?list=PLuiPz6iU5SQ8-
- rZn_LgLofRX7n8z4tHYK

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		✓ ENTREPRENEURSH		HIP		
Curriculum Relevance	LOCAL		REGI	ONAL	,	NATIONAL			GLOBAL	\checkmark
Changes Made in the Course	ade in the Percentage of Change		nange	25	No Char	iges Made			New Course	

COURS	SE OUTCO	OMES:							K	LEVEL
After stu	udying this	course, th	e students	s will be at	ole to:					
CO1	Remember	ing the Air	m and appa	aratus used	in the exp	eriment				K1
CO2	Understand	ling of law	s and form	ulas of the	experiment	nt				K2
CO3	Applying the knowledge to do the experiment									K4
CO4	Calculating and examining the aim of the experiment									КЗ
CO5	Interpreting the result of the experiment								K2	
MAPPI	NG WITH	PROGR	AM OUT	COMES:						
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	1	2	3	3	3	1	3
CO2	3	3	2	2	2	3	3	3	1	3
CO 3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	2	3	3	3	3	3	1	3
CO5	3	3	2	2	2	3	3	3	1	3
	3 - STROI	NG			2 – MED	IUM			1 - LO	W

CO / PO MAPPING:								
С	os	PSO1	PSO2	PSO3	PSO4		PSO5	
C	01	3	2	3	-		2	
C	0 2	3	2	3	-		2	
C	CO 3 3		2	3	-		2	
C	CO 4 3		2	3	-		2	
С	05	3	2	3	-		2	
WEI	TAGE							
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS LESSON PLAN:								
SEM			PRACTICAL	1		HRS	PEDAGOGY	
I	 Determination of Young's modulus by uniform bending – Pin and Microscope Determination of Young's modulus by non-uniform bending – scale and telescope. Determination of Young's modulus by cantilever – load depression graph. Determination of rigidity modulus with masses using Torsional 						Demonstrat ion and Video	

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	No. of. Questions	K - Level					
CIA-I	A-I CO1 - CO5 K1 – K4 1 Question for Each Student		1 Question for Each Student	K1 – K4					
	No. of Questions to be asked		1 Question for Each Student						
	on Pattern	No. of Questions to be answered	1						
C	IA - I	Marks for each question	30						
		Total Marks for each section	30						

	Distribution of Marks with COs & K Level for Correction of CIA I									
	COs	Distribution of the work of the experiment	K - Level	MARKS						
	CO1	Aim and apparatus	K1	2.0						
	CO2	Formula and Tabular Column	K2	5						
	CO3	Understanding and Observation	K4	12.0						
CIA I	CO4	Calculation and Graph	К3	8.0						
	CO5	Interpretation of result	K2	3.0						
	Total			30						
	Marks			50						

	Distribution of Marks with K Level CIA I										
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %						
	K1	Aim and apparatus	2	6.66							
	К2	Formula and Tabular Column Interpretation of result	8	26.67	-						
CIA	K3	Understanding and Observation	8	26.67	33.33						
Ι	K4	Calculation and Graph	12	40.00	60.00						
	Marks		30	100	100						

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
COs	K - Level	No. of Questions K – Level						
CO1 - CO5	K1 – K4	1 Question for Each Student	K1 – K4					
No. of Question	ons to be Asked	1 Question for Each Student						
No. of Question	is to be answered	1						
Marks for e	ach question	60						
Total Marks for each section 60								
(Fig	(Figures in parenthesis denotes, questions should be asked with the given K level)							

Distributio	Distribution of Marks with COs & K Level for Correction of the Summative Exam						
COs	Distribution of the work of the experiment	K - Level	MARKS				
CO1	Aim and apparatus	K1	5				
CO2	Formula and Tabular Column	K2	10				
CO3	Understanding and Observation	K4	25				
CO4	Calculation and Graph	K3	15				
CO5	Interpretation of result	K2	5				
Total Marks			60				

	Distribution of Marks w	vith K Lev	vel					
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %				
K1	Aim and apparatus	5	8.33	-				
K2	Formula and Tabular Column, Interpretation of result	15	25.00	8.33				
K3	Understanding and Observation	25	41.67	33.33				
K4	Calculation and Graph	15	25.00	75.00				
Marks		60	100	100				
NB: Higher	NB: Higher level of performance of the students is to be assessed by attempting higher level of K							
levels.		·						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ALLIED MATHEMATICS - I			
Course Code	23UMTEA11	L	Р	С
Category	ELECTIVE	5	-	4
COURSE OBJEC	TIVES:			
 To acquire ki To improve s Students are of 	the fundamental concepts of Mathematics. nowledge about finding approximate roots of the polynomial equation students' ability in applications of matrices and calculus. exposed to understanding the concept of derivatives and their applic puble and triple integrals and their applications			
UNIT – I SOLU	TIONS OF TRANSCENDENTAL AND ALGEBRAIC EQU	ATIC	NS	15
Iteration method, Bise (Simple problems only	ction method, Newton's method – Regula Falsi method, Horner's method(withou	ıt proof)	
UNIT – II SOLU	TIONS OF SIMULTANEOUS EQUATIONS			15
	thod - Gauss Jordan method – Gauss Seidel Iterative method - Gauss Jacol) (Simple problems only)	bi meth	nod (Res	tricted
UNIT - III MATH	RICES			15
	n of a square matrix– Eigen values and eigen vectors – Cayley – Hamilton and computation of inverse matrix	theore	m [witho	out
UNIT – IV DIFF	ERENTIAL CALCULUS			15
	onitz theorem [without proof] and applications – Jacobians– Curvature and and polar co-ordinates	radius	of curva	ature ir
UNIT - V APPL	ICATION OF INTEGRATION			15
Evaluation of double,	triple integrals – Simple applications to area, volume, and centroid.			

BOOKS FOR STUDY:

- > P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences
- Numerical Analysis, S. Chand & Company Ltd., New Delhi-55 Unit I : Chapter 1

Unit II: Chapter 2

> P. Duraipandian and Dr. S. Udayabaskaran (1997), "Allied Mathematics", Vol I

Chennai: Muhil Publishers. Unit III: Chapter 1 - Sec – 1.1.1, 1.1.2, 1.2, 1.4.3

P. Duraipandian and Dr. S. Udayabaskaran (1997), "Allied Mathematics", Vol II. Chennai: Muhil Publishers.

Unit IV : Chapter 1 - Sec – 1.1.1,1.1.2,1.2,1.4.3

Unit V: Chapter 3 – Sec - 3.4, 3.4.1, 3.5.1, 3.5.2, 3.6

BOOKS FOR REFERENCES:

- S.J.Venkatesan, "Allied Mathematics I", Sri Krishna Publications, Chennai.
- > P. R. Vittal (2003), "Allied Mathematics", Margham Publication, Chennai
- > A.Singaravelu "Numerical Methods" Meenakshi Publications

WEB RESOURCES:

- https;//www.mathwarehous.com/
- https://www.mathhelp.com/
- https;//www.mathsisfun.com/

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		~	ENTREPRENEURSHIP			
Curriculum Relevance	LOCAL REG			ONAL	✓	NATION	NAL		GLOBAL	
Changes Made in the Course	Percentag	Percentage of Change			No Char	iges Made			New Course	~
* Treat	* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.									

COURS	SE OUTC	OMES:							K	LEVEL
After stu	idying this	course, th	e students	will be al	ole to:					
CO1	Find out the approximate roots of polynomial equations.							K	1 to K4	
CO2	Develop the skills of finding roots of simultaneous equations							K	1 to K4	
CO3	Demonstra	te knowled	lge about n	natrices an	d their app	lications			K	1 to K4
CO4	Carry out ca	alculations o	of problems	related to c	urvature and	d radius of	curvature.		K	1 to K4
CO5		ouble and t as of integra				nderstand	the		K	1 to K4
MAPPI	NG WITH	PROGR	AM OUT	COMES:						
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	2	3	3				
CO2	2	1	2	2	2	2				
CO3	3	2	2	3	1	2				
CO 4	2	2	2	2	2	2				
CO 5	2	1	2	2	3	2				
\$	S- STRON	IG]	M – MED	IUM			L - LO	W
CO / P	O MAPPI	NG:								
C	os	PSO1	F	PSO2	PSC	03	PSO4	-	PSO	95
C	D 1	3		2	1					
CO	02	3		2	1					
C	03	3		2	1					
C) 4	3		2	1					
C	D 5	3		2	1					
WEIG	HTAGE	15		10	5					
PERCE OF CO CONTE	HTED NTAGE DURSE IBUTIO POS	3		2	1					
LESSO	N PLAN:									
UNIT		A	LLIED M	ATHEMA	TICS – I			HRS	PED.	AGOGY
Image: Construction of the section of the section method, Newton's method – Regula Falsi method, Horner's method(without proof) (Simple problems only						method,	15		alk & Falk	
II	Gauss Elimination method - Gauss Jordan method - Gauss Seidel Iterative						15	Ch	alk & Salk	
III	•	tic equation						15		alk & Falk

	inverse matrix		
IV	n-th derivatives – Leibnitz theorem [without proof] and applications – Jacobians- Curvature and radius of curvature in Cartesian co-ordinates and polar co- ordinates	15	Chalk & Talk
V	Evaluation of double, triple integrals – Simple applications to area, volume, and centroid.	15	Chalk & Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal Cos	K Level	Section MC(Section B Either or	Section C			
	Cos		No. of. Questions	K - Level	Choice	Either or Choice		
CI	CO1	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)		
AI	CO2	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)		
CI	CO3	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)		
AII	CO4	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)		
	L	No. of Questions to be asked	4		4	4		
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2		
		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

		Dis	tribution of	Marks with	K Level	CIA I & CIA I	Ι
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	23
CIA	K3		10	16	26	46.4	46.4
I	K4			16	16	28.6	28.6
-	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2	10		2	3.6	1.2
CIA	K3		10	16	26	46.4	46.4
Π	K4			16	26	46.4	46.4
	Marks	4	20	32	56	100	100

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summativ	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or		
S. No	Cos	K - Level	No. of	K – Level	Choice) With	Choice) With		
			Questions		K - LEVEL	K - LEVEL		
1	CO1	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)		
2	CO2	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)		
3	CO3	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)		
4	CO4	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)		
5	CO5	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)		
No. of Qu	lestions to	be Asked	10		10	10		
No. of	No. of Questions to be answered		10		5	5		
Marks	Marks for each question		1		5	8		
Total Ma	Total Marks for each section		10		25	40		
	(Fig	tres in naren	thesis denotes	questions show	uld be asked with the give	n K level)		

(Figures in parenthesis denotes, questions should be asked with the given K level)

		Distrib	ution of Mar	ks with H	K Level		
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5			5	3.6	4	
K2	5	20		25	17.8	18	
K3		30	32	62	44.3	44	
K4			48	48	34.3	34	
Marks	10	50	80	140	100	100	
0	NB: Higher level of performance of the students is to be assessed by attempting higher level of K						
levels.							

Q. No.	Unit	СО	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	Answer ALL the questions 11. a) Unit - I CO1 K2			PART – B	(5 x 5 = 25 Marks)
11. a)					
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer ALL the questions16. a)Unit - ICO1K3				PART – C	$(5 \times 8 = 40 \text{ Marks})$
			K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
			· ·	OR	
20. b)	Unit - V	CO5	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS FOR EVERYDAY LIFE									
Course Code	23UPHNM11 L P									
Category	NON MAJOR ELECTIVES (NME)	2	-	2						
COURSE OBJEC	CTIVES:									
	here all physics principles have been put to use in daily life and ap understanding also to know about Indian scientists who have ma s to Physics	-		cepts						
UNIT - I MEC	HANICAL OBJECTS			06						
Spring scales – bour	ncing balls –roller coasters – bicycles –rockets and space travel.									
UNIT - II OPTI	ICAL INSTRUMENTS AND LASER			06						
Vision corrective lead holography and lase	nses – polaroid glasses – UV protective glass – polaroid camera - er.	- color pl	hotograj	ohy —						
UNIT - III PHYS	SICS OF HOME APPLIANCES			06						
Bulb – fan – hair dri	ier – television – air conditioners – microwave ovens – vacuum c	leaners								
UNIT - IV SOLA	AR ENERGY			06						
Solar constant – Ger General applications	neral applications of solar energy – Solar water heaters – Solar P s of solar cells.	10to – vo	oltaic cel	lls –						
UNIT - V INDL	AN PHYSICIST AND THEIR CONTRIBUTIONS			06						
	Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasek APJ Abdul Kalam and their contribution to science and technological structures and technological struct		katrama	ın						
	Total Lecture	Hours		30						
BOOKS FOR ST	'UDY:									
•	s in our Daily Lives, Umme Ammara, Gugucool Publishing, Hyd e of physics, Walter Lawin, Free Press, New York, 2011.	lerabad, 2	2019.							
BOOKS FOR RE	CFERENCES:									
Physics App	liances in Everyday Life, S.S.Jayabalakrishnan, Shanlax Publica	tions, Ma	durai, 2	.022						
WEB RESOURC	ES:									
https://w everyday-	yjus.com/question-answer/how-physics-affect-our ww.orchidsinternationalschool.com/blog/child-le life ws.edu.in/blog/application-of-physics-in-daily-life	arning		i cs-i :						

Nature of Course	EMPLC	YABII	LITY		SKILL OR	IENTED	\checkmark	ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	de in the Percentage of Change			No Char	iges Made			New Course	~	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	E OUTCO	OMES:							K	LEVEL	
After stu	udying this	course, th	e student	s will be a	ble to:						
CO1	Understan water heat	F	K1 , K2								
CO2	Recollecting the principles of bicycles, photography, television and solar cells K1 , K2										
CO3	Comprehend basic concept of laser, vacuum cleaner, voltaic cell and space travel K1 , K2										
CO4	Articulate the knowledge about holography, air-conditioners and solar constant										
CO5	Interpret t solar cells		solutions	of UV pro	tective glas	s, applicat	ions of sol	ar energy a	and F	K1 , K2	
MAPPI	NG WITH	PROGR	AM OUT	COMES:							
CO/PC	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	
CO1	3	3	3	3	3	3	3	2	3	2	
CO2	2	3	3	3	2	3	3	2	2	2	
CO3	3	3	3	2	3	3	3	2	3	2	
CO4	3	3	3	3	3	3	3	2	2	2	
CO5	3	2	3	3	3	3	3	2	2	3	
3	3 - STROI	NG			2 – MEI	DIUM			1 - LO	W	
CO / P	O MAPPI	NG:			_						
C	os	PSO1	.]	PSO2	PSC	03	PSO ₄	1	PSO	5	
CC	D 1	3		1	3		-		2		
CC	0 2	3		1	3		-		2		
CC	03	2		1	3		-		2		
CO 4		2		1	3		-		3		
CO 5 2			1	3				2			
WEI'	FAGE										
PERCE OF CO CONTR	HTED NTAGE DURSE RIBUTIO POS										

LESSON PLAN:								
UNIT	PHYSICS FOR EVERYDAY LIFE	HRS	PEDAGOGY					
I	Spring scales – bouncing balls –roller coasters – bicycles –rockets and space travel.	6	Chalk & Talk, Videos, PPT and Demonstration					
II	Vision corrective lenses – polaroid glasses – UV protective glass – polaroid camera – colour photography – holography and laser.	6	Chalk & Talk, Videos, PPT and Demonstration					
III	Bulb – fan – hair drier – television – air conditioners – microwave ovens – vacuum cleaners	6	Chalk & Talk, Videos, PPT and Demonstration					
IV	Solar constant – General applications of solar energy – Solar water heaters – Solar Photo – voltaic cells – General applications of solar cells.	6	Chalk & Talk, Videos, PPT and Demonstration					
v	C.V.Raman, Homi Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.	6	Chalk & Talk, Videos, PPT and Demonstration					

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	Section A MCQs					
			No. of. Questions	K - Level				
СІ	CO1	K1 – K2	25	K1,K2				
AI	CO2	K1 – K2	25	K1,K2				
СІ	CO3	K1 – K2	25	K1,K2				
AII	CO4	K1 – K2	25	K1,K2				
		No. of Questions to be asked	50					
Question	Pattern	No. of Questions to be answered	50					
CIA I & II		Marks for each question	1					
		Total Marks for each section	50					

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	K Level Section A (Multiple Choice Questions)		K Level (Multiple Tota Choice Mart		% of (Marks without choice)	Consolidate of %			
	K1	30	30	60	100					
	K2	20	20	40	100					
	K3									
CIA I	K4									
	Marks	50	50	100	100					
	K1	30	30	60	100					
	K2	20	20	40	100					
CIA II	K3									
	K4									
	Marks	50	50	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course								
	Outcomes (COs)								
C No	COa	V Loual	Sect	ion A (MCQs)					
S. No	COs	K - Level	No. of Questions	K – Level					
1	CO1	K1-K2	15	K1,K2					
2	CO2	K1-K2	15	K1,K2					
3	CO3	K1-K2	15	K1,K2					
4	CO4	K1-K2	15	K1,K2					
5	CO5	K1-K2	15	K1,K2					
	No. of Qu	estions to be Asked	75						
	No. of Questi	ons to be answered	75						
	Mark	s for each question	1						
	Total Ma	rks for each section	75						
(Figu	ires in parent	hesis denotes, questi	ons should be asked	with the given K level)					

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %
K1	40	40	53	100
K2	35	35	47	100
K3				
K4				
Marks		75	100	100

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	INTRODUCTORY PHYSICS			
Course Code	23UPHFC11	L	Р	С
Category	FOUNDATION COURSE	2	-	2
COURSE OBJE	CTIVES:			1
-	lents get an overview of Physics before learning their core courses. To school curriculum and the degree programme.	serv	re as a b	oridge
UNIT - I				06
	examples for scalars and vectors from physical quantities – addition, sun and resultant of vectors – units and dimensions – standard physics cost			f
UNIT - II				06
• 1	Forces – gravitational, electrostatic, magnetic, electromagnetic, nuclear etal, centrifugal, friction, tension, cohesive, adhesive forces	– m	echanic	cal
UNIT - III				06
	energy – conservation laws of momentum, energy – types of collisions nate energy sources – real life examples	s – ai	ngular	
UNIT - IV				06
banking of a curved	linear, projectile, circular, angular, simple harmonic motions – satellite d roads – stream line and turbulent motions – wave motion – compariso e, forced, damped oscillations			and
UNIT - V				06
	hape of liquid drop – angle of contact – viscosity – lubricants – capillar properties and types of materials in daily use- conductors, insulators –			
	Total Lecture Hou	rs		30
BOOKS FOR ST	YUDY:			
	r, 2010, Elements of Properties of Matter, S.Chand and Co N. Subrahmanyam, 2003, Properties of Matter, S.Chand and Co.			
BOOKS FOR RE	EFERENCES:			
H.R. Gulati,	1977, Fundamental of General Properties of Matter, Fifth edition, S.C	Chane	d and C	o.
WEB RESOURC	EES:			
astr.gsu.e	vperphysics.phy- edu/hbase/permot2.htmlhttps://science.nasa.gov/ems esc.columbia.edu/courses/ees/climate/lectures/radia		n_hay	rs/

Nature of Course	EMPLC	YABII	LITY		SKILL OR	IENTED	~	ENTRE)	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	
Changes Made in the Course	Percentage of Change			No Changes Made				New Course	✓	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	E OUTC	OMES:							K	LEVEL	
After stu	udying this	course, th	ne student	s will be a	ble to:						
CO1	Apply concept of vectors to understand concepts of Physics and solve problems									K1, K2	
CO2	to these d	Appreciate different forces present in Nature while learning about phenomena related to these different forces.									
CO3	Quantify	energy in c	lifferent pr	ocess and	relate mom	entum, ve	locity and	energy	K	K1, K2	
CO4	Differentiate different types of motions they would encounter in various courses and understand their basis										
CO5		arious prop physical pa	-		ith their b	ehaviour	and conne	ect them	with K	K1 , K2	
MAPPI	NG WITH	PROGR	AM OUT	COMES:							
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3	3	3	3	3	3	3	2	3	2	
CO2	2	3	3	3	2	3	3	2	2	2	
CO3	3	3	3	2	3	3	3	2	3	2	
CO4	3	3	3	3	3	3	3	2	2	2	
CO5	3	2	3	3	3	3	3	2	2	3	
3	B - STRO	NG			2 – ME	IUM			1 - LO	W	
CO / P	O MAPPI	NG:									
C	DS	PSO1	.]	PSO2	PSO	03	PSO ₂	1	PSO	PSO5	
CC	01	3		1	3		-		2		
CC) 2	3		1	3		-		2		
CC	CO 3 2			1	3		-		2		
CO 4 2		2		1	3		-		3		
CC) 5	2		1	3	<u> </u>			2		
WEI	ſAGE										
PERCE OF CO	HTED INTAGE DURSE IBUTIO										

LESSON PLAN:

UNIT	INTRODUCTORY PHYSICS	HRS	PEDAGOGY
I	Vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants	6	Chalk & Talk, Videos, PPT and Demonstration
II	Different types of forces-gravitational, electrostatic, magnetic, electromagnetic, nuclear -mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces	6	Chalk & Talk, Videos, PPT and Demonstration
III	Different forms of energy– conservation laws of momentum, energy – types of collisions –angular momentum– alternate energy sources–real life examples	6	Chalk & Talk, Videos, PPT and Demonstration
IV	Types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion –comparison of light and sound waves – free, forced, damped oscillations	6	Chalk & Talk, Videos, PPT and Demonstration
v	Surface tension – shape of liquid drop – angle of contact – viscosity – lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric	6	Chalk & Talk, Videos, PPT and Demonstration

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)

Articulation Mapping – K Levels with Course Outcomes (COs)								
			Section A					
Internal	Cos	K Level	MCQ	S				
			No. of. Questions	K - Level				
CI	CO1	K1 – K2	25	K1,K2				
AI	CO2	K1 – K2	25	K1,K2				
CI	CO3	K1 – K2	25	K1,K2				
AII	CO4	K1 – K2	25	K1,K2				
		No. of Questions to be asked	50					
Question	Pattern	No. of Questions to be answered	50					
CIA I & II		Marks for each question	1					
		Total Marks for each section	50					

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	30	30	60	100				
	K2	20	20	40	100				
	K3								
CIA I	K4								
	Marks	50	50	100	100				
	K1	30	30	60	100				
	K2	20	20	40	100				
CIA II	K3								
	K4								
	Marks	50	50	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course								
	Outcomes (COs)								
C No	COa	V Loual	Sect	ion A (MCQs)					
S. No	COs	K - Level	No. of Questions	K – Level					
1	CO1	K1-K2	15	K1,K2					
2	CO2	K1-K2	15	K1,K2					
3	CO3	K1-K2	15	K1,K2					
4	CO4	K1-K2	15	K1,K2					
5	CO5	K1-K2	15	K1,K2					
	No. of Qu	estions to be Asked	75						
	No. of Questi	ons to be answered	75						
	Mark	s for each question	1						
	Total Ma	rks for each section	75						
(Figu	ires in parent	hesis denotes, questi	ons should be asked	with the given K level)					

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

	Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	40	40	53	100				
K2	35	35	47	100				
K3								
K4								
Marks		75	100	100				
NB: Higher lev	NB: Higher level of performance of the students is to be assessed by attempting higher							
level of K levels.								

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS							
Course Code	23UPHCC21	L	Р	С				
Category	CORE PAPER	5	-	5				

COURSE OBJECTIVES:

> The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNIT - I **CALORIMETRY & LOW TEMPERATURE PHYSICS**

Specific heat capacity – specific heat capacity of gases C_P and C_V – Meyer's relation – Joly's method for determination of C_V – Regnault's method for determination of C_P

Joule-Kelvin effect – porous plug experiment – Joule-Thomson effect – Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.

UNIT - II **THERMODYNAMICS-I**

Zeroth law and first law of thermodynamics – P-V diagram – heat engine – efficiency of heat engine – Carnot's engine, construction, working and efficiency of petrol engine and diesel engines – comparison of engines.

UNIT - III THERMODYNAMICS-II

Second law of thermodynamics – entropy of an ideal gas – entropy change in reversible and irreversible processes - T-S diagram - thermodynamical scale of temperature - Maxwell's thermodynamical relations -Clasius-Clapevron's equation (first latent heat equation) – third law of thermodynamics – unattainability of absolute zero - heat death.

UNIT - IV HEAT TRANSFER

Modes of heat transfer: Conduction, convection and radiation.

Conduction: thermal conductivity – determination of thermal conductivity of a good conductor by Forbe's method – determination of thermal conductivity of a bad conductor by Lee's disc method.

Radiation: black body radiation (Ferry's method) – distribution of energy in black body radiation – Wien's law and Rayleigh Jean's law - Planck's law of radiation - Stefan's law - deduction of Newton's law of cooling from Stefan's law.

UNIT - V STATISTICAL MECHANICS

Definition of phase-space - micro and macro states - ensembles - different types of ensembles - classical and quantum Statistics – Maxwell-Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.

Total Lecture Hours

15

15

15

75

15

15

BOOKS FOR STUDY:

- > BrijlalandN. Subramaniam, 2000, Heat and Thermodynamics, S.Chandand Co.
- NarayanamoorthyandKrishnaRao, 1969,Heat,Triveni Publishers, Chennai.
- V.R.KhannaandR.S.Bedi, 1998 1st Edition, Text book of Sound, Kedharnaath Publish and Co, Meerut
- > Brijlal and N. Subramanyam, 2001, Waves and Oscillations, Vikas Publishing House, New Delhi.
- ▶ Ghosh, 1996, Text Book of Sound, S.ChandandCo.
- > R.MurugeshanandKiruthigaSivaprasath, Thermal Physics,
- S.Chandand Co.

BOOKS FOR REFERENCES:

- > J.B.Rajam and C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chandand Co. Ltd.
- > D.S.Mathur, Heat and Thermodynamics, Sultan Chand and Sons.
- > Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand and Co.
- Resnick, HallidayandWalker, 2010, Fundamentals of Physics, 6th Edition.
- Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson.

WEB RESOURCES:

- https://youtu.be/M_5KYncYNyc
- https://www.youtube.com/watch?v=4M72kQulGKkandvl=en
- Lecture 1: Thermodynamics Part 1 | Video Lectures | Statistical Mechanics
- I: Statistical Mechanics of Particles | Physics | MIT OpenCourseWare http://www.freebookcentre.net/Physics/Physics-Books-Online.html

Nature of Course	EMPLOYABILITY		✓	SKILL OR	IENTED		ENTRE	EPRENEURSHI	P	
Curriculum Relevance	LOCAL		REGI	ONAL	<i>ı</i>	NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentag	e of Ch	ange	55	No Chan	iges Made			New Course	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COUR	SE OUTCOMES:	K LEVEL					
After st	After studying this course, the students will be able to:						
C01	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity, superfluidity and Condensed Matter Physics	K1 to K4					
CO2	Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrol engines	K1 to K4					
CO3	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy	K1 to K4					

Study the process of thermal conductivity and apply it to good and bad conductors. **CO4** Quantify different parameters related to heat, relate them with various physical K1 to K4 parameters and analyse them Interpret classical statistics concepts such as phase space, ensemble, Maxwell-**CO5** Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and K1 to K4 Fermi-Dirac . Apply to quantum particles such as photon and electron

	a									
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	2	2	3	2	3
CO2	2	3	3	3	2	2	3	2	3	3
CO3	3	2	3	2	3	3	2	3	3	3
CO4	3	3	3	3	3	2	3	2	2	2
CO5	2	2	3	3	2	3	3	3	3	2
3	- STROI	NG			2 – MED	DIUM			1 - LOV	W

3 - STRONG

MAPPING WITH PROGRAM OUTCOMES:

CO / PO MAPPING:

	1			1	
COS	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	3	1	3	-	2
CO 2	3	1	3	-	2
CO 3	3	1	3	-	2
CO 4	3	1	3	-	2
CO 5	3	1	3	-	2
WEITAGE					
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS					

LESSON PLAN:

UNIT	HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS	HRS	PEDAGOGY
I	Specific heat capacity – specific heat capacity of gases C_P and C_V - Meyer's relation – Joly's method for determination of C_V – Regnault' method for determination of C_P Joule-Kelvin effect – porous plug experiment – Joule-Thomson effect – Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.	15	Chalk & Talk, Videos, PPT and Demonstration
II	Zeroth law and first law of thermodynamics – P-V diagram – heat engine – efficiency of heat engine – Carnot's engine, construction, working and efficiency of petrol engine and diesel engines – comparison of engines.	15	Chalk & Talk, Videos, PPT and Demonstration

III	Second law of thermodynamics – entropy of an ideal gas – entropy change in reversible and irreversible processes – T-S diagram – thermodynamical scale of temperature – Maxwell's thermodynamical relations –Clasius-Clapeyron's equation (first latent heat equation) – third law of thermodynamics – unattainability of absolute zero – heat death.	15	Chalk & Talk, Videos, PPT and Demonstration
IV	 Modes of heat transfer: Conduction, convection and radiation. Conduction: thermal conductivity – determination of thermal conductivity of a good conductor by Forbe's method – determination of thermal conductivity of a bad conductor by Lee's disc method. Radiation: black body radiation (Ferry's method) – distribution of energy in black body radiation – Wien's law and Rayleigh Jean's law – Planck's law of radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law. 	15	Chalk & Talk, Videos, PPT and Demonstration
v	Definition of phase-space – micro and macro states – ensembles – different types of ensembles – classical and quantum Statistics – Maxwell-Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi- Dirac statistics – expression for distribution function – comparison of three statistics.	15	Chalk & Talk, Videos, PPT and Demonstration

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal Cos		K Level	Section A MCQs		Section B Either or	Section C		
Internal	CUS	K Level	No. of. Questions	K - Level	Choice	Either or Choice		
CI	CO1	K1 – K4	2	K1, K2	K1 OR K1	K3 OR K3		
AI	CO2	K1 – K4	2	K1,K2	K2 OR K2	K4 OR K4		
CI	CO3	K1 – K4	2	K1, K2	K2 OR K2	K3 OR K3		
AII	CO4	K1 – K4	2	K1,K2	K3 OR K3	K4 OR K4		
	L	No. of Questions to be asked	4		4	4		
Quest		No. of Questions to be answered	4		2	2		
Pattern CIA I & II		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

		Dis	tribution of	Marks with	K Level	CIA I & CIA I	I
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	10	-	12	21.43	
	K2	2	10	-	12	21.43	
CIA	K3	-	-	16	16	28.57	42.86
I	K4	-	-	16	16	28.57	71.43
-	Marks	4	20	32	56	100	100
	K1	2			2	3.57	
	K2	2	10		12	21.43	-
CIA	K3		10	16	26	46.43	25.00
II	K4			16	16	28.57	71.43
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or			
S. No	COs	K - Level	No. of	K – Level	Choice) With	Choice) With			
			Questions	K – Level	K - LEVEL	K - LEVEL			
1	CO1	K1, K2	2	K1, K2	K1, K1	K2, K2			
2	CO2	K1, K2	2	K1, K2	K2, K2	K2, K2			
3	CO3	K1, K2	2	K1, K2	K2, K2	K3, K3			
4	CO4	K1, K2	2	K1, K2	K3, K3	K3, K3			
5	CO5	K1, K2	2	K1, K2	K4, K4	K4, K4			
No. of Qu	iestions to	be Asked	10		10	10			
No. of	No. of Questions to be answered				5	5			
Marks	Marks for each question				5	8			
Total Ma	Total Marks for each section		10		25	40			
	(Figu	ires in paren	thesis denotes,	questions show	uld be asked with the give	en K level)			

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	10		15	10.72	-			
K2	5	20	32	57	40.71	51.43			
K3		10	32	42	30.00	30.00			
K4		10	16	26	18.57	18.57			
Marks	10	50	80	140	100	100			
NB: Higher le levels.	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	ALL the ques	stions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Answer	• ALL the que	stions		PART – B	(5 x 5 = 25 Marks)					
11. a)	Unit - I	CO1	K1							
	OR									
11. b)	Unit - I	CO1	K1							
12. a)	Unit - II	CO2	K2							
				OR						
12. b)	Unit - II	CO2	K2							
13. a)	Unit - III	CO3	K2							
				OR						
13. b)	Unit - III	CO3	K2							
14. a)	Unit - IV	CO4	K3							
				OR						
14. b)	Unit - IV	CO4	K3							
15. a)	Unit - V	CO5	K4							
				OR						
15. b)	Unit - V	CO5	K4							

Answer A	LL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K2		
				OR	
16. b)	Unit - I	CO1	K2		
17. a)	Unit - II	CO2	K2		
				OR	
17. b)	Unit - II	CO2	K2		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K3		
				OR	
19. b)	Unit - IV	CO4	K3		
20. a)	Unit - V	CO5	K4		
				OR	
20. b)	Unit - V	CO5	K4		

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS PRACTICAL 2			
Course Code	23UPHCP21	L	Р	С
Category	CORE PRACTICAL	-	4	4
COURSE OB IEC	TIVES			

COURSE OBJECTIVES:

Apply their knowledge gained about the concept of heat and sound waves, resonance, calculate frequency of ac mains set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

SEMESTER - II LIST OF EXPERIMENTS

Minimum of Eight Experiments from the list:

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

Total Lecture Hours

45

45

BOOKS FOR STUDY:

Srinivasan.M.N., Balasubramanian.S., Ranganathan.R., A Text Book of Practical Physics, 2017 Edition, Sultan Chand & Sons

BOOKS FOR REFERENCES:

> Ouseph.C., Practical Physics and Electronics, 2013, S.Viswanathan.P.Ltd.

WEB RESOURCES:

- https://nptel.ac.in/course.html/physics/experimental physics I, II and III
- https://nptel.ac.in/courses/115/105/115105110/
- https://www.youtube.com/playlist?list=PLuiPz6iU5SQ8rZn_LgLofRX7n8z4tHYK

Nature of Course	EMPLOYABILITY				SKILL OR	ENTED \checkmark ENTREPRENEURSHIP			•		
Curriculum Relevance	LOCAL REGIO			ONAL	<i>,</i>	NATION	AL		GLOBAL	\checkmark	
Changes Made in the Course	Percentag	e of Cł	nange	80	No Chan	iges Made			New Course		

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTC	OMES:							K	LEVEL
After st	udying this	course, th	e student	s will be a	ble to:					
CO1	Remember	Remembering the Aim and apparatus used in the experiment								K1
CO2	Understand	ding of law	s and form	nulas of the	e experime	nt				K2
CO3	Applying t	he knowle	dge to do	the experin	nent					K4
CO4	Calculating	g and exam	nining the	aim of the	experiment	-				КЗ
CO5	Interpretin	g the result	t of the exp	periment						K2
	NG WITH								ir.	
CO/PC		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	3	3	1	1	2	3	3	3	1	3
CO2	3	3	2	2	2	3	3	3	1	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	2	3	3	3	3	3	1	3
C05	3	3	2	2	2	3	3	3	1	3
	3 - STRO	-			2 – MED				1 - LO	N
CO / P	O MAPPI	NG:								
C	os	PSO1		PSO2	PSC	03	PSO4	ŀ	PSO	5
C	D 1	3		2	3		-		2	
C	0 2	3		2	3		-		2	
C	D 3	3		2	3		-		2	
C	D 4	3		2	3		-		2	
C	D 5	3		2	3		-		2	
WEI'	TAGE									
PERCE OF CO CONTE	HTED ENTAGE DURSE EIBUTIO D POS									
LESSO	N PLAN:									

SEM	PRACTICAL 2	HRS	PEDAGOGY
I	 Determination of thermal conductivity of bad conductor by Lee's disc method. Determination of specific heat capacity of solid. Determination of Stefan's constant for Black body radiation. Determination of thermal conductivity of rubber tube. Velocity of sound through a wire using Sonometer. Determination of frequency of an electrically maintained tuning fork To verify the laws of transverse vibration using sonometer. Frequency of AC by using sonometer. 	45	Demonstrat ion and Video

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
InternalCosK LevelNo. of. QuestionsK - Level									
CIA-I	CO1 - CO5	K1 – K4	1 Question for Each Student	K1 – K4					
	<u>.</u>	No. of Questions to be asked	1 Question for Each Student						
-	on Pattern	No. of Questions to be answered	1						
CIA - I		Marks for each question	30						
		Total Marks for each section	30						

		Distribution of Marks with COs &	K Leve	for Correction	of CIA I		
	COs	Distribution of the work of the expe	Distribution of the work of the experiment				
	CO1	Aim and apparatus	Aim and apparatus K1				
	CO2	Formula and Tabular Column		K2	5.0		
	CO3	Understanding and Observation	K4	12.0			
CIA I	CO4	Calculation and Graph		K3	8.0		
	CO5	Interpretation of result		K2	3.0		
	Total				30		
	Marks						
		Distribution of Marks	with K	Level CIA I			
	K	Distribution of the work of the	Total	% of (Marks	ks Consolidate of %		
	Level	experiment	Marks	without choice)	Consonuate of 70		
	K1	Aim and apparatus	2	6.66			
	К2	Formula and Tabular Column Interpretation of result	8	26.67	-		
CIA	K3	Understanding and Observation	8	26.67	33.33		
Ι	K4	Calculation and Graph	12	40.00	60.00		
	Marks		30	100	100		

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Exam	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
COs	K - Level	No. of Questions	K – Level					
CO1 - CO5	K1 – K4	1 Question for Each Student	K1 – K4					
No. of Question	ons to be Asked	1 Question for Each Student						
No. of Question	is to be answered	1						
Marks for e	each question	60						
Total Marks f	or each section	60						
(E)	• 4•1	anotog avastions should be asked with the	• • • •					

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distributio	Distribution of Marks with COs & K Level for Correction of the Summative Exam								
COs	Distribution of the work of the experiment K - Level MARKS								
CO1	Aim and apparatus	K1	5						
CO2	Formula and Tabular Column	K2	10						
CO3	Understanding and Observation	K4	25						
CO4	Calculation and Graph	K3	15						
CO5	Interpretation of result	K2	5						
Total Marks			60						

	Distribution of Marks w	ith K Lev	vel	
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %
K1	Aim and apparatus	5	8.33	-
K2	Formula and Tabular Column, Interpretation of result	15	25.00	8.33
K3	Understanding and Observation	25	41.67	33.33
K4	Calculation and Graph	15	25.00	75.00
Marks		60	100	100
NB: Higher	level of performance of the students is to be asses	sed by att	empting high	er level of K
levels.				

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ALLIED MATHEMATICS - II		
Course Code	23UMTEA21 L	Р	С
Category	ELECTIVE 5	-	4
COURSE OBJEC	TIVES:	-	-
 functions, part To gain know To acquire th Basic knowle 	s designed for the students to expose the topics such as expansions of trigo tial differential equations, and integration. vledge of expansions of trigonometric functions. he knowledge of solving partial differential equations. edge of vector calculus. hd and carry out the calculations of a given set of data	nometri	с
UNIT – I TRIGO	ONOMETRY		15
and inverse hyperbol	θ , cos n θ , sinn θ , cosn θ , tann θ – Expansions of sin θ , cos θ , tan θ in terms of lic functions – Logarithms of complex numbers.	ềθ – Hyj	-
UNIT – II PARTI	IAL DIFFERENTIAL EQUATION		15
Formation-complete i	integrals and general integrals-Four standard types-Lagrange's equation.		
UNIT - III VECT	OR DIFFRENTIATIO		15
	rivative of a vector function- Scalar and vector point functions- Gradient of irectional derivatives –Unit vector normal to a surface– angle between the		-
UNIT – IV VECT	OR INTEGRATION		15
Green's theorem in th	he plane- Gauss divergence theorem- Stoke's theorem [without proofs].		
UNIT - V FINIT	E DIFFERENCE		15
	between Δ , ∇ and E – Interpolation – Newton – Gregory forward & backy grange's interpolation formula for unequal intervals(without proof).	ward for	mulae

BOOKS FOR STUDY:

P. Duraipandian and S. Udayabaskaran(1997), "Allied Mathematics", Vol I & II. Chennai: Muhil Publishers.

Unit-I: Chapter 6 (6.1,6.1.1-6.1.3,6.2,6.2.1-6.2.3,6.3,6.4), Vol I,

Unit-II: Chapter :6 (6.1,6.1.1,6.2,6.3,6.4), Vol II,

Unit-III Chapter 8 - (8.1,8.1.1,8.2,8.3,8.3.1,8.3.2,8.4,8.4.1,8.4.2,8.4.3,8.4.4), Vol I,

Unit-IV: Chapter 8 - (8.6.1 - 8.6.3), Vol I,

Unit-V: Chapter 5 - (5.1,5.2) Vol II

BOOKS FOR REFERENCES:

- S.P.Rajagopalan and R.Sattanathan(2005), "Allied Mathematics", Vol I & II. New Delhi: Vikas Publications.
- S.J.Venkatesan, "Allied Mathematics II", Sri Krishna Publications, Chennai.
- P. R. Vittal (2003), "Allied Mathematics", Margham Publications, Chennai.
- P.Kandhasamy, K. Thilagavathy (2003), "Allied Mathematics" Vol I & II, New Delhi: Tata McGraw Hill.
- P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences & Numerical Analysis, S. Chand & Company Ltd., New Delhi-55.

WEB RESOURCES:

- https;//www.mathwarehous.com/
- https://www.mathhelp.com/
- https://www.mathsisfun.com/

Nature of Course	EMPLOYABILITY				SKILL ORIENTED			ENTRE	PRENEURSHIP		
Curriculum Relevance	LOCAL		REGI	ONAL	✓	NATION	IAL		GLOBAL		
Changes Made in the Course	Percentag	e of Ch	lange		No Char	nges Made			New Course		
* Treat	200/ 00 00	-li4	(20*5_	1000/)	and color	lata tha mana		of cham	a for the cour		

Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTC	OMES:							ľ	K LEVEL		
After st	udying this	course, th	ne student	s will be a	ble to:							
CO1	hyperbolic	and invers	se hyperbo	olic function	ns.		y out prob			K1 to K4		
CO2							nd develops ng roots o			K1 to K4		
CO3	Demonstra	ate knowled	dge of solv	ving proble	ms involvi	ng vector	and scalar f	unctions.	I	K1 to K4		
CO4	Carry out o	calculation	s of proble	ems related	to vector i	ntegration	1		I	K1 to K4		
CO5	Evaluate fi	inite differe	ences usin	g various ii	nterpolation	n methods			I	X1 to K4		
MAPPI	NG WITH	PROGR	AM OUI	COMES:								
CO/PO	D PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	2	1	3	3	2	3						
CO2	2	2	2	3	2	3						
CO3	3	2	2	3	1	1						
CO 4	1	2	2	1	2	3						
CO5		2	2	1	2	3						
	S- STRON	IG			M – MED	IUM			L - LC	W		
CO / P	O MAPPI	NG:			_							
С	os	PSO1		PSO2	PSC	03	PSO4	•	PS	05		
C	D 1	3		2	1							
C	02	3		2	1							
C	03	3		2	1							
C	04	3		2	1							
C	05	3		2	1							
WEIG	HTAGE	15		10	5							
PERCE OF CONTE	HTED ENTAGE OURSE RIBUTIO D POS	3		2	1							
LESSO	N PLAN:											
UNIT	ALLIED MATHEMATICS –II F									DAGOGY		
I	Expansion cosθ, tanθ Logarithm	in terms of	fθ – Hype	rbolic and				15		halk & Talk		
II	Formation Lagrange's	-complete			integrals-F	our stand	ard types-	15		halk & Talk		

III	Vector functions- Derivative of a vector function- Scalar and vector point functions- Gradient of a scalar point function-Gradient- Directional derivatives –Unit vector normal to a surface– angle between the surfaces-divergence, curl	15	Chalk & Talk
IV	Green's theorem in the plane- Gauss divergence theorem- Stoke's theorem [without proofs].	15	Chalk & Talk
v	Operator E, Relation between Δ , ∇ and E – Interpolation – Newton – Gregory forward & backward formulae for interpolation- Lagrange's interpolation formula for unequal intervals(without proof).	15	Chalk & Talk

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	K Level	Section MC(Section B Either or	Section C Either or Choice					
Internur		I Level	No. of. Questions	K - Level	Choice						
CI	CO1	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)					
AI	CO2	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)					
CI	CO3	K1 – K4	K1 – K4 2 K1,K2 2(K		2(K2,K2)	2(K3,K3)					
AII	CO4	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)					
	1	No. of Questions to be asked	4		4	4					
Quest Patte		No. of Questions to be answered	4		2	2					
CIA I		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					

		Dis	tribution of	Marks with	K Level	CIA I & CIA I	I
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2			2	3.6	25
	K2	2	10		12	21.4	
CIA	K3		10	16	26	46.4	46.4
I	K4			16	16	28.6	28.6
-	Marks	4	20	32	56	100	100
	K1	2			2	3.6	7.2
	K2	2	10		2	3.6	1.2
CIA	K3		10	16	26	46.4	46.4
II	K4			16	26	46.4	46.4
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exam	nination – B	lue Print Artic	culation Map	ping – K Level with Co	ourse Outcomes (COs)	
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or	
S. No	Cos	K - Level	No. of Questions	K – Level	Choice) With K - LEVEL	Choice) With K - LEVEL	
1	CO1 K1 – K4		2	K1,K2	2(K2,K2)	2(K3,K3)	
2	CO2 K1 – K4		2	K1,K2	2(K3,K3)	2(K4,K4)	
3	CO3	K1 – K4	2	K1,K2	2(K2,K2)	2(K3,K3)	
4	CO4	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)	
5	CO5	K1 – K4	2	K1,K2	2(K3,K3)	2(K4,K4)	
No. of Qu	estions to	be Asked	10		10	10	
	No. of Questions to be answered		10		5	5	
Marks	Marks for each question		1		5	8	
Total Ma	rks for ea	ach section	10		25	40	
	(Figu	ires in parent	thesis denotes,	questions show	uld be asked with the give	en K level)	

		Distrib	oution of Mar	ks with H	K Level	
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.6	4
K2	5	20		25	17.8	18
K3		30	32	62	44.3	44
K4			48	48	34.3	34
Marks	10	50	80	140	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer AI	L the questic	ons	I	PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Answei	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
				OR	
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
				OR	
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
				OR	
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
				OR	
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
				OR	
15. b)	Unit - V	CO5	K3		

Answer .	ALL the quest	ions		PART – C	(5 x 8 = 40 Marks)
16. a)	Unit - I	CO1	K3		
				OR	
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
				OR	
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
				OR	
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
				OR	
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
	·			OR	
20. b)	Unit - V	CO5	K4		

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS OF MEDICAL INSTRUMENTS			
Course Code	23UPHNM21	L	Р	С
Category	NON MAJOR ELECTIVES (NME)	2	-	2
COUDSE OD IE				

COURSE OBJECTIVES:

> The students will be exposed to instruments like ECG,EEG,EMG, medical imaging, diagnostic specialties, operation theater and its safety which will kindle interest to specialize in instrument servicing.

UNIT - I BIO-POTENTIALS AND ELECTRODES

Transport of ions through cell membrane- resting and action potential - Characteristics of resting potential – bio-electric potential – design of medical instruments – components of bio-medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.

UNIT - II BIO-POTENTIAL BASED INSTRUMENTATION

Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up (qualitative) – Electroencephalography (EEG) – origin of EEG – action and evoked potentials - brain waves – block diagram of modern EEG set up – electromyography (EMG) – block diagram of EMG recording setup.

UNIT - III OPERATION THEATRE AND SAFETY, RADIATION SAFETY

Diathermy – block diagram of the electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy – ventilators – servo controlled systems

Units of radiation - pocket dosimeter – pocket type radiation alarm – thermo-luminescence dosimeter.

UNIT - IV MEDICAL IMAGING

Nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.

UNIT - V DIAGNOSTICS AND SPECIALITIES, LASER IN MEDICINE

X-rays in radiography – fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination (*problems*).

Laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with their operation (qualitative).

Total Lecture Hours

```
Academic Council Meeting Held On 20.04.2023
```

06

06

06

06

30

06

BOOKS FOR STUDY:

- > Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015
- Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992
- Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987
- Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985
- Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015

BOOKS FOR REFERENCES:

Handbook of Biomedical Instrumentation, Dr R. S. Khandpur, 3rd Edition, McGraw Hill Education (India) Private Limited, 2014

WEB RESOURCES:

- https://libguides.msoe.edu/biomedical-engineering-resources
- https://web.mei.edu/access?rackid=F801026&FilesData=Introduction-To-Biomedical-Instrumentation.pdf
- https://www.cambridge.org/highereducation/books/introduction-tobiomedicalinstrumentation/F69C6825BABA2590E066CA68193BAC37/resources/instruc tor-resources/808B5A075C2A2AC10B8EC1F08B55D34F

Nature of Course	EMPLC	OYABIL	JTY		SKILL OR	IENTED	~	ENTRE			
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL		
Changes Made in the Course	Percentag	e of Ch	ange		No Chan	ges Made			New Course	~	

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	E OUTCO	OMES:							K	LEVEL						
After stu	dying this	course, th	e students	s will be al	ole to:											
CO1	Remembe and radiog	U	ncepts of c	cell membr	ane, comp	onents of l	bio medica	l instrumer	its F	^S K1 , K2						
CO2	Understan	ding the p	rinciples of	f bio poten	tial electro	des and ra	diation safe	ety	ŀ	K1, K2						
CO3	Applying the characteristics of bio electric potential, cardiac action potential, ultrasonic imaging systems and X- rays															
CO4	Analyzing the micro electrodes, electro surgical diathermy and CT scanner															
CO5	-		solutions RI princip		lectrode, E	EMG record	ding, thern	10	ŀ	K1 , K2						
MAPPI	NG WITH	PROGR	AM OUT	COMES:												
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10						
CO1	3	3	3	3	3	3	3	2	3	2						
CO2	2	3	3	3	2	3	3	2	2	2						
CO3	3	3	3	2	3	3	3	2	3	3 2						

CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3
3 - STRONG 2 – MEDIUM 1 - LOV								W		
CO / PO	MAPP	ING:								
CO	s	PSO1	L	PSO2	PS	03	PSO4	4	PSC	5
СО	1	3		1	3	3	-		2	
со	2	3		1	3	3	-		2	
СО	3	2		1	3	3	-		2	
СО	4	2		1	3	3	-		3	
CO	5	2		1	3	3			2	
WEITA	AGE									
WEIGH PERCEN OF COU CONTRII N TO I	ITAGE URSE BUTIO									

LESSON PLAN:

UNIT	PHYSICS OF MEDICAL INSTRUMENTS	HRS	PEDAGOGY
I	Transport of ions through cell membrane- resting and action potential - Characteristics of resting potential – bio-electric potential – design of medical instruments – components of bio-medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.	6	Chalk & Talk, Videos, PPT and Demonstration
п	Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up (qualitative) – Electroencephalography (EEG) – origin of EEG – action and evoked potentials - brain waves – block diagram of modern EEG set up – electromyography (EMG) – block diagram of EMG recording setup.	6	Chalk & Talk, Videos, PPT and Demonstration
III	Diathermy – block diagram of the electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy – ventilators – servo controlled systems Units of radiation - pocket dosimeter – pocket type radiation alarm – thermo-luminescence dosimeter.	6	Chalk & Talk, Videos, PPT and Demonstration
IV	Nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.	6	Chalk & Talk, Videos, PPT and Demonstration
v	X-rays in radiography – fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination (problems). Laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with their operation (qualitative).	6	Chalk & Talk, Videos, PPT and Demonstration

Ar	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal	Cos	K Level	Section A MCQs					
			No. of. Questions	K - Level				
CI	CO1	K1 – K2	25	K1,K2				
AI	CO2	K1 – K2	25	K1,K2				
СІ	CO3	K1 – K2	25	K1,K2				
AII	CO4	K1 – K2	25	K1,K2				
		No. of Questions to be asked	50					
Question	Pattern	No. of Questions to be answered	50					
CIAI	& II	Marks for each question	1					
		Total Marks for each section	50					

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	30	30	60	100					
	K2	20	20	40	100					
	K3									
CIA I	K4									
	Marks	50	50	100	100					
	K1	30	30	60	100					
	K2	20	20	40	100					
CIA II	K3									
	K4									
	Marks	50	50	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course									
	Outcomes (COs)									
C No	COa	V Loval	Sect	ion A (MCQs)						
S. No	COs	K - Level	No. of Questions	K – Level						
1	CO1	K1-K2	15	K1,K2						
2	CO2	K1-K2	15	K1,K2						
3	CO3	K1-K2	15	K1,K2						
4	CO4	K1-K2	15	K1,K2						
5	CO5	K1-K2	15	K1,K2						
	No. of Qu	estions to be Asked		75						
	No. of Questi	ons to be answered		75						
	Mark	s for each question	1							
L	Total Marks for each section 75									
(Figu	ires in parent	hesis denotes, questi	ons should be asked	with the given K level)						

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	40	40	53	100				
K2	35	35	47	100				
K3								
K4								
Marks		75	100	100				
NB: Higher level of performance of the students is to be assessed by attempting higher								

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

RESEARCH CENTRE OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	FUNDAMENTALS OF ASTROPHYSICS								
Course Code	23UPHSC21 L P								
Category	ABILITY ENHANCEMENT COMPULSORY COURSE (AECC) 2								
This course evolution of	CTIVES: (TANSCHE) intends to introduce principles of astrophysics describing the science stars and interpretation of various heavenly phenomena and provide cal nature of celestial bodies along with the instrumentation and tect I research	de an ur	Iderstan	ding					
UNIT - I MOI	DERN ASTROPHYSICS			06					
	tronomy - celestial sphere - Geo centric theory - Helio centric theor Newton;s law of gravitation - Planets - Asteroids - Comets - Meteor	• •	oler's lav	<i>w</i> of					
UNIT - II AST	RONOMICAL INSTRUMENTS			06					
	in space - Arc and Time units - Local time - Standard time - Eleme - Kinds of optical telescope - reflecting and refracting telescope - I		-						
UNIT - III SOL	AR PHYSICS			06					
Physical properties flares - space weath	of Sun - Structure of Sun - Sun spots - Sun spots - Auroras - Solar er effects	promin	ence an	d					
UNIT - IV STE	LLAR PHYSICS			06					
	rs under spectral classes - H-R diagram – luminosity of a star – ste – white dwarfs – black holes – supernovae.	llar evo	lution -						
UNIT - V GAL	AXIES			06					
Galaxy nomenclatu Supernova explosio	res - types of galaxies – Milky way galaxy - star clusters – galactic on.	cluster	s, Pulsa	rs -					
	Total Lecture H	ours		30					
 BOOKS FOR RI Baidyanath I New Delhi K.S.Krishna Delhi. 	n to Astrophysics, Dr.A.Mujiber Rahman, First Edition, KAMS Pul EFERENCES: Basu, (2001). <u>An introduction to Astrophysics</u> , Second printing, Prentice swamy, (2002), <u>Astrophysics – a modern perspective</u> , New Age Internat S. and Madhusudan, H.R.,(1999), <u>Eclipse: A Celestial Shadow Pla</u>	– Hall o ional (F	f India (?) Ltd, 1	P) Ltc New					
WEB RESOURC									
https://byjushttps://www	s.com/question-answer/how-physics-affect-our-daily-life/ v.orchidsinternationalschool.com/blog/child-learning/physics-in-eve du.in/blog/application-of-physics-in-daily-life/	eryday-	life						

https://tws.edu.in/blog/application-of-physics-in-daily-life/
 https://sciencing.com/applications-physics-everyday-life-8637595.html

Nature of Course	EMPLOYABILITY		EMPLOYABILITY SKILL ORIENTED		√	ENTRE	PRENEURSH	P		
Curriculum Relevance	LOCAL		REGI	ONAL	1	NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentag	ge of Ch	nange		No Chan	iges Made			New Course	~

* Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTCO	OMES:							K	LEVEL		
After stu	udying this	course, th	e student	s will be al	ble to:							
CO1	Understan water heat	F	K1 , K2									
CO2	Recollecti	ng the prin	ciples of b	bicycles, pł	notography	, televisior	n and solar	cells	F	K1, K2		
CO3	Comprehe	Comprehend basic concept of laser, vacuum cleaner, voltaic cell and space travel K1 , K2										
CO4	Articulate	the knowl	edge abou	t holograpł	ny, air-con	ditioners a	nd solar co	onstant	ŀ	K1,K2		
CO5	Interpret the solar cells		solutions	of UV prot	tective glas	s, applicat	ions of sol	ar energy a	und F	K1 , K2		
MAPPI	NG WITH	PROGR	AM OUT	COMES :								
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	3	3	3	3	3	3	3	2	3	2		
CO2	2	3	3	3	2	3	3	2	2	2		
CO3	3	3	3	2	3	3	3	2	3	2		
CO4	3	3	3	3	3	3	3	2	2	2		
C05	3	2	3	3	3	3	3	2	2	3		
3	3 - STROI	NG		· ·	2 - MED	DIUM		1	1 - LO	W		
CO / P	O MAPPI	NG:	1					1				
C	os	PSO1]	PSO2	PSC	03	PSO ₂	1	PSO	5		
CC	D 1	3		1	3		-		2			
CC	02	3		1	3		-		2			
CC	03	2		1	3		-		2			
CC) 4	2		1	3		-		3			
CC	05 2 1 3						2					
WEI'	FAGE											
PERCE OF CO CONTR	HTED NTAGE DURSE RIBUTIO POS											

LESSO	LESSON PLAN:							
UNIT	FUNDAMENTALS OF ASTROPHYSICS	HRS	PEDAGOGY					
I	Birth of modern Astronomy - celestial sphere - Geo centric theory - Helio centric theory - Kepler's law of planetary motion - Newton;s law of gravitation - Planets - Asteroids - Comets - Meteors.	6	Chalk & Talk, Videos, PPT and Demonstration					
п	Orientation of earth in space - Arc and Time units - Local time - Standard time - Elements of telescope - Properties of image - Kinds of optical telescope - reflecting and refracting telescope - Radio telescope - Spectrograph	6	Chalk & Talk, Videos, PPT and Demonstration					
III	Physical properties of Sun - Structure of Sun - Sun spots - Sun spots - Auroras - Solar prominence and flares - space weather effects	6	Chalk & Talk, Videos, PPT and Demonstration					
IV	Classification of stars under spectral classes - H-R diagram – luminosity of a star – stellar evolution - Chandrasekar limit – white dwarfs – black holes – supernovae.	6	Chalk & Talk, Videos, PPT and Demonstration					
v	Galaxy nomenclatures - types of galaxies – Milky way galaxy - star clusters – galactic clusters, Pulsars - Supernova explosion.	6	Chalk & Talk, Videos, PPT and Demonstration					

Art	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
Internal	Cos	K Level	Section MCQ					
			No. of. Questions	K - Level				
CI	CO1	K1 – K2	25	K1,K2				
AI	CO2	K1 – K2	25	K1,K2				
CI	CO3	K1 – K2	25	K1,K2				
AII	CO4	K1 – K2	25	K1,K2				
		No. of Questions to be asked	50					
Question 1	Pattern	No. of Questions to be answered	50					
CIAI	& II	Marks for each question	1					
		Total Marks for each section	50					

* Two Formative examinations will be conducted as a part of Continuous Internal Assessment under which, 50 MCQ's will be asked [50X1=50 marks] from any 4 CO's. (Ist Test-2 CO's & IInd Test-2 CO's) in equal weightage

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	30	30	60	100					
	K2	20	20	40	100					
	K3									
CIA I	K4									
	Marks	50	50	100	100					
	K1	30	30	60	100					
	K2	20	20	40	100					
CIA II	K3									
	K4									
	Marks	50	50	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
S. No	COs	K - Level	Section A (MCQs)				
			No. of Questions	K – Level			
1	CO1	K1-K2	15	K1,K2			
2	CO2	K1-K2	15	K1,K2			
3	CO3	K1-K2	15	K1,K2			
4	CO4	K1-K2	15	K1,K2			
5	CO5	K1-K2	15	K1,K2			
	No. of Qu	estions to be Asked	75				
	No. of Questi	ons to be answered	75				
	Mark	s for each question	1				
	Total Ma	rks for each section	75				
(Figu	(Figures in parenthesis denotes, questions should be asked with the given K level)						

In summative examinations, 75 MCQ's will be asked [75X1=75 marks] from all 5 CO's in equal weightage.

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	40	40	53	100			
K2	K2 35		47	— 100			
K3							
K4							
Marks		75	100	100			
NB: Higher level of performance of the students is to be assessed by attempting higher							
level of K levels.							