M.Sc., COMPUTER SCIENCE

Program Code: PCS

2018 - Onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

Eligibility for Admission

Candidate for admission to Master's degree course in Computer Science should have Higher Secondary (+2) level Mathematics with Bachelor's degree in Computer Science/ Information Technology or BCA of Madurai Kamaraj University or any other University recognized by the Syndicate of Madurai Kamaraj University as equivalent thereto.

Candidate should have passed the Degree with a minimum of 55% marks in Part-III. In case of SC/ST candidates, they should have passed the degree with a minimum of 50% marks in Part-III.

Duration of the course

The duration of the course shall be two academic years comprising four semesters with two semesters in each academic year.

Subjects of Study

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives

The scheme of Examination

The components for continuous internal assessment are:

Two	tests and their average	15 marks
Semi	nar /Group discussion	5 marks
Assig	gnment	5 marks
Total		25 marks

Pattern of the questions paper for the continuous Internal Assessment

(For Part III, NME & Skilled Paper in Part IV)

The components for continuous inter	rnal assessment are:	
Part –A		
Six multiple choice questions (answe	er all)	6 x01= 06 Marks
Part –B		
Two questions ('either or 'type)		2 x 07=14 Marks
Part –C		
One question out of two		1 x 10 =10 Marks
	Total	30 Marks

Pattern of the question paper for the Summative Examinati	ons:	
Note: Duration- 3 hours		
Part –A		
Ten multiple choice questions	10 x01	= 10 Marks
(No Unit shall be omitted; not more than two questions fro	m each uni	it.)
Part –B		
Five Paragraph questions ('either or 'type)	5 x 07	= 35 Marks
(One question from each Unit)		
Part –C		
Three Essay questions out of five	3 x 10	=30 Marks
(One question from each Unit)		
Total		75 Marks

Minimum Marks for a Pass

50% of the aggregate (Internal +Summative Examinations).No separate pass minimum for the Internal Examinations.34 marks out of 75 is the pass minimum for the Summative Examinations.

PROGRAMME SPECIFIC OUTCOMES

PSO1: To understand, analyze and develop software in the areas related to system software, multimedia, web design, big data analytics, networking, and algorithms for efficient design of computer-based systems of varying complexities.

PSO2: To apply standard practices and strategies in software project development using open- ended programming environments to deliver a quality product for business success.

- **PSO3:** To employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, with zest for research.
- **PSO4:** To study, experiment, interpret, analyze and explore the solutions to the real time Problems which are effective, efficient, optimized and feasible.

Study	Ι	II	III	IV	Total	Total	No.Of	Total
Component	Sem.	Sem.	Sem.	Sem.	Hrs/week	Credit	Papers	Marks
	5(4)	5(4)	5(4)	6(6)	105	78	19	1900
	5(4)	5(4)	5(4)	6(4)				
Core Subject	5(4)	5(4)	5(3)	6(4)				
	5(4)	5(3)	5(3)	12(10)				
	5(3)	5(3)						
	5(3)							
Elective	-	5(4)	4(4)	-	9	8	2	200
Non-Major	-	-	6(4)	-	6	4	1	100
Elective								
Total	30	30	30	30	120	00	22	2200
10141	(22)	(22)	(22)	(24)	120)0		2200

COURSE PATTERN

SEMESTER – I							
Subject	Subjects	No.of	Hours/	Credits	Maximum Marks		
Code		Papers	Week		Int.	Ext.	Tot.
	Core Subject						
18PCSC11	Computer System	1	5	4	25	75	100
	Architecture						
18PCSC12	Wireless Communications	1	5	4	25	75	100
18PCSC13	Advanced Data Structures	1	5	4	25	75	100
18PCSC14	Relational Data Base	1	5	4	25	75	100
101 CSC 14	Management System	1					
	Advanced Data Structures –	1	5	2	40	60	100
IorCSCFI	Lab	1	5	3			
10000000	Visual Programming and	1	5	2	40	60	100
10FCSCF2	RDBMS – Lab		5	5	40	00	100
	Total	6	30	22	180	420	600

SEMESTER	– II						
Subject	Subjects	No. of	Hours/	Credita	Maximum Marks		
Code	Subjects	Papers	Week	Creans	Int.	Ext.	Tot.
18PCSC21	Core Subject Resource Management Techniques	1	5	4	25	75	100
18PCSC22	Distributed Operating System	1	5	4	25	75	100
18PCSC23	Advanced Java Programming	1	5	4	25	75	100
18PCSCP3	Linux and Shell Programming – Lab	1	5	3	40	60	100
18PCSCP4	Advanced Java Programming – Lab	1	5	3	40	60	100
	Elective Subject - I						
	(Any one from List-A)						
	List A	1	5	4	25	75	100
18PCSE21	Cloud Infrastructure and	_	_				
	Services						
18PCSE22	Software Testing and Quality						
	Assurance						
18PCSE23	Digital Image Processing						
18PCSE24	Mobile Computing						
	Total	6	30	22	180	420	600

SEMESTE	R - III						
Subject		No. of	Hours/	Credits	Max	imum	
Code	Subjects	Paners	Week		Marks		
Couc		1 apers	WEEK		Int.	Ext.	Tot.
18PCSC31	Soft Computing	1	5	4	25	75	100
18PCSC32	Analysis of Algorithm	1	5	4	25	75	100
19000005	Design and Analysis of	1	5	2	40	(0)	100
TOPUSUPS	Algorithms - Lab	1	5	3	40	60	100
18PCSCP6	Web Programming – Lab	1	5	3	40	60	100
	Elective Subject						
	<u>Elective –II</u>						
	(Any one from List-B)						
	List B						
18PCSE31	Big Data Analytics	1	4	4	25	75	100
18PCSE32	Information Security						
18PCSE33	Computational Intelligence						
18PCSE34	Data mining and						
	Warehousing						
18PCSN31	Multimedia Lab	1	6	4	40	60	100
	TOTAL	6	30	22	195	405	600
SEMESTE	R - IV	1		•		1	
Subject		No. of	Hours/		Max	imum	
Codo	Subject		Wook	Credits	Marks		
Coue		1 apers	VV CCK		Int.	Ext.	Tot.
18PCSC41	Internet of Things	1	б	5	25	75	100
18PCSCP7	Python Programming Lab	1	б	4	40	60	100
18PCSPR1	Project Work and Viva-Voce	1	18	15	40	60	100
	TOTAL	3	30	24	105	195	300

Programme: M.Sc (CS)Semester: ISub code: 18PCSC11

Part III: Core Hours : 05 Credits: 04

COMPUTER SYSTEM ARCHITECTURE

Course Outcomes:

CO1: To understand the basic structure and operation of digital computer and hardware-software interface.

CO2: To familiarize with arithmetic and logic unit and implementation of fixed Point and floating-point arithmetic operations and hierarchical memory system including cache memories and virtual memory.

CO3: To expose with different ways of communicating with I/O devices and standard I/O interfaces and the concept of pipelining.

CO4: To provide the skill about the basic architecture of the computer

Unit-I:

the

Digital Logic Circuits: Digital Computers- Logic Gates- Boolean Algebra- Map Simplification- Combinational Circuits- Flip flops- Sequential Circuits- Digital Components: Integrated Circuits- Decoders-Multiplexers-Registers-Binary Counters.

Unit- II:

Data Representation: Data types – Complements-Fixed Point and Floating Point Representation-Other Binary Codes- Error Detection Codes-Basic Computer Organisation and Design: Instruction Codes – Computer Registers – Computer Instructions – Timing and Control – Instruction Cycle – Memory Reference Instructions – Input-Output and Interrupt.

Unit- III:

Micro - programmed Control: Control Memory-Address Sequencing-Central processing unit: General Register and Stack Organizations- Instruction Formats - Addressing Modes- Data Transfer and Manipulation - Program Control.

Unit-IV:

Pipeline and Vector Processing: Parallel Processing-Pipelining- Arithmetic and Instruction Pipeline-Computer Arithmetic: Addition and subtraction, Multiplication and Division algorithm-Floating Point Arithmetic Operations.

Unit-V:

Input-Output Organization: Peripheral Devices – Input Output Interface - Asynchronous Data Transfer - Modes of Transfer -Priority Interrupt - Direct Memory Access –Input Output Processor - Serial Communication-Memory Organization: Memory Hierarchy - Main Memory - Auxiliary Memory – Associative Memory- Cache Memory-Virtual Memory.

Text Book:

1. M. Morris Mano, **Computer System Architecture**, 3rd Edition, Prentice Hall India, New Delhi, 2007.

Chapter 1 (Full)
Chapter 2 Section: 2.1 to 2.4, 2.6
Chapter 3 (Full)
Chapter 5 Section: 5.1 to 5.7
Chapter 7 Section : 7.1 to 7.2
Chapter 8 Section : 8.1 to 8.7
Chapter 9 Section 9.1 to 9.4
Chapter 10 Section 10.1 to 10.5
Chapter 11 (Full)
Chapter 12 Section 12.1 to 12.6

Reference Book(s):

- V.CarlHamacher, Zvonko, G.Vranesic.Safwat, G.Zaky, Computer Organization, 4th Edition, Mcgraw Hill, New Delhi, 2002.
- V. Raja Raman, T. Radhakrishnan, Digital Logic and Computer Organization, PHI, New Delhi, 2009.
- 3. Dr. S.P.S. Saini, Computer System Architecture and Organization, 2nd Edition, SK Kataria and Sons, 2012.

Programme: M.Sc (CS)Semester: ISub code: 18PCSC12

Part III : Core Hours : 05 Credits : 04

WIRELESS COMMUNICATIONS AND NETWORKS

Course Outcomes:

CO1: To be familiar with the transmission media and tools.

CO2: To study the functions of OSI layers.

CO3: To learn about IEEE standards in computer networking and also familiarized with different protocols and network components.

CO4: To provide the skill on wireless communications and networks and support for employability.

Unit – I:

Technical Background: Transmission fundamentals – Signals for Conveying Information – Analog and Digital Data Transmission – Channel capacity – Transmission media – Multiplexing. Communication Networks: LANs, MANs and WANs – Switching techniques – Circuit Switching – Packet Switching – ATM. Protocols and TCP/IP suite: The Need for Protocol Architecture – TCP/IP Protocol Architecture – OSI Model - Internetworking.

Unit – II:

Wireless Communication Technology: Cellular Wireless Networks – Principles of cellular Networks – First-Generation Analog – Second Generation TDMA – Second Generation CDMA - Third Generation Systems. Multiple Access in Wireless System: Multiple Access Scheme – Frequency Division Multiple Access – TDMA – CDMA – SDMA. Packet Radio Access – Multiple Access with Collision Avoidance.

Unit - III:

Wireless Networking: Satellite Communications: Satellite parameters and Configurations – Frequency Division – Capacity Allocation - Time Division. Wireless Mobile IP and Wireless Application Protocol: Mobile IP – WAP.

Unit – IV:

Wireless LANS: Overview – Infrared LANs – Spread Spectrum LANs – Narrowband Microwave LANs. Wi-Fi and IEEE 802.11: IEEE 802 Architecture – IEEE 802.11 Architecture and Services – IEEE 802.11 Medium Access Control - IEEE 802.11 Physical Layer – Other IEEE 802.11 Standards - Wi-Fi Protected Access.

Unit – V:

Bluetooth and IEEE 802.15: Overview – Radio Specification – Baseband Specification – Link manager Specification – Logical Link Control and Adaptation protocol – IEEE 802.15.538

Text Book:

1. William Stallings, Wireless Communications & Networks, Pearson, New Delhi, 2009.

Unit I : Chapter 2 to Chapter 4 (Full)

Unit II : Chapter 5 and 9 (Full)

Unit III : Chapter 10 and 12 (Full)

Unit IV: Chapter13 and 14 (Full)

Unit V : Chapter 15.

Reference Book(s):

- Behrouz Forouzan, Data Communications and Networking, 4th Edition, TMH, New Delhi, 2012.
- 2. S. Achyut Godbole, Data Communications and Networks, TMH, New Delhi, 2007.
- 3. Gary J. Mullett, Introduction to Wireless Telecommunications Systems and Networks, 1st Edition, Cengage Learning, New Delhi, 2006.

Programme	: M.Sc (CS)	Part III	: Core
Semester	: I	Hours	: 05
Sub code	: 18PCSC13	Credits	:04

ADVANCED DATA STRUCTURES

Course Outcomes:

CO1: To study various data structure concepts like Stacks, Queues, Linked List, Trees and Graphs.

CO2: To be familiar with utilization of data structure techniques in problem solving.

CO3: To have a comprehensive knowledge of data structures.

CO4: To provide the skill in advanced data structures.

Unit –I:

Introduction and Overview: Definition – Concept of Data Structures – Overview of Data Structures – Implementation of Data Structures. Arrays: Definition – Terminology – One dimensional array – Multidimensional arrays.

Unit –II:

Linked List: Definition – Single linked list – Circular Linked list – Double Linked lists – Circular Double Linked List – Applications of Linked Lists.

Unit –III:

Stacks: Introduction – Definition – Representation of a stack – Operations on stacks – Applications of stacks. Queues: Introduction – Definition – Representation of Queues – Various Queue Structures – Application of Queues.

Unit –IV:

Trees: Basic Terminologies – Definition and Concepts – Representation of Binary Tree – Operations on a Binary Tree – Types of Binary Trees – B Trees. Graph: Introduction – Graph Terminologies – Representation of Graphs – Operations on Graphs - Application of Graph Structure.

Unit –V:

Sorting: Basic Terminologies – Sorting Techniques – Sorting by insertion: Straight Insertion sort – Sorting by Selection: Straight selection sort – Sorting by Exchange: Bubble sort – Sorting by Distribution: Radix sort – Sorting by Merging: Merge Sort. Searching: Basic Terminologies – Linear search Techniques: Linear search with Array – Binary Search – Non-linear search Techniques: Binary tree searching.

Text Books:

1. Debasis Samanta, Cl	lassic Data Structures,	2 nd Edition,	PHI, New Delhi, 201	13.
------------------------	-------------------------	--------------------------	---------------------	-----

Unit I :	Chapter 1 (Full)
	Chapter 2 (Full)
Unit II :	Chapter3:(Full)
Unit III :	Chapter 4 (Full)
	Chapter 5 (Full)
Unit IV:	Chapter 7: Section – 7.1 to 7.5, 7.7
	Chapter 8; Section -8.1 to 8.5
Unit V:	Chapter 10: Section – 10.1, 10.2, 10.3.1, 10.4,1, 10.5.1, 10.6.1, 10.7.3
Chapter 11: S	ection – 11.1, 11.2.1, 11.2.4, 11.3.1

Reference Book(s):

- Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Fundamentals of Computer Algorithms, 2nd Edition, Universities Press, New Delhi, 2007.
- Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Data Structure using C and C++, Second Edition, PHI, New Delhi, 2006.
- A.A.Puntambekar, Advanced Data Structures and Algorithms, 1st Edition, Technical Publications, Pune, 2008

Programme: M.Sc (CS)Semester: ISub code: 18PCSC14

Part III : Core Hours : 05 Credits : 04

RELATIONAL DATABASE MANAGEMENT SYSTEM

Course Outcomes:

CO1: To study the basic concepts of database and its preliminary features.

CO2: To make the students understand the security issues in databases.

CO3: To expose the students to SQL.

CO4: To provide the skill in relational database management and supports for employability.

Unit – I:

Overview of Database Systems: Managing Data – A Historical Perspective – File Systems versus a DBMS – Advantages of a DBMS – Describing and Storing Data in a DBMS – Queries in a DBMS – Transaction Management – Structure of a DBMS – People who work with Data bases - Introduction to Database Design: Database Design and ER Diagrams – Entities, Attributes, and Entity Sets – Relationships and Relationship Sets – Additional Features of the ER Model – Conceptual Design with the ER Model - Conceptual design for large Enterprises – The Unified Modeling Language.

Unit – II:

The Relational Model: Introduction to the Relational Model – Integrity Constraints over Relations – Enforcing Integrity Constraints – Querying Relational Data - Logical Database Design: ER to Relational – Introduction to Views – Destroying /Altering Tables and Views. Relational Algebra and Calculus: Preliminaries – Relational Algebra – Relational Calculus – Expressive Power of Algebra and Calculus. SQL: Queries, Constraints, Triggers: The Forms of a Basic SQL Query – UNION, INTERSECT, and EXCEPT – Nested Queries – Aggregate Operators – Null Values – Complex Integrity Constraints in SQL- Triggers and Active Databases

Unit – III:

Overview of Storage and Indexing: Data on External Storage – File Organizations and Indexing – Index Data structures – Comparison of File Organizations – Indexes and Performance Tuning. Storing Data: Disks and Files: The Memory Hierarchy – Redundant Arrays of Independent Disk – Disk Space Management – Buffer Manager – Files of Records – Page Formats – Record Formats.

Unit – IV:

Overview of Transaction Management: The ACID Properties – Transactions and Schedules – Concurrent Execution of Transactions – Lock-Based Concurrency Control – Performance of Locking – Transaction Support in SQL – Introduction to Crash Recovery. Crash Recovery: Introduction to ARIES – The log – Other Recovery-Related Structures – The Write-Ahead Log Protocol – Check pointing - Recovering from a System Crash – Media Recovery – Other Approaches and Interaction with Concurrency Control

Unit – V:

Schema Refinement and Normal Forms: Introduction to Schema Refinement – Functional Dependencies Reasoning about FDs –Normal Forms – Properties of Decompositions - Normalization – Schema Refinement in Database Design - Other kinds of Dependencies. Physical Database Design and Tuning: Introduction to Physical Database Design – Guidelines for Index Selection – Basic Examples of Index Selection – Clustering and Indexing – Indexes that Enable of Index selection – Tools to Assist in Index Selection - Overview of Database Tuning – Choices in Tuning the Conceptual Schema – Choices in Tuning Queries and Views – Impact of Concurrency.

Text Books:

1. Raghu Ramakrishnan and Johnannes Gehrke, **Database Management Systems**,3rd Edition, Tata McGraw-Hill, New Delhi, 2014.

Unit I :	Chapter 1 Section 1.1 to 1.9
	Chapter 2 Section 2.1 to 2.7
Unit II :	Chapter 3 Section 3.1 to 3.7
	Chapter 4 Section 4.1 to 4.4
	Chapter 5 Section 5.2 to 5.8
Unit III:	Chapter 8 Section 8.1 to 8.5
	Chapter 9 Section 9.1 to 9.7
Unit IV:	Chapter16Section 16.1 to 16.7
	Chapter18 Section 18.1 to 18.8
Unit V:	Chapter 19 Section 19.1to 19.8
	Chapter 20 Section 20.1 to 20.10

Reference Book(s):

- 1. Silberschatz, Henry F.Korth, S.Sudarshan, **Database System Concepts**, 3rd Edition, Tata McGraw-Hill, New Delhi, 1997.
- 2. C. J. Date, **An Introduction to Database Systems**, 8th Edition, Pearson Education, New Delhi, 2007.

3. Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 7th Edition,

Pearson India, New Delhi, 2016.

Programme	: M.Sc (CS)	Part III	: Core
Semester	: I	Hours	: 05
Sub code	: 18PCSCP1	Credits	:03

ADVANCED DATA STRUCTURES – Lab

Course Outcomes:

CO1: To develop and practice problem solving abilities.

CO2: To understand the data structure concepts practically.

CO3: To implement data structures like Stacks Queues, Linked Lists, Trees and Graphs practically.

CO4: To provide skill about data structures.

Implement the following concept

- 1. Using Control statements
- 2. Manipulating Array
- 3. Representing String
- 4. Demonstrating Function
- 5. Write programs to implement the following using an array.

a) Stack ADT b) Queue ADT

6. Write programs to implement the following using a single linked list.

a) Stack ADT b) Queue ADT

7. Write a program to perform the following operations:

Insert an element into an Array.

Delete an element from an Array.

Search for a key element in an Array.

8. Write a program to perform the following operations on SLL.

a) Insertion. b) Deletion.

- 9. Write a program to perform the following operations on DLL.
 - a) Insertion. b) Deletion.
- 10. Write a program to perform the following operations on CLL.

a) Insertion. b) Deletion.

11. Write a program to solve the Single Source Shortest Path Problem. (Note: Use Dijkstra"s algorithm).

12. Write a program that uses non-recursive functions to traverse a binary tree in: a) Pre-order b) In-order c) Post-order 13. Write a program for sorting a given list of elements in ascending order using the following sorting methods:

a) Quick sort. b) Merge sort. c) Bubble sort. 14. Write a program for searching an element in a given list of elements using binary search.

Programme	: M.Sc (CS)	Part III	: Core
Semester	: I	Hours	: 05
Sub code	: 18PCSCP2	Credits	:03

VISUAL PROGRAMMING AND RDBMS - Lab

Course Outcomes:

- CO1: To learn write and debug programs using an IDE
- CO2 : To develop Application oriented projects and practice problem solving abilities using VB.
- CO3: To develop and practice Database concepts and to practice the database connectivity

CO4: To provide the skill about visual programming and RDBMS, supports employability in IT industry and provides entrepreneur skill

VISUAL PROGRAMMING APPLICATION

- 1. Inventory control.
- 2. Banking.
- 3. Students mark list.
- 4. Library maintenance.
- 5. Payroll.
- 6. Invoice.
- 7. Railway reservation.
- 8. College Admission.

PL/SQL Programs Using Table

- 1. Creating the Database (DDL Commands).
- 2. Manipulating and Querying the Database (DML Commands).
- 3. Using Built-in Functions.
- 4. Processing of Sub Queries.
- 5. Applying Joins.
- 6. Applying Grouping and Ordering.
- 7. Programs using Control Statements.
- 8. Programs using Exception Handling.
- 9. Programs using Triggers.
- 10. Programs using Functions.
- 11. Programs using Procedures.
- 12. Programs using Packages.

Programme Core	: M.Sc (CS)	Part III	:
Semester	: II	Hours	: 05
Sub code	: 18PCSC21	Credits	: 04

RESOURCE MANAGEMENT TECHNIQUES

Course Outcomes:

CO1: To learn to solve problems in linear programming and Integer programming.

CO2: To understand Network problems and queuing theory.

CO3: To be exposed to CPM and PERT.

CO4: To understand the Dulaity in linear programming.

Unit - I:

Operations research (OR) – Origin and development – Features of OR – Scientific method in OR – Modeling in OR – Methodology of OR – Applications of OR – Linear Programming problem – Graphical solution method – General form of LPP – Canonical and standard forms

Unit - II:

The Simplex method - Duality in Linear programming: General Primal – Dual Pair – Formulation – Matrix form - Duality and Simplex Method – Dual Simplex method.

Unit -III:

Transportation Problem: North West Corner Method – Least Cost Method – Vogel's Approximation Method – Test for optimality: MODI Method - Assignment Problem: Hungarian Method.

Unit-IV:

Network Models- Introduction and Definitions – Network notations – Minimal Spanning Tree problems – Shortest Route Problems

Unit - V:

Network scheduling: CPM and PERT – Introduction - Network basic components – Network diagrams – Critical Path Computation –Construction of the Time Schedule - Probability considerations in PERT

Text Book:

1. Kanti Swa Sultan Cha	arup, P.K. Gupta, Man Mohan, Operations Research ,17 th Edition, and and Sons, New Delhi, 2014.
Unit I :	Chapter 1 – Section : 1.1 to 1.5, 1.8, 1.10
	Chapter 3 – Section : 3.1 to 3.3
Unit II :	Chapter 4 – Section : 4.1, 4.3
	Chapter 5 – Section 5.1 to 5.5, 5.7, 5.9
Unit III :	Chapter 10 – Section 10.1 to 10.3, 10.5 to 10.10, 10.12, 10.13 Chapter 11 – Section 11.1 to 11.3
Unit IV:	Chapter 24 - Section : 24.1 to 24.5
Unit V :	Chapter 25- Section : 25.1 to 25.7

Reference Books:

- 1. Taha Hamdy.A., Operations Research an Introduction, 8th Edition, Pearson Education, New Delhi, 2011.
- R. Pannerselvam, Operations Research, 2nd Edition, PHI, New Delhi, 2010.
 V.Sundharesan, Resource Management Techniques, 1st Edition, AR Publications, Chennai, 2015.

Programme	: M.Sc (CS)
Semester	: II
Sub code	: 18PCSC22

Part III: Core Hours : 05 Credits : 04

DISTRIBUTED OPERATING SYSTEM

Course Outcomes:

CO1: To understand the structure and functions of OS.

CO2: To study I/O management, Memory Management and File System and Distributed Systems.

CO3: To understand the system level and support required for Distributed System.

CO4: To provide the skill in distributed operating system concept and supports for employability

Unit – I:

Introduction: What Operating Systems Do? - Computer-System Organization - Computer-System Architecture - Operating-System Structure - Operating-System Operations - Process Management - Memory Management - Storage Management - Protection and Security -Distributed Systems – Special Purpose Systems – Computing environment.

Unit - II:

Distributed Operating Systems: Motivation - Types of Distributed Operating Systems -Network Structure - Network Topology - Communication Structure - Communication Protocols – Robustness - Design Issues - An Example: Networking.

Unit –III:

Distributed File Systems: Background - Naming and Transparency - Remote File Access -Stateful Versus Stateless Service - File Replication - An Example - Distributed Coordination: Event Ordering - Mutual Exclusion – Atomicity - Concurrency Control - Deadlock Handling - Election Algorithms - Reaching Agreement.

Unit – IV:

Real-Time Systems: Overview - System Characteristics - Features of Real-Time Kernels -Implementing Real-Time Operating Systems - Real-Time CPU Scheduling - Multimedia Systems: What Is Multimedia? - Compression - Requirements of Multimedia Kernels - CPU Scheduling - Disk Scheduling - Network Management - An Example.

Unit –V:

The Linux System: Linux History - Design Principles - Kernel Modules - Process Management - Scheduling - Memory Management – File Systems - Input and Output – Inter process Communication - Network Structure – Security - Windows XP: History - Design Principles - System Components -Environmental Subsystems - File System - Networking - Programmer Interface.

Text Book:

 Silbersehatz A., Galwin P.B., Greg Gagne, Operating System Principles, 7th Edition, John Wiley Sons, New Delhi, 2005.

Unit I : Chapter 1 (Full)

Unit II : Chapter 14 (Full)

Unit III : Chapter 15 (Full)

Chapter 16 (Full)

Unit IV: Chapter 19 (Full)

Chapter 20 (Full)

Unit V: Chapter 21 (Full)

Chapter 22 (Full)

Reference Books:

- 1. A.S.Tanenbaum, Modern Operating System, 2nd Edition, PHI, New Delhi, 2007.
- 2. A.S.Tanenbaum, Distributed Operating System, Pearson Education, New Delhi, 2005.

3. Pradeep k Sinha, Distributed Operating System, 1st Edition, PHI Learning, New Delhi, 2009

Programme	: M.Sc (CS)	Part III	: Core
Semester	: II	Hours	: 05
Sub code	: 18PCSC23	Credits	: 04

ADVANCED JAVA PROGRAMMING

Course Outcomes:

CO1: To know about the basics of Java.

- CO2: To learn Java Applets and AWT Components.
- CO3: To work with Swings and to understand Servlet, session and cookies.
- CO4: To provide the skill in Java programming and supports for employability in IT industry.

Unit- I:

The Genesis of Java: Java's Lineage - Why java is important to Internet - Java's Magic - The Java Buzz words. An overview of Java: Object-Oriented Programming - Data types, Variables and Arrays: Simple type - Variables - Type conversion and casting - Arrays. - Operators: Arithmetic - bit wise - relational - Logical - Assignment – '?' Operator – Operator Precedence. - Control statements - Selection - Iteration - Jump statements.

Unit –II:

Introducing Classes: Class fundamentals - Declaring objects - Introducing methods - Constructors - this keyword - Garbage collection - finalize method. Inheritance: Basics - Using super - Multilevel Hierarchy - Method overriding - Abstract classes - final with inheritance. Packages and Interfaces: Packages - Access protection - Importing Packages - Interfaces. Exception Handling: Fundamentals - types - Uncaught exception - Nested try - throw - throws - finally.

Unit –III:

Multithreaded Programming: Java Thread model - Main thread - creating a thread - Multiple threads - priorities - Synchronization - I/O basics - reading/writing console - PrintWriter class - reading and writing files - The Applet class: Applet Basics - Applet Architecture - Applet Skeleton - Applet display methods - Requesting - repainting - Status window - HTML APPLET tag - Passing parameter to Applets.

Unit –IV:

Using AWT Controls, Layout managers and Menus: Control fundamentals - labels, buttons, check boxes, choice controls, lists, scroll bar, textfield, textarea, layout manager, menubars and menus, dialog boxes - Handling events using AWT components. A tour of Swing: JApplet – Icons and Labels – Buttons – Combo Boxes – Trees – Exploring Swing.

Unit –V:

Java Beans: What is a Java Bean? – Advantages of Java Bean – Application Builder Tools – BDK – JAR Files – Introspection – Developing simple Bean Using BDK – Using Bound Properties – Using BeanInfo Interface – JavaBean API. Servlets: Background – Lifecycle of servlet – Simple servlet – The Servlet API – javax.servlet package – Reading servlet parameters – javax.servlet.http package – Handling HTTP requests and responses – Cookies – Session tracking.

Text Book:

1. Herbert Schildt, Java 2 - The Complete Reference, TMH, New Delhi, 5th Edition, 2005.

Unit I : Chapter 1 to Chapter 5.

Unit II : Chapter 6, Chapter 8 to Chapter 10.

Unit III : Chapter 11 , Chapter 12 , Chapter 19.

Unit IV:Chapter 22 and Chapter 26.

Unit V : Chapter 25 and Chapter 27.

Reference Book(s):

- 1. E. Balagurusamy, **Programming with Java**, 3rd Edition, TMH, New Delhi, 2007.
- 2. C.Xavier, Programming with Java 2, Sci Tech Publication, Chennai, 2004.
- 3. Uttam K. Roy, Advanced Java Programming, 1stEdition, Oxford university press, New Delhi, 2015.
- 4. Website: <u>www.spoken-tutorial.org</u>

Programme	: M.Sc (CS)	Part III	: Core
Semester	: П	Hours	: 05
Sub code	: 18PCSCP3	Credits	: 03

LINUX AND SHELL PROGRAMMING -Lab

Course Outcomes:

CO1:To Familiarize with the Linux environment.CO2: To learn the fundamentals of shell scripting/programming.CO3: To Familiarize with basic linux administration.CO4: To provide the skill in Linux environment and supports for employability.

- 1. Execution of various Basic, file/directory handling and Utility commands.
- 2. Shell scripts to explore system variables such as PATH, HOME etc.
- 3. Execution of various system administrative commands.
- 4. Write a shell script to display list of users currently logged in.
- 5. Write a shell script that displays a list of all files in the current directory to which the user has read, write and execute permissions.
- 6. Write a shell script to delete all the temporary files.
- 7. Write a shell script that accepts a file name, starting and ending line numbers as arguments and displays all the lines between the given line numbers.
- 8. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
- 9. Write a shell script that receives any number of file names as its arguments, checks if every argument supplied is a file or a directory and reports accordingly. Whenever the argument is a file, the number of lines on it is to be reported.
- 10. Write a shell script that receives any number of file names as its arguments, counts and reports the occurrence of each word that is present in the first argument file on other argument files.
- 11. Write Simple shell script for basic arithmetic and logical calculations.
- 12. Write a shell script to find the factorial of a given number.
- 13. Write a shell script to perform various operations on given strings.
- 14. Write an awk script to find the number of lines in a file that do not contain vowels i or o.
- 15. Write an awk script to find the number of characters, words and lines in a file.
- 16. Write a shell script to search an element from an array using binary searching.
- 17. Write a C program that takes one or more file/directory names as command line input and reports the following information on the file:

(a) File type (b) Number of links (c) Time of last access (d) Read, write and execute permissions

18. Write a C program that illustrates suspending and resuming processes using signals.

Programme: M.Sc (CS)Semester: IISub code: 18PCSCP4

Part III : Core Hours : 05 Credits : 03

ADVANCED JAVA PROGRAMMING - Lab

Course Outcomes:

- **CO1:** Design, write, and debug applets/programs in Java that include graphics components.
- **CO2:** Design, write, and debug applets/programs in Java that include graphical user interfaces (GUIs) and components.
- **CO3:** Design, write, and debug applets/programs in Java that use files and streams.
- **CO4:** To provide the skill on development of Java programming and supports for employability in IT industry.
- 1. Programs to implement method overloading in java.
- 2. Programs illustrating the implementation of various forms of inheritance (single, hierarchical, multilevel).
- 3. Programs implementing exception handling.
- 4. Programs to illustrate interfaces in java.
- 5. Programs to create package in java
- 6. Design of multithreaded programs in java.
- 7. Programs to manipulate strings.
- 8. Programs to draw various shapes using java applets.
- 9. Programs to handle various mouse events using java applets.
- 10. Programs to handle various key events using java applets.
- 11. Programs to handle various controls (textbox, label, combo box, dialog box) using

java applets.

- 12. Programs to implement networking in java.
- 13. Write a java program to prepare student details using JDBC.
- 14. Write a simple program using java script.
- 15. Write a simple Servlet and JSP program.

Programme: M.Sc (CS)Semester: IISub code: 18PCSE21

Part III : Elective Hours : 05 Credits : 04

CLOUD INFRASTRUCTURE AND SERVICES

Course Outcomes:

CO1: To analyze the components of cloud computing and its business perspective.

CO2: To evaluate the various cloud development tools.

CO3: To collaborate with real time cloud services.

CO4: To provide the skill about the cloud infrastructure and supports for employability.

Unit – I:

Cloud Introduction: Introduction - Cloud computing definition - Characteristics – Cloud Models – Cloud services – Cloud- based Services & Applications. Cloud Concepts & Technologies: Virtualization – Load balancing – Scalability & Elasticity – Deployment – Replication – Monitoring – Software Defined Networking – Network Function Virtualization – MapReduce – Identity and Access Management – Service level agreement – Billing

Unit – II:

Cloud Services and Platforms:Compute service – Storage services – Database Services – Application Services – Content Delivery Services – Analytics Services – Deployment & Management Services – Identity & Access Management Services – Open Source Private Cloud Software.

Unit – III:

Cloud Computing Technology: Hardware and Infrastructure: Clients – Security – Network – Services. **Accessing The Cloud:** Platforms – Web Applications – Web APIs – Web Browsers.

Unit – IV:

Cloud Storage: Overview – Cloud Storage Providers – **Standards** - Application – Client – Infrastructure – Service.

Unit – V:

Cloud Security: Introduction – CSA Cloud security Architecture 0 Authentication – Authorization – Data Security – Key management – Auditing. **Cloud for Industry, Healthcare & Education**: Cloud computing for Healthcare - Cloud computing for Transportation systems - Cloud computing for Manufacturing Industry - Cloud computing for Education.

Text Books:

1. Arshdeep Bahga, Vijay Madisetti, "Cloud Computing – A Hands-On Approach", University Press, Calcuta, 2014.

Unit I : Chapter 1 and 2 (Full) Unit II : Chapter 3 (Full) Unit V : Chapter 12 and 13 (Full)

2. T.Anthony Velte, J. Toby Velte, Robert Elsenpeter, "Cloud Computing – A Practical Approach", TMH, New Delhi, 2010.
Unit III : Chapter 5 and 6 (Full)
Unit IV:Chapter 7 and 8 (Full)

Reference Book(s):

- 1. Barrie Sosinsky, "Cloud Computing Bible", Wiley Publishing, New Delhi, 2014.
- **2.** Ray Rafaels, "Cloud Computing: From Beginning to End", Create Space Independent Publishing Platform, New Delhi, 2015.
- Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way" You Work and Collaborate Online, 1st Edition, Que Publishing, United states, 2008.

Programme	: M.Sc (CS)	Part III	: Elective
Semester	: 11	Hours	: 05
Sub code	: 18PCSE22	Credits	: 04

SOFTWARE TESTING AND QUALITY ASSURANCE

Course Outcomes:

CO1: To create awareness about the significance of software testing.

CO2: To study the basic concepts involving software testing.

CO3: To understand the quality control, quality assurance and testing issues.

CO4: To provide the skill about the software testing and supports for employability.

Unit – I:

Testing Objectives and Overview: Software structure and Software testing - Purpose of testing – Dichotomies – A model for testing – Testing and Levels – Testing levels – Unit testing – Component testing – Integration testing – System testing – Interoperability testing – Performance testing – Regression testing – Acceptance testing – Pilot or Field Testing – Installation or Production testing.

Unit – II:

The Taxonomy of Bugs: Mistakes, bugs and failures – Taxonomy of Bugs – Consequence of Bugs – Flow Graphs and Path Testing: Path testing Basics – Steps in Path Testing – Construct Control Flow Graph – Arrive at Test Paths – Providing appropriate Inputs – Path Sensitizing – Path Instrumentation – Application of path testing – Effectiveness of Path testing.

Unit – III:

Transaction Flow Testing: Control flow chart and structure, Data and Transaction testing – Software functionality and Transactions – Transaction flow testing techniques – Data flow testing: Basics of Data flow testing – Data flow graphs and their representation – Data object state and usage – Data Flow Anomalies – States off Data objects and Data Flow Anomalies – Static versus Dynamic Anomaly detection – Data Flow graph testing Techniques – Strategies for Data flow testing – Test strategies – Application of Data flow testing.

Unit – IV:

Domain testing: Boundary value analysis – Equivalent partitioning - Boundary value analysis vs Equivalent partitioning – I/O Domain testing – Comparison testing – Domains and Interface testing – Domains and testability. Paths, Path Products and Regular Expression: Concepts – Procedure – Application – Regular Expression and Flow Anomaly Detection.

Unit – V:

Logic Based testing: Decision tables – Decision tables in Functional testing – Decision tables in Structural testing – Predicates and relational operators – Boolean algebra – Test case Design using Boolean algebra – Prime implicants. States, State Graphs and Transaction Testing: Object oriented systems and State graphs – State graph – General Properties – Good/Bad State Graph – Bugs in State graph – The Role of State graph – Strategies for State Graph based testing – State graph based test design- An example – Testability tips.

Text Book:

 ArunkumarKhannur, Software Testing – Techniques and Applications, Pearson, New Delhi, 2011.

> Unit I : Chapter 1 and 2 (Full) Unit II : Chapter 3 and 4 (Full) Unit III : Chapter 5 and 6 (Full) Unit IV:Chapter 7 and 8 (Full) Unit V : Chapter 9 and 10 (Full)

Reference Books:

- 1. Boris Beizer, Software Testing Techniques, Dream Tech Press, New Delhi, 2005.
- Aditya Mathur.P, Foundations of Software Testing, 2nd Edition, Pearson Education, New Delhi, 2013.
- Nina S. Godbole, Software Quality Assurance: Principles and Practice, 1st Edition, Alpha

Science, United Kingdom, 2004.

Programme: M.Sc (CS)Semester: IISub code: 18PCSE23

Part III : Elective Hours : 05 Credits : 04

DIGITAL IMAGE PROCESSING

Course Outcomes:

CO1: Understand basic analytical methods which are widely used in image processing.

- **CO2:** Understand the topics such as deterministic and stochastic modeling of images; linear and nonlinear filtering; and image transformations for coding and restoration.
- CO3: Understand issues and technologies which are specific to images and image Process systems

CO4: To provide skill about the digital image processing and supports for employability

Unit -I :

Digital Image Fundamentals – Introduction: What is Digital Image Processing - Origin – Fundamental steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Basic Relationships between pixels.

Unit-II:

Intensity Transformations and spatial Filtering: Basics of Intensity Transformations and spatial Filtering – Histogram processing – Fundamentals of spatial Filtering - Smoothing and Sharpening Spatial Filtering – Filtering in the Frequency Domain: Introduction to Fourier series and Transform – Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters.

Unit -III :

Image Restoration: Noise models– Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering

Unit -IV:

Image Compression and Segmentation: Compression: Fundamentals – Image Compression models – Error Free Compression – Variable Length Coding – Bit-Plane Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding – Wavelet Coding – Compression Standards – JPEG2000. Segmentation: Detection of Discontinuities–Edge Linking and Boundary detection – Region based segmentation

Unit – V:

Representation and Description – Representation – Boundary Description – Regional Descriptors – Use of principal Components for description – Relational Descriptors – Object Recognition – Patterens and pattern classes – Recognition based on decision – theoretic methods – Structural methods.

Text Book:

 C. Rafael Gonzalez, E. Richard Woods, Digital Image Processing, 3rd Edition, Pearson Education, New Delhi, 2012.
 Unit I : Chapter 1 and 2 (Full) – 2.1, 2.3, 2.4, 2.5
 Unit II : Chapter 3 and 4 (Full) – 3.1, 3.2, 3.4, 3.5, 3.6, 4.1, 4.8, 4.9.
 Unit III : Chapter 5 (Full) – 5.2, 5.3, 5.7, 5.8
 Unit IV:Chapter 8 and 10 (Full) – 8.1, 8.2, 10
 Unit V : Chapter 11 and 12 (Full) – 11.1, 11.2, 11.3, 11.4, 11.5, 12.1, 12.2, 12.3

Reference Books:

- K. Anil Jain, Fundamentals of Digital Image Processing, PHI Learning Pvt. Ltd., New Delhi, 2011.
- C. Rafae Gonzales, E. Richard Woods, L. Steven, Digital Image Processing Using MATLAB, Pearson Education, New Delhi, 2007.
- Jayaraman, Digital Image Processing, 1st Edition, Tata McGraw-Hill Education, New Delhi, 2011

Programme	: M.Sc (CS)	Part III	: Elective
Semester	: II	Hours	: 05
Sub code	: 18PCSE24	Credits	: 04

MOBILE COMPUTING

Course Outcomes:

CO1: To study the concepts of mobile computing including access control.

CO2: To understand Digital mobile phone systems and wireless LAN.

CO3: To learn the wireless application protocols.

CO4: To provide the skill about the mobile computing and supports for employability.

UNIT – I

Introduction: Applications – A Short history of wireless communication – A Market for Wireless communications – Some open research topics Simplified Reference Model. Wireless Transmission: Frequencies for Radio transmission – Signals – Antennas – Signal Propagation - Multiplexing – Modulation – Spread Spectrum and Cellular Systems.

UNIT – II

Medium Access Control: Motivation for a specialized MAC – SDMA – FDMA – TDMA - CDMA – COmparisons. Telecommunication Systems: GSM – DECT – TETRA – UMTS and IMT-2000.

UNIT – III

Satellite Systems: History – Applications - Basics – Routing - Localization – HandOver – Examples. Wireless LAN: Infrared vs radio transmission – Infrastructure and ad-hoc networks - IEEE 802.11 – Hiper LAN – Bluetooth.

UNIT – IV

Mobile network layer: Mobile IP – Dynamic host configuration protocol –Ad-hoc Networks. Mobile transport layer: Traditional TCP - Classical TCP.

UNIT – V

Support for Mobility: File systems - World Wide Web - Wireless Application Protocol.

Text Book(S)

1. Jochen Schiller, "Mobile Communications", Pearson Education, Delhi, 2003.

- Unit I Chapter 1(Full), Chapter 2(Full).
- Unit II Chapter 3(Full), Chapter 4(Full).
- Unit III- Chapter 5(Full), Chapter 7(Full).
- Unit IV- Chapter 9 (Full), Chapter 10 (Full).

Unit V - Chapter 11(Full).

Reference Book(S)

- William Stallings, "Wireless Communications and Networks", 2nd Edition, Pearson Education, Delhi, 2004.
- Asoke K Talukder, "Mobile Computing Technology, Applications and Service Creation", 2/e, TMH, 2011.
- Raj Kamal, Mobile Computing, 3rd Edition, Oxford Higher Education, New Delhi, 2018

Programme	: PG	Part III	: Core
Semester	: III	Hours per week	: 05
Sub code	: 18PCSC31	Credit	:04

SOFT COMPUTING

Course Outcomes

CO1: Familiarize with soft computing concepts

CO2: Knowing the concepts of Genetic algorithm and its applications to soft computing **CO3:** Getting the ideas of Fuzzy logic and Neural networks **CO4:** provides the skill about soft computing concepts

Unit - I:

Fundamentals of Neural Networks: Introduction-Static vs. Dynamic Neural Networks-Training of Neural Network. **Some Examples of Neural Networks:** Introduction -Multilayer Feed-Forward Neural Network (MLFFNN)-Radial Basis Function Network (RBFN) - Self Organizing Map(SOM) - Counter – Propagation Neural Network(CPNN) -Recurrent Neural Network(RNNs).

Unit –II:

Introduction to Fuzzy Sets:Crisp Sets-Measures of Fuzziness and Inaccuracy of Fuzzy sets Fuzzy Reasoning and Clustering:Introduction-Fuzzy Logic Controller-Fuzzy Clustering.

Unit –III:

Introduction: Hard Computing - Soft Computing - Hybrid Computing. **Introduction to Genetic Algorithms:** Working Cycle of a Genetic Algorithms - Binary-Coded GA – GA parameters Setting-Constraints Handling in GA - Advantages and Disadvantages of Genetic Algorithms -Combination of local and Global Optimum Search Algorithms.

Unit –IV:

Genetic Algorithms: Fuzzy Logic-Introduction-Fuzzy -Genetic Algorithm-Genetic-Fuzzy System.**GeneticAlgorithms:**Neural Networks-Introduction-Working Principle of a Genetic-Neural System.

Unit –V:

Neural Networks:Fuzzy Logic-Introduction – Neuro-Fuzzy System Working based on Mamdani Approach-Neuro Fuzzy System based on Takagi and Sugeno'sApproach.**Application of Soft Computing:**Introduction-Application of Soft Computing in Design and Development of Intelligent-Application of Soft Computing in Data Analysis.

Text Books:

Dilip K.Pratihar, "SoftComputing, Fundamenatals and Applications", Narosa Publishing House, 2014, New Delhi.

Unit I- Chapter9(Full),Chapter10(Full). Unit II-Chapter7(Full),Chapter8(Full). Unit III-Chapter1(Full),Chapter3(Full). Unit IV-Chapter11(Full),Chapter12(Full). Unit V-Chapter13(Full),Chater14(Full).

Reference Books:

- 1. Rajasekaran. S and Pai. G.A.V, NeuralNetworks, Fuzzy Logic and Genetic Algorithms, PHI, 2003.
- **2.** Jang.J.S.R, Sun. C.T and Mizutani, **Neuro Fuzzy and Soft Computing**, Pearson Education, 2004.
- **3.** Deepa. S. N and Sivanandam.S. N, **Principles of Soft Computing**, Wiley publication, 2nd Edition

Web References

- 1. http://www.vssut.ac.in/lecture_notes/lecture1423723637.pdf
- 2. https://nptel.ac.in/courses/106105173/
- 3. http://www.myreaders.info/01_Introduction_to_Soft_Computing.pdf

Programme	: PG	Part III	: Core
Semester	: III	Hours per week	: 05
Sub code	: 18PCSC32	Credit	:04
		ANALYSIS OF ALGORITHM	

Course Outcomes

CO1: know the techniques for effective problem solving in computing

CO2: using different paradigms of problem solving

CO3: using the analysis of algorithm to show the efficiency of the algorithm

CO4: provides the skill about analysis of algorithm

Unit -I:

Introduction: Definition of algorithm - algorithm specification - performance analysis - randomized algorithms.

Unit –II:

Elementary Data Structures: stacks ans queues - tress - dictionaries - priority queues - graphs.

Divide and Conquer: General method - defective chessboard - binary search - finding the maximum and minimum - merge sort - quick sort - selection.

Unit –III:

The Greedy method: The general method - container loading - knapsack problem - tree vertex splitting - job sequencing with deadlines - minimum cost spanning trees - optimal storage on tapes - optimal merge patterns - single merge shortest paths.

Unit –IV:

Basic traversal and search techniques: Techniques for binary trees - techniques for graphs - connected components and spanning trees - biconnected components and DFS.

Unit –V:

Backtracking: The general method - the 8 queens problem - sum of subsets - graph coloring - Hamiltonian cycles.**Branch and Bound:** The method - traveling salesperson(*) - efficiency considerations.

Text Book:

 Ellis Horowitz, SartajSahni, Sanguthevar Raja Sekaran "Fundamentals of Computer Algorithms" Universities Press, 2017, Hyderabadi. Unit I: Chapter 1 (1.1 To 1.4)
 Unit II: Chapter 2 (2.1 To 2.4, 2.6), Chapter 3(3.1 To 3.7)
 Unit III: Chapter 4 (4.1 To 4.9)
 Unit IV: Chapter 6.1 To 6.4
 Unit V: Chapter 7 (7.1 To 7.5), Chapter 8(8.1 To 8.4).

Reference Books:

- 1. Gilles Brassard and Paul Bratley, " **Fundamentals of Algorithms**" PHI Learning Private Limited, 2010, New Delhi,
- Clifford A. Shaffer, Data Structures and Algorithm Analysis, Dover Publications, Edition 3.2, (Java Version)
- <u>Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford</u>, Introduction to Algorithms, MIT Press, 3rd Edition

Web References

- 1. http://www.vssut.ac.in/lecture_notes/lecture1428551222.pdf
- 2. https://www.ics.uci.edu/~goodrich/teach/cs161/notes/
- 3. https://www.tutorialspoint.com/design_and_analysis_of_algorithms/analysis_of_algorithms.htm

Programme : PG Semester : III Sub code : 18PCSCP5 Part III : Core Hours per week : 05 Credit : 03

DESIGN AND ANALYSIS OF ALGORITHMS - LAB

Course Outcomes

CO1: Develop working knowledge of algorithms.

CO2: To implement various problems using algorithms.

CO3: Ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

CO4: provides the skill about analysis of algoritms

Implement the following programs:

- 1. Quick Sort
- 2. Merge Sort
- 3. Warshall's Algorithm
- 4. Knapsack Algorithm
- 5. Shortest path algorithm
- 6. Minimum cost spanning tree
- 7. Tree traversal
- 8. Graph traversal
- 9. Sum of sub sets algorithm
- 10. Travelling sales person problem
- 11. Minimum cost spanning tree
- 12. All pairs shortest paths
- N-Queens problem

Programme	: PG
Semester	: III
Sub code	: 18PCSCP6

Part III	: Core
Hours per week	: 05
Credit	:03

WEB PROGRAMMING LAB

Course Outcomes

- **CO1:** Design and develop a Web site using text, images, links, lists, and tables for navigation and layout.
- CO2: Learn how to use graphics in Web design.
- CO3: Style your page using CSS, internal style sheets, and external style sheets.
- **CO4:** To provide the skill about designing web sites and develop the employability in IT industry and provide entrepreneur skill
- CO5: provides the skill about web programming and provides employability skill
- 1. Create an Application form using various text formats.
- 2. Create our COLLEGE website using HTML Frame.
- 3. Design Mark sheet printing using HTML
- 4. Create style sheets with the style elements.
- 5. Create Calculator functions using java script.

6. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.

- 7. String manipulation-using functions.
- 8. Create a program to print date using JavaScript.
- 9. Create a program to sum and multiply two numbers using JavaScript.
- 10. Add a simple script using Click event.
- 11. Create a format of a bill for the departmental store products
- 12. Create Employee details using CSS.
- 13. Create our department details using CSS.
- 14. Create Payroll system using CSS.
- 15. Animation Using text, image and sound.
- 16. Display current date, month, year and day of the week of the machine.
- 17. Create a Function to calculate 33% on the given salary.
- 18. Generate Fibonacci series for a given number.

19. Create a PHP code, which will retrieve the data captured by the HTML form, display the name of the form and also display the message Data Entered Successfully on the HTML form page after performing the validations.

20. Develop a PHP code, which will generate a Personnel Information form.

MANNAR THIRUMALAI NAICKER COLLEGE (Autonomous) DEPARTMENT OF(M.Sc) COMPUTER SCIENCE (For those who joined in 2018-2019 and after) Programme : PG Part III : Elective

Semester : III Hours per week : 04 Sub code : 18PCSE31 Credit : 04 BIG DATA ANALYTICS

Course Outcomes

- **CO1:** Knowing the big data technologies used for storage, analysis and manipulation of data.
- CO2: Recognize the key concepts of Hadoop framework, Map Reduce, Pig, Hive, and No-SQL.
- **CO3:** Ability to understand and apply scaling up machine learning techniques and associated computing techniques and technologies.
- CO4: provides the skill about big data analytics and provides employability skill

Unit - I:

Types of Digital Data: Classification of Digital Data. Introduction to Big Data: Characteristics of Data – Evolution of Big Data – Definition of Big Data – Challenges in Big Data – Big Data definition – Other characteristics of Data – Need of Big Data – Traditional Business Intelligence (BI) vs Big Data – A typical Data Warehouse environment – A typical Hadoop environment – New things - Changes - Realms of Big Data.

Unit –II:

Big Data Analytics: Big Data Analytics – Classification of Analytics – Greatest challenges that prevent business from capitalizing on Big Data – Top challenges facing Big Data – Importance of Big Data Analytics – Data Science – Data Scientist – Terminologies used in Big Data Environment – BASE – Analytics tool.

Unit –III:

The Big Data Technology Landscape:NoSQL – Types of NoSQL Database – Need of NoSQL? – Advantages of NoSQL – Use of NoSQL in Industry – SQL vsNoSQL – Comparison of SQL, NoSQL and NewSQL. **Hadoop:** Features of Hadoop – Advantages of Hadoop – Overview of Hadoop – Hadoop distribution – Hadoopvs SQL – Integrated Hadoop System – Cloud-Based Hadoop Solutions.

Unit –IV:

Introduction to Hadoop: Introducing Hadoop – Need of Hadoop – Need of RDBMS – RDBMS vsHadoop – Distributed computing challenges – History of Hadoop – Hadoop overview – Use case of Hadoop – Hadoop distribution – HDFS – Processing data with Hadoop – Managing resources and Application with Hadoop YARN – Interacting with Hadoop Ecosystem.

Unit –V:

Introduction to MangoDB: What is MangoDB – Why MangoDB – Terms used in RDBMS and MangoDB – Data types in MangoDB – MangoDB query language. **Introduction to Machine Learning:** Introduction – Machine Learning Definition – Machine Learning Algorithms – Regression Model – Linear Regression – Clustering – Collaborative Filtering – Association Rule Mining – Decision Tree.

Text Books:

1. Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley, 2015, New Delhi.

Unit I - Chapter 1(Full), Chapter 2.1 To 2.7, 2.9 To 2.13
Unit II - Chapter 3.2,3.5 To 3.8,3.10 To 3.14.
Unit III - Chapter 4(Full)
Unit IV- Chapter 5(Full)
Unit V- Chapter 6(Full), Chapter 12(Full).

Reference Books:

- 1. DT Editorial Services, Big Data, Black book, Ninth Edition, Dreamtech, 2016, New Delhi.
- 2. Michael Minelli, Michele Chambers, AmbigaDhiraj, **Big Data, Big Analytics**, Wiley, 2016, New Delhi.
- 3. Field Cady, The Data Science Handbook, Wiley, 1st Edition, 2017

Web References

1. https://www.slideshare.net/mohitsainirke/big-data-lecture-notes

- 2. https://www.ntnu.no/iie/fag/big/lessons/lesson1.pdf
- 3. https://www.tutorialspoint.com/big_data_analytics/big_data_analytics_pdf_version.htm

	ANNAR THIRUMALAI NA DEPARTMENT OF (For those who ju	AICKER COLLEGE (Autonomous ' (M.Sc) COMPUTER SCIENCE oined in 2018-2019 and after)	\$)
Programme	: PG	Part III	: Elective
Semester	: III	Hours per week	:04
Sub code	: 18PCSE32	Credit	:04
	INFORMAT	TION SECURITY	

Course Outcomes

CO1: Know the fundamentals of information security.

CO2: Learn the basic principles of web application security.

CO3: Understand the authentication and encryption needs of an information system.

CO4: Evaluate a company's security policies and procedures and provides the skill about information security.

UNIT-I

Introduction: The cast of characters - Alice's online crypto - classic crypto - modern crypto

history - a taxonomy of cryptography - a taxonomy of cryptanalysis.

Symmetric key crypto: Introduction - Stream ciphers - block cipher - integrity.

UNIT-II

Public key crypto: Introduction - knapsack - RSA - Diffie-Hellman - Elliptic curve cryptography - public key notation - uses for public key crypto - public key infrastructure.

UNIT-III

Authentication: Introduction – authentication methods - passwords - biometrics - smartcards - two factor authentication - single sign-on and web cookies.

UNIT-IV

Authorization: Introduction - access control - matrix - multilevel security models multilateral security - covert channel - inference control - captcha - firewalls - intrusion detection.

UNIT-V

Simple authentication protocols: Introduction - simple security protocols authentication protocols - authentication and TCP - zero knowledge proofs.

Text Book:

Mark Stamp, J	Information	SecurityL	Principles a	nd Practice,	Wiley, 2 nd	Edition
---------------	-------------	-----------	--------------	--------------	------------------------	---------

Unit I	: Chapter 2 (2.1 To 2.6), Chapter 3(3.1 To 3.4)
Unit II	: Chapter 4(4.1 To 4.8)
Unit III	: Chapter 7(7.1 To 7.7)
Unit IV	: Chapter 8 (8.1 To 8.9)
Unit V	: Chapter 9(9.1 To 9.5)

Reference Books:

- Jason Andress, The Basics of Information Security, 2nd Edition, Syngress, 2014, New Delhi.
- Pachghare V.K., Cryptography and Information Security, 2ndEdition, PHI, 2015, New Delhi.
- 3. AtulKahate, **Cryptography and Network Security**, 3rd Edition, MGH, 2013.

Web References

- 1. http://www.vssut.ac.in/lecture_notes/lecture1423183198.pdf
- 2. https://lecturenotes.in/notes/18243-note-for-information-security-is-by-pankhuri-aggarwal
- 3. http://improvet.cvut.cz/project/download/C2EN/Information_and_network_security.pdf

Programme	: PG	Part III	: Elective
Semester	: III	Hours per week	:04
Sub code	: 18PCSE33	Credit	:04
	COMPUTATIONAL	L INTELLIGENCE	

Course Outcomes

CO 1: Understand the fundamental concepts of computational intelligence.

CO2: Demonstrate awareness of the major challenges and risks facing computational intelligence and the complexity of typical problems within the field.

CO 3: Able to implement solutions to various problems in computational intelligence. **CO4:** provides the skill about computational intelligence.

Unit -I:

Introduction to Computational Intelligence: Computational Intelligence Paradigms - Short History **Introduction to Evolutionary Computation:** Generic Evolutionary Algorithm - Representation – The Chromosome - Initial Population - Fitness Function – Selection - Reproduction Operators - Stopping Conditions - Evolutionary Computation versus Classical Optimization.

Unit –II:

Genetic Algorithms: Canonical Genetic Algorithm - Crossover -Mutation - Control Parameters - Genetic Algorithm Variants - Advanced Topics - Applications. Genetic Programming: Tree-Based Representation - Initial Population - Fitness Function - Crossover Operators - Mutation Operators - Building Block Genetic Programming - Applications.

Unit –III:

Evolutionary Programming: Basic Evolutionary Programming - Evolutionary Programming Operators - Strategy Parameters - Evolutionary Programming Implementations - Advanced Topics - **Applications. Evolution Strategies:** (1+1)-ES - Generic Evolution Strategy Algorithm - Strategy Parameters and Self-Adaptation - Evolution Strategy Operators - Evolution Strategy Variants - Advanced Topics - Applications of Evolution Strategies.

Unit –IV:

Computational Swarm Intelligence: Particle Swarm Optimization - Basic Particle Swarm Optimization - Social Network Structures - Basic Variations - Basic PSO Parameters - Single-Solution Particle Swarm Optimization. - Advanced Topics - Applications. Ant Algorithms - Ant Colony Optimization Meta-Heuristic - Cemetery Organization and Brood Care - Division of Labor.- Advanced Topics - Applications.

Unit –V:

Artificial Immune Systems - Natural Immune System - Classical View - Antibodies and Antigens – The White Cells - Immunity Types - Learning the Antigen Structure - The Network Theory - The Danger Theory. Artificial Immune Models - Artificial Immune System Algorithm - Classical View Models - Clonal Selection Theory Models - Network Theory Models - Danger Theory Models - Applications and Other AIS models.

Text Books:

1. Engelbrecht, A.P, Computational Intelligence: An Introduction, 2nd Edition, John Wiley & Sons, 2012, New Delhi.

Reference Books:

- 1. Intelligence Emerging By Keith L. Downing, The MIT Press, 2015
- 2. The Deep Learning Revolution By Terrence J. Sejnowski, The MIT Press, 2018
- 3. Achariya.D. P., Theory of Computation, Mjp Publishers, 1st edition, 2011

Web References

- 1. https://www.cs.ubc.ca/~poole/ci/ch1.pdf
- 2. https://www8.cs.umu.se/kurser/TDBC11/VT00/files/Compendium.pdf
- 3. http://www.cs.mun.ca/~tinayu/Teaching_files/cs4752/Lecture1_new.pdf

Programme	: PG	Part III	: Elective
Semester	: III	Hours per week	:04
Sub code	: 18PCSE34	Credit	:04

DATA MINING AND WAREHOUSING

Course Outcomes

- **CO1:** Demonstrate an understanding of the importance of data mining and the principles of business intelligence
- **CO2:** Organize and Prepare the data needed for data mining using pre preprocessing techniques
- **CO3:** Perform exploratory analysis of the data to be used for mining.
- **CO4:** Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on large data sets, Define and apply metrics to measure the performance of various data mining algorithms.

Unit -I:

Introduction: Need of data mining - Data mining definition - kinds of data - kinds of patterns - technologies - kinds of applications - Major issues in data mining.

Getting to know your Data:Data Objects and Attribute Types - Basic Statistical Descriptions of Data - Data Visualization - Measuring Data Similarity and Dissimilarity.-

Unit –II:

Data Preprocessing: Data Preprocessing: An Overview - Data Cleaning - Data Integration - Data Reduction - Data Transformation and Data Discretization.

Data Warehousing and Online Analytical Processing:DataWarehouse: Basic Concepts - DataWarehouse Modeling: Data Cube and OLAP - DataWarehouse Design and Usage - DataWarehouse Implementation - Data Generalization by Attribute-Oriented Induction.

Unit –III:

Data cube technology: Data Cube Computation: Preliminary Concepts - Data Cube Computation Methods - Processing Advanced Kinds of Queries by Exploring Cube Technology - Multidimensional Data Analysis in Cube Space.

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods:

Basic Concepts - Frequent Itemset Mining Methods - interesting patterns Are - pattern evaluation Methods.

Unit –IV:

Advanced Pattern mining: Pattern Mining: A Road Map - Pattern Mining in Multilevel, Multidimensional Space - Constraint-Based Frequent Pattern Mining - Mining High-Dimensional Data and Colossal Patterns.

Classification: Basic Concepts: Basic Concepts - Decision Tree Induction - Bayes Classification Methods - Rule-Based Classification - Model Evaluation and Selection -Techniques to Improve Classification Accuracy.

Unit –V:

Classification: Advanced Methods: Bayesian Belief Networks - Classification by Backpropagation - Support Vector Machines - Classification Using Frequent Patterns - Lazy Learners (or Learning from Your Neighbors) - Other Classification Methods - Additional Topics Regarding Classification.

Cluster Analysis: BasicConcepts and Methods: Cluster Analysis - Partitioning Methods - Hierarchical Methods - Density-Based Methods - Grid-Based Methods - Evaluation of Clustering.

Outlier Detection: Outliers and Outlier Analysis - Outlier Detection Methods -

Statistical Approaches - Clustering-Based Approaches - Classification-Based

Approaches - Mining Contextual and Collective Outliers - Outlier Detection in High-Dimensional Data

Text Books:

1.Jiawei Han, MichelineKamber, Jian Pei, **Data mining Concepts and Techniques,** Morgan Kaupmann, Third Edition, New Delhi.

Unit I - Chapter 1 1.1 To 1. 7, Chapter 2 2.1 To 2.4
Unit II - Chapter 3 3.1 To 3.5, Chapter 4 -> 4.1 To 4.5
Unit III - Chapter 5 5.1 To 5.4, Chapter 6 6.1 To 6.3
Unit IV- Chapter 7 7.1 To 7.4, Chapter 8 8.1 To 8.6
Unit V- Chapter 12Chapter 9 9.1 To 9.7, Chapter 10 10.1 To 10.6, Chapter 12 12.1 To 12.3,

12.5 To 12.8

Reference Books:

- 1. Arun K Pujari, Data mining techniques, Universities, Fourth Edition.
- **2.** Alex Berson, Stephen J. Smith, Data Warehousing, Data mining & OLAP, McGraw Hill Education, 2013
- 3. <u>Bharat BhushanAgarwal</u>, **Data Mining and Data Warehousing**, Laxmi Publications, 1st edition, 2012

Web References

- 1. https://hanj.cs.illinois.edu/bk3/bk3_slidesindex.htm
- 2. http://www.vssut.ac.in/lecture_notes/lecture1428550844.pdf
- 3.https://lecturenotes.in/notes/14502-note-for-data-mining-and-data-warehousing-dmdw-by-jntu-

heroes

Programme : PG Semester : III Sub code : 18PCSN31 Part IV : NME Hours per week : 06 Credit : 04

MULTIMEDIA LAB

Course Outcomes

CO1: To familiarize with Photoshop tools.

CO2: To understand the animation techniques using Adobe Flash.

CO3: To understand the concept of text for heading or slide presentation using CorelDraw **CO4:** provides employability skill in the designing field.

PHOTOSHOP

- 1. Changing Color Modes.
- 2. Pattern Setting.
- 3. Mirror Image.
- 4. Changing Black /White Image to Color and vice versa.
- 5. Stroking Effect.
- 6. Merge Text and Image.
- 7. Shadow of an image.
- 8. 3D & Lighting Effects.
- 9. Morphing.
- 10. Composite of two Images.

FLASH

1. Create an animation with the following features:

- i) Letters should appear one by one.
- ii) The fill color of the text should change to a different color after the display of the Full word.
- 2. Simulate movement of a Cloud.
- 3. Create an animation.
- 4. Create an animation to represent the growing moon.
- 5. Animate a Globe.
- 6. Converting Text into Shapes.
- 7. Animate using motion- shape- Tweening and actions.

CORELDRAW

- 1. Design a logo for Coffee shop using all the tools
- 2. Design 3D button for web page
- 3. Design 3D looking text

Web References

- 1.http://saiful.uitm.edu.my/files/Manual%20Photoshop%20-%20CSC253.pdf
- 2. http://dte.kar.nic.in/STDNTS/CS%20IS/multimedia%20lab%20programs.pdf
- 3. <u>http://dominic.cheng.tripod.com/IMMWS/Material/LabManual.pdf</u>
- 4. https://www.eecis.udel.edu/~yarringt/103/labs/PhotoshopLab3

Programme	: PG	Part III	: Core
Semester	: IV	Hours per week	: 06
Sub code	: 18PCSC41	Credit	: 05
		INTERNET OF THINGS	

Course Outcomes

CO1: To assess the vision and Introduction of IoT.

CO2: To Understand IoT Market perspective.

CO3: To Implement Data and Knowledge Management and use of Devices in IoT Technology.

CO4: To Understand State of the Art - IoT Architecture.

CO5: To classify Real World IoT Design Constraints, Industrial Automation in IoT.

CO6: provides the skill about internet of things and provides employability skill

Unit- I:

Introduction to Internet of Things: Introduction - Definition and Characteristics of IoT - Physical Design of IoT - Logical Design of IoT - IoT Enabling Technologies - IoT Levels and Deployment Templates.

Unit-II:

Domain Specific IoTs: Introduction - Home Automation – Cities - Environment- Energy – Retail – Logistics – Agriculture – Industry - Health & Lifestyle.

Unit-III:

IoT and M2M: Introduction - M2M - Difference between IoT and M2M - SDN and NFV for IoT - Software Defined Networking - Network Function Virtualization -**IoTSystemManagement with NETCONF** – YANG - Need for IoT Systems Management -Simple Network Management Protocol(SNMP) - Limitations of SNMP - Network Operator Requirements – NETCONF – YANG - IoT Systems Management with NETCONF – YANG – NETOPEER.

Unit-IV:

Developing Internet of Things: IoT Platforms Design Methodology – Introduction - IoT Design Methodology - Case Study on IoT System for Weather Monitoring – IoTPhysicalDevices& Endpoints – What is an IoT Device - Basic Building Blocks of an IoT Device – Raspberry Pi – Linux on Raspberry Pi – Raspberry Pi Interfaces – Programming Raspberry Pi with Python – Other IoT Device

Unit-V:

IoT Physical Servers & Cloud Offerings: Introduction to Cloud Storage Models & Communication APIs – WAMP – AutoBahn for IoT – Xively Cloud for IoT – Django – Designing a RESTful Web API – Amazon Web Services for IoT – SkyNetIoT Messaging Platform.

Text book:

1.ArshdeepBahga,VijayMadisetti **"Internet of Things"** A Hands-On Approach, Universities Press (India) Private Limited.

Unit I: Chapter 1 Full Unit II: Chapter 2 Full Unit III: Chapter 3,4 Full Unit IV: Chapter 5 Full Unit V: Chapter 8.1, 8.2, 8.3, 8.5, 8.6, 8.7

Reference books:

- 1. Adrian McEwen and Hakim Cassimally, **Designing the Internet of Things** Book by Wiley Publishers, 2014.
- 2. <u>CunoPfister</u>, Getting Started with the Internet of Things: Connecting Sensors and Microcontrollers to the Cloud, O'Reilly Media, Inc, 2011.
- 3. David Hanes IoT Fundamentals: Networking Technologies, protocols and use cases for the Internet of Thimgs, Cisco press, 2017.

Web References

- 1. https://www.tutorialspoint.com/internet_of_things/internet_of_things_tutorial.pdf
- 2. http://cseweb.ucsd.edu/classes/wi15/cse237A-a/handouts/8_iot.pdf
- 3. https://nptel.ac.in/courses/106105166/

Programme	: P G	Part III	: Core
Semester	: IV	Hours per week	: 06
Sub code	: 18PCSCP7	Credit	: 04

PYTHON PROGRAMMING - LAB

Course Outcomes

CO1: Write- test- and debug simple Python programs.

CO2: Implement Python programs with conditionals and loops.

- **CO3:** Develop Python programs step-wise by defining functions and calling them.
- **CO4:** Use Python lists- tuples- dictionaries for representing compound data.
- **CO5:** Develop python applications using Database.

CO5: Provides the employability skill

LIST OF PROGRAMS

- 1) Linear search and Binary search
- 2) Selection sort- Insertion sort
- 3) Python program to merge mails
- 4) Python program to find size of the image
- 5) Python program to find hash of file
- 6) To write to an existing file- you must add a parameter to the open() function
- 7) Python program to calculate length of a String without using len() function
- 8) convert Python objects of the following types- into JSON strings: dict- list-tuple-string-True-False
- 9) To create a database in MySQL- use the "CREATE DATABASE" statement:
- 10) To create a table in MySQL- use the "CREATE TABLE" statement. To fill a table in

MySQL- use the "INSERT INTO" statement.

- 11) a)implement Select record queryb)Select records where the address contains the particular word
- 12) Escape query values by using the placeholder %s method
- 13) a)Delete any record by the given address
- 14) b)n delete an existing table by using the "DROP TABLE" statement
- 15) Develop calculator application using python

Programme : PG Semester : IV Sub code : 18PCSPR1

Joined in 2018-2019 and after) Part III : Core Hours per week : 18 Credit : 15

PROJECT WORK AND VIVA-VOCE

Course Outcomes:

- **CO1:** This course is to train the student in executing a project and preparing the report of work done.
- **CO2:** The project work is to be carried for the entire semester and the report of work done is to be submitted to the college.

Total marks: 100 (Internal: 40 marks, External: 60 marks)

Parameters:

For Internal Marks (40):

Start-up Review	: 5 marks
Design Review	: 7.5 Marks
Implementation and Validation Review	: 7.5 Marks
Final Review	: 10 Marks
Overall Performance	: 10 Marks

For External Marks (60):

Project Report	: 20 Marks
Project work Demo & Presentation	: 30 Marks
Viva-Voce	: 10 Marks