M.Sc., PHYSICS

Program Code: PPH

2023-2024 onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

GUIDLINESS FOR OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

(FOR PG PROGRAM FROM 2023 -2024 ONWARDS)

ELIGIBILITY CONDITION FOR ADMISSION

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years degree course (under 10 + 2 + 3 pattern) recognized by the university as equivalent there to.

DURATION

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

ATTENDANCE

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

EVALUATION PROCEDURE:

A mark Statement with $CGPA = \sum(MarksXcredits)$ $\sum(Credits)$

Where the summations are over all paper appeared up to the current semester. Examinations: 3 hours duration.

Total marks 100 for all papers

External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives (NME)
- 4. Skill Enhancement course

CBCS COURSE STRUCTURE - PG COURSES

M.A. (Tamil) - M.A. (English) – M.Com. – M.Com (CA) – M.S.W. M.Sc. (Mathematics) - M.Sc. (CS) - M.Sc. (CS&IT)

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credit
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VII	4	4.1. Core-X	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-VII	4	4.2 Core-XI	4
1.3 Core – III	4	2.3 Core – VI	4	3.3 Core – IX	4	4.3 Core – XII	4
1.4 Elective (Generic / Discipline Centric)- I	3	2.4 Elective (Generic / Discipline Centric) – III	3	3.4 Elective (Generic / Discipline Centric) – V	3	4.4 Elective (Generic / Discipline Centric) – VI	3
1.5 Elective (Generic / Discipline Centric)-II	3	2.5 Elective (Generic / Discipline Centric)-IV	3	3.5 Core Industry Module	3	4.5 Project with Viva-Voce	3
1.6Ability Enhancement Course- Soft Skill -1	2	2.6 Ability Enhancement Course - Soft Skill -2	2	3.6 Ability Enhancement Course- Soft Skill -3	2	4.6 Ability Enhancement Course- Soft Skill -4	2
Skill Enhancement Course SEC 1	2	2.7 Skill Enhancement Course SEC 2	2	3.7 Skill Enhancement Course – Term Paper and Seminar Presentation SEC 3	2	4.7 Skill Enhancement Course - Professional Competency Skill	2
				3.8 Internship/ Industrial Activity	2	4.8 Extension Activity	1
	22		22		24		23
					To	tal Credit Points	91

QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL ASSESSMENT

Note: Duration – 1 hour 30 minutes The components for continuous internal assessment are:

Part -AFour multiple choice questions (answer all) $4 \times 01 = 04$ MarksPart -B $2 \times 05 = 10$ MarksTwo questions ('either or 'type) $2 \times 05 = 10$ MarksPart -C $2 \times 08 = 16$ Marks

Total 40 Marks ------The components for continuous internal assessment are: (40 Marks of two continuous internal assessments will be converted to 15 marks) Two tests and their average --15 marks Seminar /Group discussion --5 marks

Assignment --5 marks Total 25 Marks

OUTCOME BASED EDUCATION

1. Course is defined as a theory, practical or theory cum practical subject studied in a semester. For e.g. Computer Applications Management

2. Course Outcome (CO) Course outcomes are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course. Outcomes may be specified for each course based on its weightage.

3. Program is defined as the specialization or discipline of a Degree. It is the interconnected arrangement of courses, co-curricular and extracurricular activities to accomplish predetermined objectives leading to the awarding of a degree.

4. Program Outcomes (POs) Program outcomes are narrower statements that describe what students are expected to be able to do by the time of graduation. POs are expected to be Guidelines for Outcome Based Education System 4 aligned closely with Graduate Attributes.

5. Program Educational Objectives (PEOs) of a program are the statements that describe the expected achievements of graduates in their career, and also in particular, what the graduates are expected to perform and achieve during the first few years after graduation.

6. Program Specific Outcomes (PSO) are what the students should be able to do at the time of graduation with reference to a specific discipline. Usually there are two to four PSOs for a Program.

7. Graduate Attributes (GA): The graduation attributes, are exemplars of the attributes expected of a graduate from a Program

INSTITUTIONAL VISION

To Mould the learners into accomplished individuals by providing them with a stimulus for social change through character, confidence and competence.

INSTITUTIONAL MISSION

1. Enlightening the learners on the ethical and environmental issues.

2. Extending holistic training to shape the learners in to committed and competent citizens.

3. Equipping them with soft skills for facing the competitive world.

4. Enriching their employability through career oriented courses.

5. Ensuring accessibility and opportunity to make education affordable to the underprivileged.

Highlights of the Revamped Curriculum:

- Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.

- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI – 625 004 M. SC PHYSICS CURRICULUM

(For the student admitted during the academic year 2023-2024 onwards)

Course Code	Title of the Course	IIma	Credita	Maximum Marks			
Course Code	The of the Course	Hrs	Creatts	Int	Ext	Total	
	FIRST SEMESTE	ER					
Part – III	Core Courses						
23PPHCC11	MATHEMATICAL PHYSICS	6	5	25	75	100	
23PPHCC12	CLASSICAL MECHANICS	6	5	25	75	100	
23PPHCP11	PRACTICAL - I	6	4	25	75	100	
Part – III	Elective Courses						
22DDUEC11	PHYSICS OF NANO SCIENCE	6	2	OF	75	100	
23PPHECII	AND TECHNOLOGY	0	3	25	15	100	
22DDUEC12	LINEAR AND DIGITAL ICS AND	6	2	0 5	75	100	
23PPHEC12	APPLICATIONS	O	3	23	75	100	
	Total	30	20	125	375	500	
	SECOND SEMEST	ER					
Part – III	Core Courses						
23PPHCC21	STATISTICAL MECHANICS	6	5	25	75	100	
23PPHCC22	QUANTUM MECHANICS – I	6	5	25	75	100	
23PPHCP21	PRACTICAL – II	6	4	25	75	100	
Part – III	Elective Courses						
23PPHEC21	ADVANCED OPTICS	5	3	25	75	100	
23PPHEC22	MEDICAL PHYSICS	5	3	25	75	100	
Part – IV	Skill Enhancement course						
23PPHSC21	SOFT SKILL - I	2	2	25	75	100	
	Total	30	22	150	450	600	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	MATHEMATICAL PHYSICS			
Course Code	23PPHCC11	L	Р	С
Category	CORE	6	-	5
COURSE OBJE	CTIVES:			

- > To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program.
- > To extend their manipulative skills to apply mathematical techniques in their fields.
- > To help students apply Mathematics in solving problems of Physics.

UNIT - I LINEARVECTOR SPACE

Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product-Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation.

UNIT - II COMPLEXANALYSIS

Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems -Parallel plates and coaxial cylinders.

UNIT - III MATRICES

Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix -Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices -Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization.

17

17

19

UNIT - IV FOURIERTRANSFORMS & LAPLACETRANSFORMS

Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions -Application - Laplace equation: Potential problem in a semi - infinite strip.

UNIT - V DIFFERENTIAL EQUATIONS

Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples -Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function-One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.

Total Lecture Hours 90

BOOKS FOR STUDY:

- George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press.
- > P.K. Chattopadhyay, 2013, *Mathematical Physics* (2nd edition), New Age, New Delhi
- A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt. Ltd., India.
- B. D. Gupta, 2009, *Mathematical Physics* (4th edition), Vikas Publishing House, New Delhi.
- H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.

BOOKS FOR REFERENCES:

- E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- > D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
- P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi
- C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York

WEB RESOURCES:

- www.khanacademy.org
- https://youtu.be/LZnRlOA1_2I
- http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
- https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27v S_SIED56gNjVJGO2qa

19

18

https://archive.nptel.ac.in/courses/115/106/115106086/

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		\checkmark	ENTREPRENEURSHIP)	
Curriculum Relevance	LOCAL		REGI	ONAL	NATIONAL			GLOBAL	\checkmark	
Changes Made in the Course	e Percentage of Change		ange	60	No Chan	ges Made			New Course	
*Treat 200/ as each unit (20*5, 1000/) and calculate the nervertage of shares for the source										

***Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.**

COURS	SE OU	TCOM	cs:								K LEVEL
After stu	udying	this cou	rse, the st	udents wi	ill be able	e to:					
CO1	Under orthon	stand use ormal se	of bra-ke t of basis v	et vector n vectors, ar	otation and transfo	nd explai rmations	n the mear and be ab	ning of co le to appl	omplete y them	:	K1 to K5
CO2	Able to Integra	o underst al Formu ation.	and analy a. Able to	tic functio compute	ons, do co many rea	mplex in ll integral	tegration, s and infir	by applyi nite sums	ng Cauch via comj	ny plex	K1 to K5
CO3	Analyz diagor	ze charac	teristics o	f matrices	and its di	ifferent ty	ypes, and t	he proce	ss of	:	K1 to K5
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology								of relate	K1 to K5	
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems									l to n :	K1 to K5
MAPPI	NG W	ITH PR	OGRAM	OUTCO	OMES:						
CO/PO	PO	1 P	D2 P	03 I	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3		3	3	3	3	3	3	2	3	2
CO2	2		3	3	3	3	3	3	2	2	2
CO3	3		3	3	2	2	3	3	2	3	2
CO4	3		3	3	3	2	3	3	2	2	2
CO 5	3		2	3	3	2	3	3	2	2	3
	3- S'	TRONG	I			2 – ME	DIUM			1 - I	LOW
CO / P	O MA	PPING:									
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
СО	1 3 3 3 3 3 3 3 <u>3</u> 3 <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u>							2			
СО	2	2	3	3	3	3	3	3	2	2	2
со	3	3	3	3	2	2	3	3	2	3	2

СО	4	3	3	3	3	2	3	3	2	2	2
CO	5	3	2	3	3	2	3	3	2	2	3
WEIG ¹	ГAGE										
WEIG D PERCI GE COUI CONTE ION PO	GHTE D CENTA COF JRSE 'RIBUT I TO OS										
LESSC	ON PLA	AN:									
UNIT			Ma	themati	ical Ph	ysics			HR	.S]	PEDAGOGY
I	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation										Chalk &Talk, PPT, Seminar
п	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxia cylinders and an annular region (2) Heat problems - Parallel plates and									•	Chalk &Talk, PPT
III	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley– Hamilton theorem –Diagonalization								- 17		Chalk &Talk, Assignment
IV	Defini function Cosino Diffus mediu infinit Laplace integra	tions -Fou on and Di e and sin ion equati m - Wave e string. ce transfo als – Diffe	rier trans rac delta ne transf on: Flow equation rm and i erentiation	Gaussian vatives - plication: - infinite f a semi - ives and rac delta	19 19		Chalk &Talk, Group discussion				

	functions - Application - Laplace equation: Potential problem in a semi - infinite strip.		
v	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.	18	Seminar, PPT, Chalk &Talk

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
			Section	Α	Section D	Section C				
Internal	Cos	K Level	MCQs	5	Either or	Either or				
	COS		No. of. Questions	K - Level	Choice	Choice				
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
		No. of Questions to be asked	4		4	4				
Quest	ion	No. of Questions to be answered	4		2	2				
CIA I & II		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	2			2	3.57						
	K2	2	10	16	28	50						
СІА	K3		10	16	26	46.43	53.57					
I	K4											
-	Marks	4	20	32	56	100	100					
	K1	2			2	3.57						
	K2	2	10		12	21.43						
CIA	K3		10	16	26	46.43	25					
II	K4			16	16	28.57	71.43					
	Marks	4	20	32	56	100	100					

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summativ	ve Exami	nation – Blu	e Print Artic	ulation Mapp	oing – K Level with Co	urse Outcomes (COs)
		V	Section A	(MCQs)	Section B (Either /	Section C (Either / or
S. No	COs	K - Level	No. of Questions	K – Level	or Choice) With	Choice) With
1	CO1	K1 to K5	γ	K1 K2	$\frac{\mathbf{R} - \mathbf{L} \mathbf{L} \mathbf{V} \mathbf{L} \mathbf{L}}{2 (\mathbf{K} 2 \mathbf{K} 2)}$	$\frac{1}{2} (\mathbf{K}^2 \mathbf{K}^2)$
L		NI W NJ	2	K 1, K 2	$2(\mathbf{K}^2,\mathbf{K}^2)$	$2(\mathbf{K}2,\mathbf{K}2)$
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)
3	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)
5	CO5	K1 to K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)
No. of Qu	estions to	be Asked	10		10	10
No. of	Question answere	ns to be d	10		5	5
Marks for each question		1		5	8	
Total Marks for each section		10		25	40	
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)

Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5			5	3.57	-				
K2	5	20	16	41	29.29					
K3		20	32	52	37.14	32.86				
K4		10	16	26	18.57	70				
K5			16	16	11.43	88.57				
Marks	10	50	80	140	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the quest	ions	PART – A	(10 x 1 = 10 N)	larks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)					
11. a)	Unit - I	CO1	K2						
	OR								
11. b)	Unit - I	CO1	K2						
12. a)	Unit - II	CO2	K3						
				OR					
12. b)	Unit - II	CO2	K3						
13. a)	Unit - III	CO3	K2						
				OR					
13. b)	Unit - III	CO3	K2						
14. a)	Unit - IV	CO4	K3						
				OR					
14. b)	Unit - IV	CO4	K3						
15. a)	Unit - V	CO5	K4						
				OR					
15. b)	Unit - V	CO5	K4						

Answer A	Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$								
16. a)	Unit - I	CO1	K2						
				OR					
16. b)	Unit - I	CO1	K2						
17. a)	Unit - II	CO2	K3						
	OR								
17. b)	Unit - II	CO2	K3						
18. a)	Unit - III	CO3	K3						
				OR					
18. b)	Unit - III	CO3	K3						
19. a)	Unit - IV	CO4	K4						
				OR					
19. b)	Unit - IV	CO4	K4						
20. a)	Unit - V	CO5	K5						
	OR								
20. b)	Unit - V	CO5	K5						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name CLASSICAL MECHANICS							
Course Code	23PPHCC12	L	Р	С			
Category	CORE	6	-	5			
COURSE OBJECTIVES:							
To understand fundamentals of classical mechanics.							
> To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.							
To understar	d Hamiltonian formulation of mechanics and apply it to solve equa	tion of	motion	ί.			
To discuss the	the theory of small oscillations of a system.						
\succ To learn the	relativistic formulation of mechanics of a system.						
UNIT - I PRIN	CIPLES OFCLASSICAL MECHANICS		17				
Mechanics of a sin	gle particle – mechanics of a system of particles – conservation la	ws fo	r a syste	em of			
particles - constrain	nts – holonomic& non-holonomic constraints – generalized coordinates	ates –	configu	ration			
space – transformat	ion equations – principle of virtual work.						
UNIT - II LAGI	RANGIAN FORMULATION		17				
D'Alembert's princ	ciple – Lagrangian equations of motion for conservative systems	– app	olicatior	ıs: (i)			
simple pendulum (i	i) Atwood's machine (iii) projectile motion.						
UNIT - III HAM	ILTONIAN FORMULATION		19				
Phase space – cycli	c coordinates – conjugate momentum – Hamiltonian function – H	amilto	n's cano	onical			
equations of motion	n – applications: (i) simple pendulum (ii) one dimensional simple	harmo	nic osci	llator			
(iii) motion of parti	cle in a central force field.						
UNIT - IV SMA	LL OSCILLATIONS		17				
Formulation of the	problem – transformation to normal coordinates – frequencies of no	ormal i	nodes –	linear			
triatomic molecule.							
UNIT - V CANO	DNICAL TRANSFORMATIONS		20				
The equations of	canonical transformation-Examples of canonical transformation	tions-7	The hai	rmonic			
oscillator-The simp	olistic approach to canonical transformations-Poisson brackets a	and ot	her car	ionical			
invariants-Equation of motion, infinitesimal canonical transformations, and conservation theorems in the							
Poisson Bracket for	ormulation- The angular momentum Poisson bracket relations, s	symme	try gro	ups ir			
mechanical systems	-Liouville's theorem.						

Total Lecture Hours 90

BOOKS FOR STUDY:

- > H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
- > J. C. Upadhyaya, Classical Mechanics, Himalaya Publshing. Co. New Delhi.
- > R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi.
- R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics Tata McGraw Hill, New Delhi, 1980.
- N. C. Rana and P.S. Joag, Classical Mechanics Tata McGraw Hill, 2001.

BOOKS FOR REFERENCES:

- K. R. Symon, 1971, Mechanics, Addison Wesley, London.
- S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
- Supta and Kumar, Classical Mechanics, KedarNath.
- > T.W.B. Kibble, Classical Mechanics, ELBS.
- > Greenwood, Classical Dynamics, PHI, New Delhi.

WEB RESOURCES:

- http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Classical _Mechanics_optimized.pdf
- https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdfpdf-free.html
- https://nptel.ac.in/courses/122/106/122106027/
- https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-notes/
- https://www.britannica.com/science/relativistic-mechanics

Nature of Course	EMPLOYABILITY				SKILL ORIENTED		✓	ENTREPRENEURSHIP		P
Curriculum Relevance	LOCAL REG		ONAL	,	NATION	AL		GLOBAL	\checkmark	
Changes Made in the Course	Percentage of Change			60	No Char	iges Made			New Course	
*Treat 2	*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.									

COURS	E OUT	СОМН	ES:							ł	K LEVEL
After stu	dying th	nis cou	rse, the s	students	will be ab	le to:					
CO1	Underst	and the	e fundam	entals of	classical r	nechanics.				F	K1 to K5
CO2	Apply t of motion	he prin on of pl	ciples of hysical s	Lagrangi ystems.	ian and Ha	miltonian	mechanic	s to solve tl	ne equation	ns F	K1 to K5
CO3	Apply t of moti	he prin on of pl	ciples of hysical s	Lagrangi ystems.	ian and Ha	miltonian	mechanic	s to solve th	ne equation	ns F	K1 to K5
CO4	Analyzo oscillati	e the sn ons.	nall oscil	llations in	systems a	nd determ	ine their n	ormal mod	es of	I	K1 to K5
CO5	Underst systems	nderstand and apply the principles of relativistic kinematics to the mechanical stems.							F	K1 to K5	
MAPPIN	ig wij	H PR	OGRAI	M OUTC	OMES:						
CO/PO	PO1	PC)2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	3	2	2	2	3	2	2
3	3- STRONG 2 - MEDIUM 1 - LOW									W	
CO / PO	O MAP	PING:		ii.							
cos	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO 1		3	3	3	3	3	3	3	2	3	2
CO 2	2	2	3	3	3	3	3	3	2	2	2
CO 3	:	3	3	3	2	2	3	3	2	3	2
CO 4	:	3	3	3	3	2	3	3	2	2	2
CO 5	3	3	2	3	3	2	3	3	2	2	2
WEIGT. GE	Α										
WEIGH ED PERCE TAGE OF COURS CONTR BUTIO TO POS											
LESSOI		1:									
UNIT			CI	LASSIC	AL MEC	HANICS			HRS	PEI	DAGOGY

I	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic& non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.	17	Chalk &Talk, PPT, Seminar
II	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.	17	Chalk &Talk, PPT
III	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.	19	Chalk &Talk, Assignment
IV	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.	17	Chalk & Talk, Assignment
v	The equations of canonical transformation-Examples of canonical transformations-The harmonic oscillator-The simplistic approach to canonical transformations-Poisson brackets and other canonical invariants-Equation of motion, infinitesimal canonical transformations, and conservation theorems in the Poisson Bracket formulation- The angular momentum Poisson bracket relations, symmetry groups in mechanical systems-Liouville's theorem.	20	Seminar, PPT, Chalk &Talk

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
			Section	Α	Section B	Section C Either or Choice		
Internal	Cos	K Level	MCQs	5	Either or			
inter nur			No. of. Questions	K - Level	Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)		
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)		
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)		
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
		No. of Questions to be asked	4		4	4		
Quest	ion	No. of Questions to be answered	4		2	2		
CIA I & II		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
CIA	K3		10	16	26	46.43	53.57				
I	K4										
	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
		V	Section A	(MCQs)	Section B (Either /	Section C (Either / or			
S. No	COs	r - Level	No. of	K – Level	or Choice) With	Choice) With			
		Level	Questions		K - LEVEL	K - LEVEL			
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)			
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)			
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)			
5	CO5	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
No. of Qu	estions to	be Asked	10		10	10			
No. of Questions to be answered		10		5	5				
Marks for each question		1		5	8				
Total Marks for each section		10		25	40				
	(Figures	s in parenth	esis denotes, o	uestions sho	uld be asked with the g	viven K level)			

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57				
K2	5	20	16	41	29.29				
K3		30	32	62	44.28	32.86			
K4			16	16	11.43	77.14			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer A	LL the quest	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)					
11. a)	Unit - I	CO1	K2						
	OR								
11. b)	Unit - I	CO1	K2						
12. a)	Unit - II	CO2	K3						
				OR					
12. b)	Unit - II	CO2	K3						
13. a)	Unit - III	CO3	K3						
				OR					
13. b)	Unit - III	CO3	K3						
14. a)	Unit - IV	CO4	K3						
			÷	OR					
14. b)	Unit - IV	CO4	K3						
15. a)	Unit - V	CO5	K2						
				OR					
15. b)	Unit - V	CO5	K2						

Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$						
16. a)	Unit - I	CO1	K2			
				OR		
16. b)	Unit - I	CO1	K2			
17. a)	Unit - II	CO2	K3			
				OR		
17. b)	Unit - II	CO2	K3			
18. a)	Unit - III	CO3	K4			
				OR		
18. b)	Unit - III	CO3	K4			
19. a)	Unit - IV	CO4	K5			
				OR		
19. b)	Unit - IV	CO4	K5			
20. a)	Unit - V	CO5	K3			
	OR					
20. b)	Unit - V	CO5	K3			

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PRACTICAL - I					
Course Code	23PPHCP11	L	Р	С		
Category	CORE	-	6	4		
COURSE OB IECTIVES.						

- > To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.

- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 23. Construction of relaxation oscillator using UJT
- 24. FET CS amplifier- Frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741.
- 26. V- I Characteristics of different colours of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Constructions of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

BOOKS FOR STUDY:

- > Practical Physics, Gupta and Kumar, PragatiPrakasan.
- Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
- Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi.
- > Electronic lab manual Vol I, K ANavas, Rajath Publishing.
- Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition.

BOOKS FOR REFERENCES:

- > Advanced Practical Physics, S.P Singh, PragatiPrakasan.
- An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- > Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- > A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

WEB RESOURCES:

- https://unacademy.com/content/upsc/study-material/physics/shapes-ofinterference-fringes-in-youngs-double-slit-experiment/
- https://www.teachspin.com/diode-laser-spectroscopy
- https://vikramlearning.com/jntuh/notes/electronic-circuits-and-pulse-circuitslab/ujt-relaxation-oscillator/280
- https://www.geeksforgeeks.org/4-bit-binary-adder-subtractor/
- https://he-coep.vlabs.ac.in/exp/decoders-encodersmultiplexerdemultiplexer/theory.html

Nature of Course	EMPLOYABILITY		✓	SKILL OR	IENTED		ENTRE	PRENEURSHII	>		
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	\checkmark	
Changes Made in the Course	Percentage of Change		ange	90	No Chan	iges Made			New Course		
*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.											

COUR	SE O	UTC	OM	ES:									K LEVEL
After s	fter studying this course, the students will be able to:												
CO1	Unde	erstand	d the s	strengt	h of	material	using Yo	ung's mo	dulus.				K1 to K5
CO2	Acquire knowledge about arc spectrum and applications of laser									K1 to K5			
CO3	Cond	uct ex	xperin	nents o	n ap	plication	ns of UJT	and arith	metic and	logical ci	rcuits using	g IC's	K1 to K5
CO4	Anal	yze va	arious	param	eter	s related	to operati	onal amp	lifiers.				K1 to K5
CO5	Impro	ove th	ie ana	lytical	and	observa	tion ability	y in Physi	cs Experi	ments			K1 to K5
MAPP	PING V	WITI	H PR	OGR	AM	OUTC	OMES:						
CO/P	0	PO1	P	02	P	03	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	-	2		2		2	3	2	2	2	1	2	3
CO2	?	2		2		3	3	3	3	3	3	3	3
CO3	3	3		3		3	3	3	3	3	3	3	3
CO4	<u> </u>	3		2		3	3	3	3	3	3	3	3
CO5	5	3		3		3	3	3	3	2	2	2	2
CO /	3- 8 PO M	STRO APP	DNG ING:				2	2 – MED	OIUM			1 - L	OW
cc	os	PS	501	PSC)2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CC)1		2	2		2	3	2	2	2	1	2	3
СС)2		2	2		3	3	3	3	3	3	3	3
cc)3		3	3		3	3	3	3	3	3	3	3
СС)4		3	2		3	3	3	3	3	3	3	3
CC)5		3	3		3	3	3	3	2	2	2	2
WEIG E	TAG												
WEIG PERC AGE COU CONT TION PC	EIGHTE D ERCENT AGE OF COURSE DONTRIBU YION TO POS												
LESS	ON P	LAN:											
Ехре	rime	nts				Р	RACTIC	AL - I			HRS	S PE	DAGOGY
1	to 4		Dete Hyp Mea using	erminat erbolic sureme g Diffr	ion frin ent c actio	of Youn ages - Co of wavele on gratin	g's modul ornu's Met ength of D g.	us and Po hod. iode Lase	isson's ra er / He – I	atio by Ne Laser	30	(Chalk & Talk, PPT

	Measurement of Conductivity - Four probe method. Construction of relaxation oscillator using UJT.		
5 to 8	 Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type). 	30	Chalk & Talk, PPT
9 to 12	 Study of Binary to Gray and Gray to Binary code conversion. Study of R-S, clocked R-S and D-Flip flop using NAND gates. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Construction of Encoder and Decoder circuits using ICs. 	30	Chalk & Talk, PPT

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark

Total CIA - 25 mark

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	No. of. Questions	K - Level				
CIA-I CO1 – CO5		K1 – K5	1 Question for Each Student	K1 – K5				
		No. of Questions to be asked	1 Question for Each Student					
Questi	on Pattern	No. of Questions to be answered	1					
CIA - I		Marks for each question	30					
		Total Marks for each section	30					

	Distribution of Marks with COs &K Level for Correction of CIA I							
	COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS			
	CO1	K1 to K5	Aim and apparatus	K1	2.0			
	CO2	K1 to K5	Formula and Tabular Column	K3	5.0			
	CO3	K1 to K5	Understanding and Observation	K5	10.0			
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0			
	CO5	K1 to K5	Interpretation of result	K2	3.0			
	Total				20			
	Marks				- 50			

	Distribution of Marks with K Level CIA I								
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	Aim and apparatus	2	6.67					
	K3	Formula and Tabular Column	5	16.67	-				
	K5	Understanding and Observation	10	33.33	23.34				
CIA I	K4	Calculation and Graph	10	33.33	56.67				
	K2	Interpretation of result	3	10.00	90.00				
	Marks		30	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)						
COs	K - Level	No. of Questions	K – Level			
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5			
No. of Question	ons to be Asked	1 Question for Each Student				
No. of Question	ns to be answered	1				
Marks for e	each question	75				
Total Marks f	for each section	75				

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)					
COs	K - Level	No. of Questions	K – Level		
CO1- CO5	K1 – K5	1 Question for Each Student	K1 – K5		
No. of Question	ons to be Asked	1 Question for Each Student			
No. of Question	ns to be answered	1			
Marks for e	each question	75			
Total Marks f	for each section	75			

Distribution of Marks with K Level							
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %			
K1	Aim and apparatus	10	13.33	13			
K3	Formula and Tabular Column	15	20	20			
K5	Understanding and Observation	30	40	40			
K4	Calculation and Graph	15	20	20			
K2	Interpretation of result	5	6.67	7			
Marks		75	100	100			

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PHYSICS OF NANOSCIENCE AND TECHNOLOGY			
Course Code	23PPHEC11	L	Р	С
Category	ELECTIVE	6	-	3

COURSE OBJECTIVES:

- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- > To provide the basic knowledge about nanoscience and technology.
- > To learn the structures and properties of nanomaterials.
- > To acquire the knowledge about synthesis methods and characterization techniques and its applications.

UNIT – I FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY

Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.

UNIT - II PROPERTIES OF NANOMATERIALS

Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).

UNIT - III SYNTHESIS AND FABRICATION

Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography –Nanomanipulator.

UNIT - IV CHARACTERIZATION TECHNIQUES

Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.

UNIT - V APPLICATIONS OF NANOMATERIALS

Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors - Nanobiosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters –Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries supercapacitors-photovoltaics.

Total Lecture Hours 90

18

19

17

17

19

BOOKS FOR STUDY:

- A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012).
- Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010).
- Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
- > Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).
- Nanotechnology and Nanoelectronics, D.P. Kothari, V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018).

BOOKS FOR REFERENCES:

- E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- > D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
- P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi.
- C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York

WEB RESOURCES:

- **www.khanacademy.org**
- https://youtu.be/LZnRlOA1_2I
- http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
- https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27v S_SIED56gNjVJGO2qa
- https://archive.nptel.ac.in/courses/115/106/115106086/

Course	EMPLOYABILITY			SKILL OR		ENTRE	\checkmark		
Curriculum Relevance	ŀ	REGIO	ONAL		NATION	TIONAL		GLOBAL	\checkmark
ChangesMade in the Course	Percentage of Change			No Chan	ges Made			New Course	

*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COURS	SE OUTC	OMES	:								K	LEVEL
After studying this course, the students will be able to:												
CO1	Understan and shoul	nd the ba d compr	sic of Na ehend the	ano scien e surface	ce and ex effects o	xplore the	e differen omateria	t types of l's.	nanoma	terial's	K	1 to K5
CO2	Explore v nanomate	various pl prial's.	hysical, 1	nechanic	al, optica	al, electrio	cal and m	agnetic p	properties		K	1 to K5
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterial's. K											
CO4	Analyze the various characterizations of Nano-products through diffraction, spectroscopic, microscopic and other techniques.											1 to K5
CO5	CO5 Apply the concepts of Nano science and technology in the field of sensors, robotics, purification of air and water and in the energy devices.											1 to K5
MAPPI	NG WITI	H PRO	GRAM	OUTCO	MES:					1		
CO/PO	PO1	PO2	PC	93 P	PO4	PO5	PO6	PO7	PO	8 P	09	PO10
CO1	3	3	3	3	2	1	1	3	3		3	3
CO2	3	3	3	6	2	1	1	3	3		3	3
CO3	3	3	2	2	2	1	1	3	3		3	3
CO4	3	3	3	6	2	1	1	3	3		3	3
CO 5	3	3	2	2	2	1	1	3	3		3	3
3- STR	ONG			2	- MED	IUM			1 -	LOW		
CO / P	O MAPP	ING:				1						
C	os	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	8 PSO9		PSO10
CC) 1	3	3	3	2	1	1	3	3	3		3
CC) 2	3	3	3	2	1	1	3	3	3		3
CC) 3	3	3	2	2	1	1	3	3	3		3
CC) 4	3	3	3	2	1	1	3	3	3		3
CC) 5	3	3	2	2	1	1	3	3	3		3
WEIG	TAGE											
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS												
LESSO	N PLAN:	:										
UNIT	PHY	YSICS	OF NAI	NOSCIE	ENCE A	ND TEC	CHNOL	OGY	H	RS	PED	AGOGY
I	Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.17Chalk &Talk, PPT, Seminar										halk Talk, PPT, minar	

II	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).	19	Chalk &Talk, PPT
III	Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator.	17	Chalk &Talk, Assignment
IV	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.	18	Chalk & Talk, Assignment
v	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries - supercapacitors - photovoltaics.	19	Chalk & Talk, Seminar

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
			Section	n A	Section B	Section C Either or Choice		
Internal	Cos	K Level	MCC)s	Either or			
			No. of. Questions	K - Level	Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)		
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)		
AII CO4		K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
Question Pattern CIA I & II		No. of Questions to be asked	4		4	4		
		No. of Questions to be answered	4		2	2		
		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10		12	21.43	-				
СІА	K3		10	16	26	46.43	25				
I	K4			16	16	28.57	71.43				
-	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43	-				
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)										
S. No	COs	K	Section A	(MCQs)	Section B (Either /	Section C (Either / or				
		Level	No. of Questions	K – Level	or Choice) With K - LEVEL	Choice) With K – LEVEL				
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
3	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
4	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
5	CO5	K1 to K5	2	K1, K2	2 (K4, K4)	2 (K5, K5)				
No. of Qu	estions to	o be Asked	10		10	10				
No. of	Question answere	ns to be d	10		5	5				
Marks for each question			1	5		8				
Total Marks for each section			10		25	40				
(Figures in parenthesis denotes, questions should be asked with the given K level)										
Distribution of Marks with K Level										
------------------------------------	--	-----------------------------------	-------------------------------------	----------------	--------------------------------------	----------------	--	--	--	--
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5			5	3.57	-				
K2	5	20		25	17.86	-				
K3		20	32	52	37.14	21.43				
K4		10	32	42	30	58.57				
K5			16	16	11.43	88.57				
Marks	10	50	80	140	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level		
Answer AL	L the questic	ons		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the qu	estions PA	RT – B	(5 x 5 = 25 Marks)							
11. a)	Unit - I	CO1	K2								
	OR										
11. b)	Unit - I	CO1	K2								
12. a)	Unit - II	CO2	K3								
	OR										
12. b)	Unit - II	CO2	K3								
13. a)	Unit - III	CO3	K2								
				OR							
13. b)	Unit - III	CO3	K2								
14. a)	Unit - IV	CO4	K3								
				OR							
14. b)	Unit - IV	CO4	K3								
15. a)	Unit - V	CO5	K4								
				OR							
15. b)	Unit - V	CO5	K4								

Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$										
16. a)	Unit - I	CO1	K3							
OR										
16. b)	Unit - I	CO1	K3							
17. a)	Unit - II	CO2	K4							
OR										
17. b)	Unit - II	CO2	K4							
18. a)	Unit - III	CO3	K3							
				OR						
18. b)	Unit - III	CO3	K3							
19. a)	Unit - IV	CO4	K4							
				OR						
19. b)	Unit - IV	CO4	K4							
20. a)	Unit - V	CO5	K5							
	OR									
20. b)	Unit - V	CO5	K5							

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	LINEAR AND DIGITAL ICS AND APPLICATIONS									
Course Code	23PPHEC12 L		P	С						
Category	ELECTIVE 6		-	3						
COURSE OBJECTIVES:										
> To introduce the basic building blocks of linear integrated circuits.										
> To teach the linear and non-linear applications of operational amplifiers.										
To introduce	e the theory and applications of PLL.									
To introduce	e the concepts of waveform generation and introduce one special function	on ICs	s.							
Exposure to	digital IC's									
UNIT - I INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER 16										
Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal										
Operational amplif	ier, Op-Amp internal circuit and Op-Amp. Characteristics.									
UNIT - II APPLICATIONS OF OP-AMP 18										
LINEAR APPLICA	ATIONS OF OP-AMP: Solution to simultaneous equations and different	ntial	equat	ions,						
Instrumentation am	plifiers, V to I and I to V converters.									
NON-LINEAR AF	PLICATIONS OF OP-AMP:Sample and Hold circuit, Log and An	tilog	ampl	ifier,						
multiplier and divi	der, Comparators, Schmitt trigger, Multivibrators, Triangular and So	uare	wave	form						
generators.										
UNIT - III ACT	IVE FILTERS & TIMER AND PHASE LOCKED LOOPS		19)						
ACTIVE FILTERS	: Introduction, Butterworth filters – 1st order, 2nd order low pass and I	nigh p	oass fi	lters,						
band pass, band rej	ect and all pass filters.	• •								
TIMER AND PHA	ASE LOCKED LOOPS: Introduction to IC 555 timer, description	n of	funct	ional						
diagram, monostab	le and astable operations and applications, Schmitt trigger, PLL - intr	oduc	tion,	basic						
principle, phase de	principle phase detector/comparator voltage controlled oscillator (IC 566) low pass filter monolithic									
PLL and applications of PLL										
UNIT - IV VOL'	FAGE REGULATOR & D to A AND A to D CONVERTERS		17	7						
VOLTAGE REGU	JLATOR: Introduction, Series Op-Amp regulator, IC Voltage Reg	ulato	ors, IC	2 723						
general purpose reg	general purpose regulators, Switching Regulator.									

D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

UNIT - V CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & 20 SEQUENTIAL CIRCUITS USING TTL 74XX ICs

CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).

Total Lecture Hours 90

BOOKS FOR STUDY:

- D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India
- Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi.
- > B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.
- > V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
- V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.

BOOKS FOR REFERENCES:

- Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.
- Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi
- > Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
- > Integrated Electronics, Millman&Halkias, Tata McGraw Hill, 17th Reprint (2000).

WEB RESOURCES:

- https://nptel.ac.in/course.html/digital circuits/
- https://nptel.ac.in/course.html/electronics/operational amplifier/
- https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/fieldeffect-controlled-thyristors/
- https://www.electrical4u.com/applications-of-op-amp/
- https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Course	EMPLOYABILITY			SKILL ORIENTED		~	ENTRE	ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL		REGI	GIONAL		NATIONAL			GLOBAL	\checkmark
Changes Made in the Course	Percentage	e of Ch	ange	60	No Chan	iges Made			New Course	

*****Treat 20% as each unit (20*****5=100%) and calculate the percentage of change for the course.

COURS	E OUT	COME	S:								K LEVEL
After stu	dying t	his cours	se, the st	udents	will be al	ole to:					
CO1	Learn integra	about the ated circu	e basic co aits and c	oncepts f levelops	for the cin skill to s	cuit config olve proble	uration for ems	r the desi	gn of line	ar	K1 to K5
CO2	Develo design	op skills the activ	to desigr ve filters	linear a circuits.	nd non-li	inear applic	cations cire	cuits usin	g Op-Am	p and	K1 to K5
CO3	Gain k IC 555	nowledg 5 timer ar	e about l nd can so	PLL, and lve prob	l develop dems rela	the skills t ted to it.	to design t	he simple	e circuits u	lsing	K1 to K5
CO4	Learn	about va	rious tec	hniques	to develo	p A/D and	D/A conv	erters.		1	K1 to K5
CO5	Acqui	re the kn	owledge	about th	e CMOS	logic, com	binational	and sequ	ential cire	cuits]	K1 to K5
MAPPII	NG WI'	rh pro	OGRAM	OUTC	OMES:						
CO/PO	PO1	PO	2 P	03	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	3		3	3	2	2	3	3	3	2
CO2	3	3		3	3	1	3	3	3	2	1
CO3	3	3		3	3	1	3	3	3	2	1
CO4	3	3		3	3	1	3	3	3	2	1
CO5	3	3		3	2	1	1	2	3	2	1
3- STR	ONG				2 – ME	DIUM			1 - 1	LOW	
CO / P	O MAP	PING:									
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
СО	1	3	3	3	3	2	2	3	3	3	2
со	2	3	3	3	3	1	3	3	3	2	1
CO	3	3	3	3	3	1	3	3	3	2	1
CO	4	3	3	3	3	1	3	3	3	2	1
СО	5	3	3	3	2	1	1	2	3	2	1
WEIG1	AGE										
WEIGH PERCE GE (ITED ENTA OF										

COU CONT ION T	RSE RIBUT D POS								
LESSC	N PLAN:								
UNIT	LINEAR AND DIGITAL ICs AND APPLICATIONS	HR	S P	EDAGOGY					
I	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-Amp. Characteristics.	16	5	Chalk &Talk, PPT, Seminar					
II	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.	18	•	Chalk &Talk, PPT					
III	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566) low pass filter monolithic PLL and applications of PLL								
IV	Sob), Iow pass filter, monolithic PLL and applications of PLLVeltVOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, ICVoltage Regulators, IC 723 general purpose regulators, SwitchingRegulator.D to A AND A to D CONVERTERS: Introduction, basic DACtechniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2RDAC, A to D converters -parallel comparator type ADC, counter typeADC, successive approximation ADC and dual slope ADC, DAC and								
V	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR- AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).	20	P	Seminar, PT, Chalk &Talk					

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)									
			Section	n A	Section B				
Internal	Cos	K Level	MCC) s	Either or	Section C			
	000		No. of. Questions	K - Level	Choice	Either or Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)			
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)			
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)			
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
	<u>.</u>	No. of Questions to be asked	4		4	4			
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2			
		Marks for each question	1		5	8			
		Total Marks for each section	4		10	16			

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
CIA	K3		10	16	26	46.43	53.57				
I	K4										
	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	ive Exan	nination – B	lue Print Artic	culation Map	ping – K Level with C	ourse Outcomes (COs)	
		V	Section A	(MCQs)	Section B (Either /	Section C (Either / or	
S. No	COs	K -	No. of	V Loval	or Choice) With	Choice) With	
		Level	Questions	K – Level	K - LEVEL	K - LEVEL	
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)	
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)	
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)	
No. of Qu	estions t	o be Asked	10		10	10	
No. of	No. of Questions to be answered		10		5	5	
Marks	for each	question	1		5	8	
Total Marks for each section			10		25	40	
	(Figure	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	jiven K level)	

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5			5	3.57	-				
K2	5	20	16	41	29.29	-				
K3		30	32	62	44.28	32.86				
K4			16	16	11.43	77.14				
K5			16	16	11.43	88.57				
Marks	10	50	80	140	100	100				

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	СО	K-level		
Answer A	LL the quest	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)						
11. a)	Unit - I	CO1	K2							
	OR									
11. b)	Unit - I	CO1	K2							
12. a)	Unit - II	CO2	K3							
				OR						
12. b)	Unit - II	CO2	K3							
13. a)	Unit - III	CO3	K3							
				OR						
13. b)	Unit - III	CO3	K3							
14. a)	Unit - IV	CO4	K2							
				OR						
14. b)	Unit - IV	CO4	K2							
15. a)	Unit - V	CO5	K3							
			·	OR						
15. b)	Unit - V	CO5	K3							

Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$								
16. a)	Unit - I	CO1	K2					
OR								
16. b)	Unit - I	CO1	K2					
17. a)	Unit - II	CO2	K3					
				OR				
17. b)	Unit - II	CO2	K3					
18. a)	Unit - III	CO3	K3					
				OR				
18. b)	Unit - III	CO3	K3					
19. a)	Unit - IV	CO4	K4					
				OR				
19. b)	Unit - IV	CO4	K4					
20. a)	Unit - V	CO5	K5					
	OR							
20. b)	Unit - V	CO5	K5					

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	STATISTICAL MECHANICS			
Course Code	23PPHCC21	L	Р	С
Category	CORE	6	-	5

COURSE OBJECTIVES:

- > To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- > To grasp the fundamental knowledge about the three types of
- > statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties thatvary with time.

UNIT - I PHASE TRANSITIONS

Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.

UNIT - II STATISTICAL MECHANICS AND THERMODYNAMICS

Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.

UNIT - III CANONICAL AND GRAND CANONICAL ENSEMBLES

Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.

UNIT - IV CLASSICAL AND QUANTUM STATISTICS

Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.

UNIT - V REAL GAS, ISING MODEL AND FLUCTUATIONS

Cluster expansion for a classical gas - Virial equation of state – Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation.

Total Lecture Hours 90

18

18

18

20

16

BOOKS FOR STUDY:

- > S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
- B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition New Age International, New Delhi.
- J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied Publication, New Delhi.
- > F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New York.
- M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, McGraw-Hill New York.

BOOKS FOR REFERENCES:

- R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter WorthHeinemann, New Delhi.
- > L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford.
- K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
- W. Greiner, L. Neise and H. Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York.
- > A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.

WEB RESOURCES:

- https://byjus.com/chemistry/third-law-of-thermodynamics/
- https://web.stanford.edu/~peastman/statmech/thermodynamics.html
- https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
- https://en.wikipedia.org/wiki/Grand_canonical_ensemble
- https://en.wikipedia.org/wiki/Ising_model

Nature of Course	EMPLOYABILITY			SKILL ORIENTED		✓	ENTREPRENEURSHIP)	
Curriculum Relevance	LOCAL		REGIONAL			NATION	4L		GLOBAL	\checkmark
Changes Made in the Course	Percentage of Change			70	No Chan	iges Made			New Course	
*Treat 2		h unit /	(20*5-1	00%)	and calcula	to the norce	ntoad	of chan	ge for the cou	rca

COURS	E OUT	COME	S:								K L	EVEL
After stu	dying t	his cour	se, the st	udents v	vill be al	ole to:						
CO1	To exa states of	amine an of matter	d elabora r during p	te the effort	fect of cl	nanges in	thermody	namic qua	antities or	n the	K1	to K5
CO2	 To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities 											
СОЗ	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function K1 to K							to K5				
CO4	To rec Fermi types o	all and a gas and of statisti	pply the ideal Bos ics.	different se gas and	statistica d also to	al concept compare	s to analy and distin	ze the bel guish bet	naviour of ween the	f ideal three	K 1	to K5
CO5	To discuss and examine the thermodynamicalbehaviour of gases under fluctuation and also using Ising model K1 to K5											
MAPPIN	ING WITH PROGRAM OUTCOMES:											
CO/PO	PO1	PC	02 P	03	PO4	PO5	PO6	PO7	POS	8 PO9)]	PO10
CO1	3	3	;	3	1	1	2	3	1	1		3
CO2	3	3	}	3	1	1	2	3	1	1		3
CO3	3	3	;	3	1	1	2	3	2	1		3
CO4	3	3	}	3	1	1	2	3	2	1		3
C05	3	3		3	1	1	2	3	1	1		3
3- STR	ONG				2 – ME	DIUM			1 -	LOW		
CO / PO	O MAP	PING:	1	ł							1	
CO	S	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	P	SO10
СО	1	3	3	3	1	1	2	3	1	1		3
со	2	3	3	3	1	1	2	3	1	1		3
СО	3	3	3	3	1	1	2	3	2	1		3
со	4	3	3	3	1	1	2	3	2	1		3
СО	5	3 3 3 1 1 2 3 1 1						3				
WEIGT	AGE											
WEIGH PERCEI E O COUR CONTRI ON TO	TED NTAG F SE IBUTI POS											

LESSON PLAN:							
UNIT	STATISTICAL MECHANICS	HRS	PEDAGOGY				
I	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.	18	Chalk &Talk, PPT, Seminar				
II	Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.	18	Chalk &Talk, PPT				
III	Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.	16	Chalk &Talk, Assignment				
IV	Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.	18	Chalk &Talk, Group discussion				
v	Cluster expansion for a classical gas - Virial equation of state – Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space- time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation	20	Seminar, PPT, Chalk &Talk				

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
			Section	n A	Section B			
Internal	Cos	K Level	MCC)s	Either or	Section C Either or Choice		
			No. of. Questions	K - Level	Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
CI	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
	1	No. of Questions to be asked	4		4	4		
Question Pattern CIA I & II		No. of Questions to be answered	4		2	2		
		Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2			2	3.57				
	K2	2			2	3.57				
СІА	K3		20		20	35.71	7.14			
I	K4			32	32	57.14	42.86			
	Marks	4	20	32	56	100	100			
	K1	2			2	3.57				
	K2	2			2	3.57				
CIA	K3		20		20	35.71	7.14			
II	K4			32	32	57.14	42.86			
	Marks	4	20	32	56	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
		V	Section A	(MCQs)	Section B (Either /	Section C (Either / or			
S. No	COs		No. of	V Lovel	or Choice) With	Choice) With			
		Level	Questions	K – Level	K - LEVEL	K - LEVEL			
1	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)			
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K5, K5)			
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)			
No. of Qu	estions to	o be Asked	10		10	10			
No. of Questions to be answered		ns to be d	10		5	5			
Marks for each question		question	1		5	8			
Total Marks for each section		ach section	10		25	40			
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)			

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5			5	3.57	-		
K2	5	10		15	10.71	3.57		
K3		40	16	56	40.00	14.28		
K4			48	48	34.29	54.28		
K5			16	16	11.43	88.57		
Marks	10	50	80	140	100	100		
NR. Higher les	vol of porform	nco of the stu	donts is to bo	accored	hy attemptin	a higher level of K		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Q. No.	Unit	CO	K-level		
Answer Al	LL the questio	ns		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Summative Examinations - Question Paper – Format

Answer	Answer ALL the questions PART – B			(5 x 5 = 25 Marks)						
11. a)	Unit - I	CO1	K3							
	OR									
11. b)	Unit - I	CO1	K3							
12. a)	Unit - II	CO2	K3							
OR										
12. b)	Unit - II	CO2	K3							
13. a)	Unit - III	CO3	K3							
				OR						
13. b)	Unit - III	CO3	K3							
14. a)	Unit - IV	CO4	K2							
				OR						
14. b)	Unit - IV	CO4	K2							
15. a)	Unit - V	CO5	K3							
				OR						
15. b)	Unit - V	CO5	K3							

Answer A	Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$							
16. a)	Unit - I	CO1	K4					
OR								
16. b)	Unit - I	CO1	K4					
17. a)	Unit - II	CO2	K4					
OR								
17. b)	Unit - II	CO2	K4					
18. a)	Unit - III	CO3	K4					
				OR				
18. b)	Unit - III	CO3	K4					
19. a)	Unit - IV	CO4	K5					
				OR				
19. b)	Unit - IV	CO4	K5					
20. a)	Unit - V	CO5	K3					
				OR				
20. b)	Unit - V	CO5	K3					

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	QUANTUM MECHANICS – I						
Course Code	23PPHCC22	L	Р	С			
Category	CORE	6	-	5			
COURSE OBJE	CTIVES:						

- To develop the physical principles and the mathematical background important to quantum mechanical ≻ descriptions.
- To describe the propagation of a particle in a simple, one-dimensional potential. \triangleright
- \succ To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their \geq relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods fo \succ solving the Schrödinger equation.

UNIT - I **BASIC FORMALISM**

Interpretation of the wave function - Time dependent Schrodinger equation - Time independent Schrodinger equation - Stationary states - Ehrenfest's theorem - Linear vector space - Linear operator -Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables - General Uncertainty relation

DIMENSIONAL AND THREE-DIMENSIONAL ENERGY EIGEN VALUE 18 UNIT - II PROBLEMS

Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier - Alpha emission - Bloch waves in a periodic potential - Kronig-penny square - well periodic potential -Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator

UNIT - III GENERAL FORMALISM

Dirac notation - Equations of motions - Schrodinger representation - Heisenberg representation -Interaction representation - Coordinate representation - Momentum representation - Symmetries and conservation laws - Unitary transformation - Parity and time reversal

UNIT - IV APPROXIMATION METHODS

Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom - Ground and excited state - Variation method - Helium atom - WKB approximation - Connection formulae (no derivation) - WKB quantization - Application to simple harmonic oscillator.

UNIT - V **ANGULAR MOMENTUM**

Eigenvalue spectrum of general angular momentum - Ladder operators and their algebra - Matrix representation - Spin angular momentum - Addition of angular momenta - CG Coefficients - Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.

Total Lecture Hours 90

17

18

18

19

BOOKS FOR STUDY:

- P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.
- ▶ G. Aruldhas, Quantum Mechanics, 2ndedition, Prentice Hall of India, New Delhi, 2009.
- > David J Griffiths, Introduction to Quantum Mechanics. 4thedition, Pearson, 2011.
- SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982.
- A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.

BOOKS FOR REFERENCES:

- E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.
- V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985.
- L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976.
- S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
- V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.

WEB RESOURCES:

- http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf
- http://www.feynmanlectures.caltech.edu/III_20.html
- http://web.mit.edu/8.05/handouts/jaffe1.pdf
- https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/
- https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

Nature of Course	EMPLOYABILITY				SKILL ORIENTED		\checkmark	ENTREPRENEURSHIP)
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL		GLOBAL	\checkmark
Changes Made in the Course	Percentage of Change			60	No Chan	iges Made			New Course	
*Treat 2	0% as each	h unit	(20*5-1	00%)	and calcula	te the nerce	ntag	of chan	ge for the cou	rse

COURS	E OUTC	OMES	:								K LEVEL	,
After stu	idying thi	is course	, the stu	dents wi	ll be able	e to:						
CO 1	Demons which s	strates a cerve to for	clear und ormalize	erstandir the rules	ng of the of quant	basic pos um Mecł	tulates of nanics	f quantum	mechan	ics	K1 to K5	;
CO2	Is able t problem	o apply and the	and analy ree dimer	ze the Sonsional p	chrodinge roblems	er equation	on to solv	e one dim	ensional		K1 to K5	;
CO3	Can dise time eve	cuss the volution	various re	epresenta	ations, sp	ace time	symmetri	ies and for	rmulatio	ns of	K1 to K5	;
CO4	Can formulate and analyze the approximation methods for various quantum mechanical problems									K1 to K5	5	
CO5	To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.									K1 to K5	;	
MAPPI	NG WIT	H PROG	GRAM O	OUTCO	MES:							
CO/PO	PO1	PO2	PO	93 F	PO4	PO5	PO6	PO7	PO	8 PO	9 PO10	
CO1	3	3	3	}	3	3	2	3	2	2	3	
CO2	3	3	3	}	3	3	S	3	2	2	3	
CO3	2	3	3	;	2	3	2	3	2	2	3	
CO4	3	3	3	}	3	3	2	3	3	2	3	
CO5	3	3	3		2	3	S	3	3	2	3	
3.	3- STRONG 2 - MEDIUM 1 - LOW											
CO / PO MAPPING:												
CC	DS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
CC) 1	3	3	3	3	3	2	3	2	2	3	
CC	2	3	3	3	3	3	S	3	2	2	3	
CC	3	2	3	3	2	3	2	3	2	2	3	
CC	94	3	3	3	3	3	2	3	3	2	3	
CC	5	3	3	3	2	3	3	3	3	2	3	
WEIG	TAGE											
WEIG PERCE OF CO CONTR N TO	HTED NTAGE DURSE IBUTIO POS											
LESSO	N PLAN	:										
UNIT			QUAN	TUM M	ECHAN	NICS – I			HI	RS P	EDAGOGY	- -
I	Interpreta equation Ehrenfest functions	tion of Time in s theore and Ei	the wav ndepende em – Lir gen Val	ve functi ent Schro near vect ues – H	on – Ti dinger ea tor space Hermitian	ime depe quation – – Linea i Operato	endent Se Stationa r operato or – Pos	chrodinge ry states - or – Eiger stulates o	er n 1 of	8	Chalk &Talk, PPT, Seminar	

	Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation		
п	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator	18	Chalk &Talk, PPT
III	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal	17	Chalk &Talk, Assignment
IV	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.	18	Chalk & Talk, Assignment
v	Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.	19	Seminar, PPT, Chalk &Talk

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	Section MC(n A Qs	Section B Fither or	Section C Either or Choice		
	005	I Level	No. of. Questions	K - Level	Choice			
CI	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
CI	CO3	K1 to K5	2	K1, K1	2 (K3, K3)	2 (K4, K4)		
AII	CO4	K1 to K5	2	K2, K2	2 (K3, K3)	2 (K4, K4)		
	1	No. of Questions to be asked	4		4	4		
Quest	tion	No. of Questions to be answered	4		2	2		
CIA I	& II	Marks for each question	1		5	8		
		Total Marks for each section	4		10	16		

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2			2	3.57				
	K2	2			2	3.57				
СІА	K3		20		20	35.71	7.14			
I	K4			32	32	57.14	42.86			
-	Marks	4	20	32	56	100	100			
	K1	2			2	3.57				
	K2	2			2	3.57				
CIA	K3		20		20	35.71	7.14			
II	K4			32	32	57.14	42.86			
	Marks	4	20	32	56	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
			Section A	(MCQs)	Section B (Either / or	Section C (Either / or		
S. No	COs	K - Level	No. of	K Lovol	Choice) With	Choice) With		
			Questions	K – Levei	K - LEVEL	K - LEVEL		
1	CO1	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)		
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K5, K5)		
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)		
No. of Qu	estions to	be Asked	10		10	10		
No. of Questions to be answered		ns to be 1	10		5	5		
Marks for each question		question	1		5	8		
Total Marks for each section		10		25	40			
	(Figu	ires in parent	thesis denotes,	questions show	uld be asked with the give	en K level)		

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5			5	3.57	-			
K2	5	10		15	10.71	3.57			
K3		40	16	56	40.00	14.28			
K4			48	48	34.29	54.28			
K5			16	16	11.43	88.57			
Marks	10	50	80	140	100	100			
NB: Higher lev	vel of performa	ance of the stu	dents is to be	assessed l	by attempting	g higher level of K			

levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the quest	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions		PART – B	(5 x 5 = 25 Marks)				
11. a)	Unit - I	CO1	K3						
OR									
11. b)	Unit - I	CO1	K3						
12. a)	Unit - II	CO2	K3						
	OR								
12. b)	Unit - II	CO2	K3						
13. a)	Unit - III	CO3	K3						
				OR					
13. b)	Unit - III	CO3	K3						
14. a)	Unit - IV	CO4	K2						
				OR					
14. b)	Unit - IV	CO4	K2						
15. a)	Unit - V	CO5	K3						
				OR					
15. b)	Unit - V	CO5	K3						

Answer ALL the questions				PART – C	(5 x 8 = 40 Marks)		
16. a)	Unit - I	CO1	K4				
				OR			
16. b)	Unit - I	CO1	K4				
17. a)	Unit - II	CO2	K4				
				OR			
17. b)	Unit - II	CO2	K4				
18. a)	Unit - III	CO3	K3				
	OR						
18. b)	Unit - III	CO3	K3				
19. a)	Unit - IV	CO4	K5				
				OR			
19. b)	Unit - IV	CO4	K5				
20. a)	Unit - V	CO5	K4				
	OR						
20. b)	Unit - V	CO5	K4				

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	PRACTICAL - II					
Course Code	23PPHCP21	L	Р	С		
Category	CORE	-	6	4		
COURSE OD IECTIVES.						

COURSE OBJECTIVES:

- > To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. Measurement of Susceptibility of liquid Quincke's method
- 5. B-H curve using CRO
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. LG Plate
- 8. Arc spectrum: Copper
- 9. Determination of Solar constant
- 10. Determination of e/m Millikan's method
- 11. Miscibility measurements using ultrasonic diffraction method
- 12. Determination of Thickness of thin film. Michelson Interferometer
- 13. GM counter Feather's analysis: Range of Beta rays
- 14. Iodine absorption spectra
- 15. Molecular spectra CN bands
- 16. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 17. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 18. Measurement of Dielectricity Microwave test bench
- 19. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility

- 20. Interpretation of vibrational spectra of a given material.
- 21. Determination of I-V Characteristics and efficiency of solar cell.
- 22. IC 7490 as scalar and seven segment display using IC7447
- 23. Solving simultaneous equations IC 741 / IC LM324
- 24. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 25. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 26. Construction of second order butter worth multiple feedback narrow band pass filter
- 27. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 28. Construction of square wave generator using IC 555 Study of VCO
- 29. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer
- 30. Construction of pulse generator using the IC 555 Application as frequency divider
- 31. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 32. Study of binary up / down counters IC 7476 / IC7473
- 33. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
- 34. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 35. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 36. Study of Modulus Counter
- 37. Construction of Multiplexer and Demultiplexer using ICs.

BOOKS FOR STUDY:

- > Practical Physics, Gupta and Kumar, PragatiPrakasan
- Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences
- > Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- Electronic lab manual Vol I, K ANavas, Rajath Publishing
- Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition.

BOOKS FOR REFERENCES:

- An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- Advanced Practical Physics, S.P Singh, PragatiPrakasan
- A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd
- Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing
- Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi

WEB RESOURCES:

- https://www.niser.ac.in/sps/sites/default/files/basic_page/Young's%20modulus%20by%20Cornu's%20method.pdf
- https://www.mdpi.com/2075-1702/9/12/336
- https://www.electronics-tutorials.ws/filter/second-order-filters.html
- https://acschandwadcollege.com/up-images/downloads/FY_Asynchronous-Up-Down-counter.pdf
- https://www.engineersgarage.com/building-multiplexer-and-demultiplexerusing-sn-7400-series-ics-de-part-16/

Curriculum LOCAL REGIONAL NATIONAL GLOBAL V	
Relevance	
Changes Made in the CoursePercentage of Change90No Changes MadeNew Course	

*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.

COUR	SE O	UTCON	IES:							1	K LEVEL
After st	After studying this course, the students will be able to:										
CO1	Understand the strength of material using Young's modulus and Poisson's ratio by Elliptical fringes								ptical	K1 to K5	
CO2	Acqu	ire knowl	edge on Co	oefficient of	linear exp	pansion]	K1 to K5
CO3	Unde semi	erstand the	eoretical print	inciples of ca al	arrier conc	entration	and carrie	er mobilit	y of]	K1 to K5
CO4	Solv	ing simul	ltaneous e	quations usi	ng OPAM	IP and ICs	5]	K1 to K5
CO5	Impr	ove the an	alytical an	d observatior	ability in	Physics Ex	periments			1	K1 to K5
MAPP	ING V	WITH P	ROGRA	м оитсс	MES:						
CO/P	0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	8 PO 9	PO10
CO1	L	2	2	2	S	S	2	2	2	3	3
CO2	2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3
CO4	ŀ	3	2	3	3	3	3	2	3	3	3
COS	5	3	3	3	3	3	3	3	3	3	3
3- STE	RONO	ł		2	2 – MED	IUM			1 - L	OW	
CO / PO MAPPING:											
CO	os	PSO1	PSO2	2 PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO	01	2	2	2	3	3	2	2	2	3	3
CO	02	2	2	3	3	3	2	2	3	3	3

Academic Council Meeting Held On 20.04.2023

CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
WEIGTAGE										
WEIGHTED PERCENTA GE OF COURSE CONTRIBU TION TO POS										

LESSON PLAN:

Experiments	PRACTICAL - II	HRS	PEDAGOGY
1 to 4	Determination of Young's modulus and Poisson's ratio by Elliptical fringes - Cornu's Method. Measurement of Coefficient of linear expansion- Air wedge Method. Determination of Refractive index of liquids using diode Laser/ He – Ne Laser. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility.	30	Demonstrat ion & Video
5 to 8	IC 7490 as scalar and seven segment display using IC7447. Solving simultaneous equations – IC 741 / IC LM324. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.	30	Chalk & Talk, PPT
9 to 12	Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 Construction of square wave generator using IC 555 – Study of VCO Study of binary up / down counters - IC 7476 / IC7473 Construction of Multiplexer and Demultiplexer using ICs.	30	Chalk & Talk, PPT

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

Record Note and Attendance -10 mark Model examination - 15 mark **Total CIA - 25 mark**

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)						
InternalCosK LevelNo. of. QuestionsK - Level						
CIA-I	CO1 – CO5	K1 – K5	1 Question for Each Student	K1 – K5		
Question Pattern CIA - I		No. of Questions to be asked	1 Question for Each Student			
		No. of Questions to be answered	1			
		CIA - I Marks for each question				
		Total Marks for each section	30			

Model examination should be conducted for 30 mark and it has to be converted to 15 mark

Distribution of Marks with COs &K Level for Correction of CIA I							
	COs	K - Level	K - Level	MARKS			
	CO1	K1 to K5	Aim and apparatus	K1	2.0		
	CO2	K1 to K5	Formula and Tabular Column	K3	5.0		
	CO3	K1 to K5	Understanding and Observation	K5	10.0		
CIA I	CO4	K1 to K5	Calculation and Graph	K4	10.0		
	CO5	K1 to K5	Interpretation of result	K2	3.0		
	Total				30		
	Marks				30		

	Distribution of Marks with K Level CIA I								
	K Level	Distribution of the work of the experiment	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	Aim and apparatus	2	6.67					
CIA I	K3	Formula and Tabular Column	5	16.67	-				
	K5	Understanding and Observation	10	33.33	23.34				
	K4	Calculation and Graph	10	33.33	56.67				
	K2	Interpretation of result	3	10.00	90.00				
	Marks		30	100	100				

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

K5 – Evaluating, interpreting and concluding the results with accurate measurements.

COs K - Level		No. of Questions	K – Level
CO1- CO5 K1 – K5		1 Question for Each Student	K1 – K5
No. of Questions to be Asked		1 Question for Each Student	
No. of Questions to be answered		1	
Marks for e	each question	75	
Total Marks f	for each section	75	

Distribution of Marks with COs &K Level for Correction of the Summative									
	Exam								
COs	K - Level	Distribution of the work of the experiment	K - Level	MARKS					
CO1	K1 to K5	Aim and apparatus	K1	10					
CO2	K1 to K5	Formula and Tabular Column	K3	15					
CO3	K1 to K5	Understanding and Observation	K5	30					
CO4	K1 to K5	Calculation and Graph	K4	15					
CO5	K1 to K5	Interpretation of result	K2	5					
Total				75					
Marks				15					

Distribution of Marks with K Level								
K Level	Parameters for K-Level	Total Marks	% of (Marks without choice)	Consolidated %				
K1	Aim and apparatus	10	13.33	13				
K3	Formula and Tabular Column	15	20	20				
K5	Understanding and Observation	30	40	40				
K4	Calculation and Graph	15	20	20				
K2	Interpretation of result	5	6.67	7				
Marks		75	100	100				

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ADVANCED OPTICS							
Course Code	23PPHEC21	L	Р	С				
Category	Elective	5	-	3				
COURSE OBJECTIVES								

- > To know the concepts behind polarization and could pursue research work on application aspects of laser
- To impart an extensive understanding of fiber and non-linear optics \succ
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

UNIT - I POLARIZATION AND DOUBLE REFRACTION

Classification of polarization - Transverse character of light waves - Polarizer and analyzer - Malu's law - Production of polarized light - Wire grid polarizer and the polaroid - Polarization by reflection -Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence - Interference of polarized light: Quarter and half wave plates - Analysis of polarized light – Optical activity

UNIT - II LASERS

Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd: YAG laser – gas lasers – He-Ne laser - CO2 laser - Chemical lasers - HCl laser - Semiconductor laser

UNIT - III FIBER OPTICS

Introduction - Total internal reflection - The optical fiber - Glass fibers - The coherent bundle - The numerical aperture - Attenuation in optical fibers - Single and multi-mode fibers - Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiberoptic sensors: precision displacement sensor - Precision vibration sensor

UNIT - IV NON-LINEAR OPTICS

Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light

UNIT - V **MAGNETO-OPTICS AND ELECTRO-OPTICS**

Magneto-optical effects - Zeeman effect - Inverse Zeeman effect - Faraday effect - Voigt effect - Cottonmouton effect - Kerr magneto-optic effect - Electro-optical effects - Stark effect - Inverse stark effect -Electric double refraction – Kerr electro-optic effect – Pockels electro-optic effect.

Total Lecture Hours 90

18

16

18

18

20

BOOKS FOR STUDY:

- > B. B. Laud, 2017, Lasers and Non Linear Optics, 3rd Edition, New Age International (P) Ltd.
- > AjoyGhatak, 2017, Optics, 6th Edition, McGraw Hill Education Pvt. Ltd.
- William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York
- > J. Peatros, Physics of Light and Optics, a good (and free!) electronic book
- > B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,

BOOKS FOR REFERENCES:

- F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th Edition), McGraw Hill International Edition.
- > Dieter Meschede, 2004, Optics, Light and Lasers, Wiley VCH, Varley GmbH.
- Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4th Edition, Cambridge University Press, New Delhi, 2011.
- Y. B. Band, Light and Matter, Wiley and Sons (2006)
- R. Guenther, Modern Optics, Wiley and Sons (1990)

WEB RESOURCES:

- https://www.youtube.com/watch?v=WgzynezPiyc
- https://www.youtube.com/watch?v=ShQWwobpW60
- https://www.ukessays.com/essays/physics/fiber-optics-and-itapplications.php
- https://www.youtube.com/watch?v=0kEvr4DKGRI
- http://optics.byu.edu/textbook.aspx

Nature of Course	EMPLOYABILITY				SKILL OR		ENTREPRENEURSHIP		✓ √	
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL	GLOBAL		\checkmark
Changes Made in the Course	Percentag	e of Ch	ange	55	No Char	iges Made				
*Treat 20% as each unit (20*5=100%) and calculate the percentage of change for the course.										

COUR	SE OUT	COME	S:								K	LEVEL
After studying this course, the students will be able to:												
CO1	Discuss	the trans	sverse ch	aracter of	f light wa	aves and c	lifferent p	olarizatio	n phenor	nenon	K	1 to K5
CO2	Discrim design a	inate all and opera	the fund tion of t	amental p he device	processes s	involved	in laser c	levices and	d to analy	yze the	K	1 to K5
CO3	Demons advanta	strate the ges	basic co	nfiguratio	on of a fi	ber optic	– commu	nication s	ystem an	d	K	1 to K5
CO4	Identify	the prop	perties of	nonlinea	r interac	tions of li	ght and n	natter			K	1 to K5
CO5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field											1 to K5
MAPPI	ING WI	rh pro	OGRAM	OUTC	OMES:		1					
CO/PO	PO1	PO	2 P	03	PO4	PO5	PO6	PO7	PO	8 PC	9	PO10
CO1	3	3		3	2	3	3	3	3	3	6	3
CO2	3	3		3	2	3	3	3	3	3	6	3
CO3	3	3		3	2	3	3	3	3	3	•	3
CO4	3	3		3	3	3	3	3	3	3	}	3
C05	3	3		3	3	3	3	3	3	3	•	3
3- STR	RONG				2 – ME	DIUM			1 -	LOW		
CO / I	PO MAP	PING:									l	
CC	DS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9		PSO10
CC) 1	3	3	3	2	3	3	3	3	3		3
CC	2	3	3	3	2	3	3	3	3	3		3
CC	3	3	3	3	2	3	3	3	3	3		3
CC) 4	3	3	3	3	3	3	3	3	3		3
CC	5	3	3	3	3	3	3	3	3	3		3
WEIG	TAGE											
WEIGHTED PERCENTAG E OF COURSE CONTRIBUTI												
LESSO	N PLAT	V:										
UNIT			A	ADVANO	CED OP	TICS			HI	RS F	PED.	AGOGY
I	ONTIADVANCED OPTICSHKSPEDAGOCONTIADVANCED OPTICSHKSPEDAGOCONTIClassification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence –20Chalk &Talk, PPT, Seminar										halk Falk, 'PT, minar	

	Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity		
п	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO_2 laser – Chemical lasers – HCl laser – Semiconductor laser	18	Chalk &Talk, PPT
III	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor	18	Chalk &Talk, Assignment
IV	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light	16	Chalk & Talk, Assignment
v	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto- optic effect – Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction – Kerr electro-optic effect – Pockels electro- optic effect	18	Seminar, PPT, Chalk &Talk

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)											
			Section	n A	Section B	Section C Either or Choice					
Internal	Cos	K Level	MCC)s	Either or						
	005		No. of. Questions	K - Level	Choice						
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)					
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)					
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)					
AII CO4		K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)					
Question Pattern CIA I & II		No. of Questions to be asked	4		4	4					
		No. of Questions to be answered	4		2	2					
		Marks for each question	1		5	8					
		Total Marks for each section	4		10	16					
	Distribution of Marks with K Level CIA I & CIA II										
-----	---	--	---	---	----------------	-----------------------------------	---------------------	--	--	--	--
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
СІА	K3		10	16	26	46.43	53.57				
I	K4										
	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summati	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
		K	Section A	(MCQs)	Section B (Either /	Section C (Either / or				
S. No	COs	K - Level	No. of	K – Level	or Choice) With	Choice) With				
		Level	Questions	K Level	K - LEVEL	K - LEVEL				
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)				
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)				
No. of Qu	estions to	o be Asked	10		10	10				
No. of	Question	ns to be d	10		5	5				
Marks for each question			1		5	8				
Total Marks for each section			10	25		40				
	(Figures	s in parenth	esis denotes, q	uestions sho	uld be asked with the g	iven K level)				

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5			5	3.57	-					
K2	5	20	16	41	29.29	3.57					
K3		30	32	62	44.28	32.86					
K4			16	16	11.43	77.14					
K5			16	16	11.43	88.57					
Marks	10	50	80	140	100	100					
NB: Higher lev	el of perform	ance of the stu	dents is to be	assessed l	by attemptin	g higher level of K					

levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	СО	K-level		
Answer A	LL the quest	ions		PART – A	(10 x 1 = 10 Marks)
	Unit - I	CO1	K1		
1.				a)	b)
				c)	d)
	Unit - I	CO1	K2		
2.				a)	b)
				c)	d)
	Unit - II	CO2	K1		
3.				a)	b)
				c)	d)
	Unit - II	CO2	K2		
4.				a)	b)
				c)	d)
	Unit - III	CO3	K1		
5.				a)	b)
				c)	d)
	Unit - III	CO3	K2		
6.				a)	b)
				c)	d)
	Unit - IV	CO4	K1		
7.				a)	b)
				c)	d)
	Unit - IV	CO4	K2		
8.				a)	b)
				c)	d)
	Unit - V	CO5	K1		
9.				a)	b)
				c)	d)
	Unit - V	CO5	K2		
10.				a)	b)
				c)	d)

Academic Council Meeting Held On 20.04.2023

Answer	ALL the que	estions PA	RT – B	(5 x 5 = 25 Marks)							
11. a)	Unit - I	CO1	K2								
	OR										
11. b)	Unit - I	CO1	K2								
12. a)	Unit - II	CO2	K3								
				OR							
12. b)	Unit - II	CO2	K3								
13. a)	Unit - III	CO3	K3								
				OR							
13. b)	Unit - III	CO3	K3								
14. a)	Unit - IV	CO4	K2								
				OR							
14. b)	Unit - IV	CO4	K2								
15. a)	Unit - V	CO5	K3								
				OR							
15. b)	Unit - V	CO5	K3								

Answer A	Answer ALL the questions $PART - C(5 \times 8 = 40 \text{ Marks})$								
16. a)	Unit - I	CO1	K2						
OR									
16. b)	Unit - I	CO1	K2						
17. a)	Unit - II	CO2	K3						
				OR					
17. b)	Unit - II	CO2	K3						
18. a)	Unit - III	CO3	K3						
				OR					
18. b)	Unit - III	CO3	K3						
19. a)	Unit - IV	CO4	K4						
				OR					
19. b)	Unit - IV	CO4	K4						
20. a)	Unit - V	CO5	K5						
				OR					
20. b)	Unit - V	CO5	K5						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

PG DEPARTMENT OF PHYSICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	MEDICAL PHYSICS			
Course Code	23PPHEC22	L	Р	С
Category	ELECTIVE	5	-	3
COUDOD OD ID				

COURSE OBJECTIVES:

- > To understand the major applications of Physics to Medicine
- To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- > To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNIT - I X-RAYS AND TRANSDUCERS

Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum –Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells – piezoelectric transducer

UNIT - II BLOOD PRESSURE MEASUREMENTS

Introduction – sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electro-neurography (ENG) – Basic principles of magnetic resonance imaging (MRI).

UNIT - III RADIATION PHYSICS

Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness – Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter.

UNIT - IV MEDICAL IMAGING PHYSICS

Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNIT - V RADIATION PROTECTION

Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter

Total Lecture Hours

19

18

17

90

18

18

BOOKS FOR STUDY:

- Dr. K. Thayalan, Basic Radiological Physics, Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003.
- Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology: -LippincotWilliams and Wilkins, 1990.
- > FM Khan, Physics of Radiation Therapy, William and Wilkins, 3rd ed, 2003.
- > D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed, Elsevier Science, 2014.
- R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG, New Delhi, 2005.

BOOKS FOR REFERENCES:

- Muhammad Maqbool, An Introduction to Medical Physics, 1st ed, Springer International Publishing, 2017.
- Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st ed, Charles University, Karolinum Press, 2018
- > Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed, Elsevier Science, 2014.
- K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed, Galgotia Publications, New Delhi, 2001.
- John R. Cameron and James G. Skofronick, 2009, Medical Physics, John Wiley Interscience Publication, Canada, 2nd edition.

WEB RESOURCES:

- https:nptel.ac.in/courses/108/103/108103157/
- https://www.studocu.com/en/course/university-of-technologysydney/medical-devices-and-diagnostics/225692
- https://www.technicalsymposium.com/alllecturenotes_biomed.html
- https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentationbi-by-deepraj-adhikary/78
- https://www.modulight.com/applications-medical/

Nature of Course	EMPLC)YABII	JTY		SKILL ORIENTED			ENTREPRENEURSHIP			√
Curriculum Relevance	LOCAL		REGI	ONAL		NATION	AL	GLOBAL			\checkmark
Changes Made in the Course	Percentag	e of Ch	ange		No Char	iges Made		New Course			√
*Treat 2	*Treat 20%, as each unit (20*5-100%) and calculate the percentage of change for the course										

COUR	SE OUI	COME	S:								K	LEVEL	
After st	udying t	his cour	se, the	e stu	dents w	ill be abl	e to:						
CO1	Learn t	he fundai	nental	ls, pr	oduction	n and app	olications	of X-rays.			K	1 to K5	
CO2	Unders EGC, E	tand the l NG and	basics	of b princ	lood pre ciples of	ssure me MRI.	asuremen	ts. Learn a	bout sphys	gmomanom	eter, K	1 to K5	
CO3	Apply I	knowledg	ge on I	Radia	ation Ph	ysics					K	1 to K5	
CO4	Analyse	e Radiolo	gical	imag	ging and	filters					K	K1 to K5	
CO 5	Assess	the princ	iples o	of rac	diation p	rotection	l				K	K1 to K5	
MAPPI	NG WI	TH PRO	OGRA	AM (OUTCO	OMES:							
CO/PO	PO1	l PC	2	РС)3	PO4	PO5	P06	PO7	PO8	PO9	PO10	
CO1	3	3	;	3	3	1	1	2	3	3	1	3	
CO2	3	3		3	3	2	1	2	3	3	1	3	
CO3	3	3		3	6	2	1	2	3	3	1	3	
CO4	3	3		3	6	2	1	2	3	3	1	3	
CO 5	3	3		3	8	1	1	2	3	3	1	3	
3- STRONG 2 – MEDIUM 1 - LOW										N			
CO / F	PO MAF	PPING:											
CC	DS	PSO1	PSO	02	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
CO) 1	3	3		3	1	1	2	3	3	1	3	
CO	2	3	3		3	2	1	2	3	3	1	3	
CO	3	3	3		3	2	1	2	3	3	1	3	
CO	94	3	3		3	2	1	2	3	3	1	3	
CO	5	3	3		3	1	1	2	3	3	1	3	
WEIG	TAGE												
WEIGHTED PERCENTAG E OF COURSE CONTRIBUTI ON TO POS													
LESSO	N PLA	N:											
UNIT				M	EDICA	L PHYS	SICS			HRS	PED	AGOGY	
I	Electro Bremss Tube – Photo piezoel	MEDICAL PHYSICSHRSPEDElectromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells–180Set										halk Falk, PT, minar	

п	Introduction –sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electroneurography (ENG) – Basic principles of magnetic resonance imaging (MRI).	18	Chalk &Talk, PPT
III	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter	19	Chalk &Talk, Assignment
IV	Radiological Imaging – Radiography – Filters – Grids – Cassette – X- Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)	18	Chalk & Talk, Assignment
v	Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter	17	Seminar, PPT, Chalk &Talk

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
			Section	n A	Section B					
Internal	Cos	K Level	MCC)s	Either or	Section C				
			No. of. Questions	K - Level	Choice	Either or Choice				
CI	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)				
AI	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)				
CI	CO3	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K3, K3)				
AII	CO4	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K4, K4)				
	1	No. of Questions to be asked	4		4	4				
Quest	tion	No. of Questions to be answered	4		2	2				
CIA I & II		Marks for each question	1		5	8				
		Total Marks for each section	4		10	16				

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2			2	3.57					
	K2	2	10	16	28	50					
СІА	K3		10	16	26	46.43	53.57				
I	K4										
-	Marks	4	20	32	56	100	100				
	K1	2			2	3.57					
	K2	2	10		12	21.43					
CIA	K3		10	16	26	46.43	25				
II	K4			16	16	28.57	71.43				
	Marks	4	20	32	56	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)							
S. No	COs	K - Level	Section A (MCQs)		Section B (Either /	Section C (Either / or	
			No. of Questions	K – Level	or Choice) With K - LEVEL	Choice) With K - LEVEL	
1	CO1	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K2, K2)	
2	CO2	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
3	CO3	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K3, K3)	
4	CO4	K1 to K5	2	K1, K2	2 (K2, K2)	2 (K4, K4)	
5	CO5	K1 to K5	2	K1, K2	2 (K3, K3)	2 (K5, K5)	
No. of Questions to be Asked			10		10	10	
No. of Questions to be answered			10	5		5	
Marks for each question			1	5		8	
Total Marks for each section			10	25		40	
(Figures in parenthesis denotes, questions should be asked with the given K level)							

Distribution of Marks with K Level						
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5			5	3.57	
K2	5	20	16	41	29.29	3.57
K3		30	32	62	44.28	32.86
K4			16	16	11.43	77.14
K5			16	16	11.43	88.57
Marks	10	50	80	140	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper – Format

Q. No.	Unit	CO	K-level			
Answer ALL the questions			PA	ART – A	(10 x 1 = 10 Marks)	
1.	Unit - I	CO1	K1			
				a)	b)	
				c)	d)	
2.	Unit - I	CO1	K2			
				a)	b)	
				c)	d)	
	Unit - II	CO2	K1			
3.				a)	b)	
				c)	d)	
	Unit - II	CO2	K2			
4.				a)	b)	
				c)	d)	
	Unit - III	CO3	K1			
5.				a)	b)	
				c)	d)	
	Unit - III	CO3	K2			
6.				a)	b)	
				c)	d)	
	Unit - IV	CO4	K1			
7.				a)	b)	
				c)	d)	
	Unit - IV	CO4	K2			
8.				a)	b)	
				c)	d)	
9.	Unit - V	CO5	K1			
				a)	b)	
				c)	d)	
10.	Unit - V	CO5	K2			
				a)	b)	
				c)	d)	

Academic Council Meeting Held On 20.04.2023

Answer ALL the questions				PART – B	(5 x 5 = 25 Marks)				
11. a)	Unit - I	CO1	K2						
	OR								
11. b)	Unit - I	CO1	K2						
12. a)	Unit - II	CO2	K3						
	OR								
12. b)	Unit - II	CO2	K3						
13. a)	Unit - III	CO3	K3						
	OR								
13. b)	Unit - III	CO3	K3						
14. a)	Unit - IV	CO4	K2						
OR									
14. b)	Unit - IV	CO4	K2						
15. a)	Unit - V	CO5	K3						
OR									
15. b)	Unit - V	CO5	K3						

Answer A	LL the quest	ions		PART – C	(5 x 8 = 40 Marks)				
16. a)	Unit - I	CO1	K2						
OR									
16. b)	Unit - I	CO1	K2						
17. a)	Unit - II	CO2	K3						
	OR								
17. b)	Unit - II	CO2	K3						
18. a)	Unit - III	CO3	K3						
	OR								
18. b)	Unit - III	CO3	K3						
19. a)	Unit - IV	CO4	K4						
OR									
19. b)	Unit - IV	CO4	K4						
20. a)	Unit - V	CO5	K5						
OR									
20. b)	Unit - V	CO5	K5						