M.Sc., MATHEMATICS

Syllabus

Program Code: PMT

2023-2024 onwards

MANNAR THIRUMALAI NAICKER COLLEGE
(AUTONOMOUS)
Re-accredited with "A" Grade by NAAC
PASUMALAI, MADURAI - 625004

GUIDLINESS FOR OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

(FOR PG PROGRAM FROM 2023 -2024 ONWARDS)

ELIGIBILITY CONDITION FOR ADMISSION

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years degree course (under $10+2+3$ pattern) recognized by the university as equivalent there to.

DURATION

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

ATTENDANCE

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

EVALUATION PROCEDURE:

Where the summations are over all paper appeared up to the current semester.
Examinations: 3 hours duration.
Total marks 100 for all papers
External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

1. Core Subjects
2. Electives
3. Non Major Electives (NME)
4. Skill Enhancement course

CBCS COURSE STRUCTURE - PG COURSES

M.A. (Tamil) - M.A. (English) - M.Com. - M.Com (CA) - M.S.W.
M.Sc. (Mathematics) - M.Sc. (CS) - M.Sc. (CS\&IT)

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credit
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VII	4	4.1. Core-X	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-VII	4	4.2 Core-XI	4
1.3 Core - III	4	2.3 Core - VI	4	3.3 Core - IX	4	4.3 Core - XII	4
1.4 Elective (Generic Discipline Centric)- I	3	2.4 Elective (Generic Discipline Centric) - III	3	3.4 Elective (Generic Discipline Centric) - V	3	4.4 Elective (Generic Discipline Centric) - VI	3
1.5 Elective (Generic / Discipline Centric)-II	3	2.5 Elective (Generic / Discipline Centric)-IV	3	3.5 Core Industry Module	3	4.5 Project with Viva-Voce	3
1.6Ability Enhancement Course- Soft Skill -1	2	2.6 Ability Enhancement Course - Soft Skill -2	2	3.6 Ability Enhancement Course- Soft Skill - 3	2	4.6 Ability Enhancement Course- Soft Skill -4	2
Skill Enhancement Course SEC 1	2	2.7 Skill Enhancement Course SEC 2	2	3.7 Skill Enhancement Course - Term Paper and Seminar Presentation SEC 3	2	4.7 Skill Enhancement Course Professional Competency Skill	2
				3.8 Internship/ Industrial Activity	2	4.8 Extension Activity	1
	22		22		24		23
	Total Credit Points						91

QUESTION PAPER PATTERN FOR THE CONTINUOUS INTERNAL

ASSESSMENT

Note: Duration - $\mathbf{1}$ hour 30 minutes

The components for continuous internal assessment are:

Part -A

Four multiple choice questions (answer all)
Part-B
Two questions ('either or 'type)
$2 \times 05=10$ Marks
Part - C
Two questions ('either or 'type)
$2 \times 08=16$ Marks

The components for continuous internal assessment are:
(40 Marks of two continuous internal assessments will be converted to 15 marks)

Two tests and their average	--15 marks
Seminar /Group discussion	--5 marks
Assignment	--5 marks

Total	25 Marks

OUTCOME BASED EDUCATION

1. Course is defined as a theory, practical or theory cum practical subject studied in a semester. For e.g. Computer Applications Management
2. Course Outcome (CO) Course outcomes are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course. Outcomes may be specified for each course based on its weightage.
3. Program is defined as the specialization or discipline of a Degree. It is the interconnected arrangement of courses, co-curricular and extracurricular activities to accomplish predetermined objectives leading to the awarding of a degree.
4. Program Outcomes (POs) Program outcomes are narrower statements that describe what students are expected to be able to do by the time of graduation. POs are expected to be Guidelines for Outcome Based Education System 4 aligned closely with Graduate Attributes.
5. Program Educational Objectives (PEOs) of a program are the statements that describe the expected achievements of graduates in their career, and also in particular, what the graduates are expected to perform and achieve during the first few years after graduation.
6. Program Specific Outcomes (PSO) are what the students should be able to do at the time of graduation with reference to a specific discipline. Usually there are two to four PSOs for a Program.
7. Graduate Attributes (GA): The graduation attributes, are exemplars of the attributes expected of a graduate from a Program

INSTITUTIONAL VISION

To Mould the learners into accomplished individuals by providing them with a stimulus for social change through character, confidence and competence.

INSTITUTIONAL MISSION

1. Enlightening the learners on the ethical and environmental issues.
2. Extending holistic training to shape the learners in to committed and competent citizens.
3. Equipping them with soft skills for facing the competitive world.
4. Enriching their employability through career oriented courses.
5. Ensuring accessibility and opportunity to make education affordable to the underprivileged.

Highlights of the Revamped Curriculum:

Student-centric, meeting the demands of industry \& society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
$>$ The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
$>$ The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
$>$ The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
$>$ The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
> The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
$>$ Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
$>$ State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS), MADURAI - 625004
M. SC MATHEMATICS CURRICULUM
(For the student admitted during the academic year 2023-2024 onwards)

Course Code	Title of the Course	Hrs	Credits	Maximum Marks		
				Int	Ext	Total
FIRST SEMESTER						
Part - III	Core Courses					
23PMTCC11	ALGEBRAIC STRUCTURES	6	5	25	75	100
23PMTCC12	REAL ANALYSIS - I	6	5	25	75	100
23PMTCC13	ORDINARY DIFFERENTIAL EQUATIONS	6	4	25	75	100
Part - III	Elective Courses					
23PMTEC11	GRAPH THEORY AND APPLICATIONS	6	3	25	75	100
23PMTEC12	FUZZY SETS AND THEIR APPLICATIONS	6	3	25	75	100
Total		30	20	125	375	500
SECOND SEMESTER						
Part - III	Core Courses					
23PMTCC21	ADVANCED ALGEBRA	6	5	25	75	100
23PMTCC22	REAL ANALYSIS - II	6	5	25	75	100
23PMTCC23	PARTIAL DIFFERENTIAL EQUATIONS	6	4	25	75	100
Part - III	Elective Courses					
23PMTEC21	NUMERICAL ANALYSIS	6	4	25	75	100
23PMTEC22	RESOURCE MANAGEMENT TECHNIQUES	6	4	25	75	100
	Total	30	22	125	375	500

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
PG AND RESEARCH DEPARTMENT OF MATHEMATICS
FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ALGEBRAIC STRUCTURES			
Course Code	23PMTCC11	L	P	C
Category	CORE	6	-	5
To introduce the concepts and to develop working knowledge on class equation, solvability of groups, finite abelian groups, linear transformations, real quadratic forms				
UNIT - I				18
Counting Principle - Class equation for finite groups and its applications - Sylow's theorems (For theorem 2.12.1, First proof only).				
UNIT - II				18
Solvable groups - Direct products - Finite abelian groups- Modules				
UNIT - III				18
Linear Transformations: Canonical forms -Triangular form - Nilpotent transformations.				
UNIT - IV				18
Jordan form - rational canonical form				
UNIT - V				18
Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form.				
Total Lecture Hours 90				

BOOKS FOR STUDY:

I.N. Herstein. Topics in Algebra (II Edition) Wiley Eastern Limited, New Delhi, 1975.

UNIT-I : Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5)
UNIT-II : Chapter 5 : Section 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem 5.7.1)

Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only)

Chapter 4: Section 4.5

UNIT-III: Chapter 6: Sections 6.4, 6.5
UNIT-IV : Chapter 6 : Sections 6.6 and 6.7
UNIT-V: Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9)
BOOKS FOR REFERENCES:
> M.Artin, Algebra, Prentice Hall of India, 1991.
> P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)
> I.S.Luther and I.B.S.Passi, Algebra, Vol. I -Groups(1996); Vol. II Rings, Narosa Publishing House , New Delhi, 1999
> D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York. 1997.
> N.Jacobson, Basic Algebra, Vol. I \& II W.H.Freeman (1980); also published by Hindustan Publishing Company, New Delhi.

WEB RESOURCES:

* http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
* http://www.opensource.org,
* www.algebra.com

After studying this course, the students will be able to:
Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups

CO2 Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules

K1 to K5
CO1

Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nilpotent transformation relating nilpotence with invariants.
Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, and K1 to K5 apply the concepts to find characteristic polynomial of linear transformation. Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular
CO5 form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian,
K1 to K5 unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal

MAPPING WITH PROGRAM OUTCOMIS:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
CO5	3	1	2	3	3	3				

S- STRONG
M - MEDIUM
L - LOW
CO / PO MAPPING:

COS	PSO 1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS	3	2			

UNIT	ALGEBRAIC STRUCTURES	HRS	PEDAGOGY
I	Counting Principle - Class equation for finite groups and its applications - Sylow's theorems (For theorem 2.12.1, First proof only).	18	Chalk \& Talk
II	Solvable groups - Direct products - Finite abelian groups- Modules	18	Chalk \& Talk
III	Linear Transformations: Canonical forms -Triangular form - Nilpotent transformations	18	Chalk \& Talk
IV	Jordan form - rational canonical form.	18	Chalk \& Talk
V	Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form.	18	Chalk \& Talk

Learning Outcome Based Education \& Assessment (LOBE)Formative Examination - Blue PrintArticulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	Section A		Section B Either or Choice	Section C Either or Choice
			MC			
			No. of. Questions	K - Level		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks (ithout choice)	Consolidated \%
K1	$\mathbf{5}$			5	$\mathbf{3 . 6}$	
K2	5	20		$\mathbf{2 5}$	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{4 8}$
K4			$\mathbf{4 8}$	$\mathbf{4 8}$	$\mathbf{3 4 . 3}$	$\mathbf{3 4}$
Marks	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{1 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		($10 \times 1=10$ Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	$\mathrm{CO2}$	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO 2	K2		
				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
6.	Unit - III	CO3	K2		
				a)	b)
				c)	d)
7.	Unit - IV	CO 4	K1		
				a)	b)
				c)	d)
8.	Unit - IV	CO 4	K2		
				a)	b)
				c)	d)
9.	Unit - V	$\mathrm{CO5}$	K1		
				a)	b)
				c)	d)
10.	Unit - V	$\mathrm{CO5}$	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	($5 \times 5=25$ Marks)
11. a)	Unit - I	CO1	K2		
OR					
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO 2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	$\mathrm{CO2}$	K4		
OR					
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	$\mathrm{CO5}$	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
 PG AND RESEARCH DEPARTMENT OF MATHEMATICS
 FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	REAL ANALYSIS - I	L	P	C
Course Code	23PMTCC12	6	-	5
Category	CORE			
COURSE OBJECTIVES:				
	$>$To work comfortably with functions of bounded variation, Riemann-Stieltjes Integration, convergence of infinite series, infinite product and uniform convergence and its interplay between various limiting operations			

UNIT - I Functions of bounded variation \& Infinite Series 18

Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation Additive property of total variation - Total variation on $[\mathrm{a}, \mathrm{x}]$ as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation.

Absolute and conditional convergence - Dirichlet's test and Abel's test - Rearrangement of series Riemann's theorem on conditionally convergent series

UNIT - II The Riemann - Stieltjes Integral

Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral - Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.

UNIT - III The Riemann-Stieltjes Integral

Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes integralsNecessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval - Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann-Stieltjes integrals depending on a parameter- Differentiation under integral sign-Lebesgue criteriaon for existence of Riemann integrals.
UNIT - IV Infinite Series and infinite Products \& Power series 18
Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.

Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limit theorem - Tauber's theorem

Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration - Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence.

BOOKS FOR STUDY:

$>$ Tom M.Apostol : Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Company Inc. New York, 1974
UNIT I: Chapter-6 : Sections 6.1 to 6.8
Chapter 8 : Sections 8.8, 8.15, 8.17, 8.18
UNIT II; Chapter - 7 : Sections 7.1 to 7.14
UNIT-III : Chapter - 7 : 7.15 to 7.26
UNIT-IV : Chapter - 8 Sec, 8.20, 8.21 to 8.26
Chapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23
UNIT-V: Chapter -9 Sec 9.1 to 9.6, 9.8,9.9,9.10,9.11, 9.13
BOOKS FOR REFERENCES:
> Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
$>$ 2. Rudin,W. Principles of Mathematical Analysis, $3^{\text {rd }}$ Edition. McGraw Hill Company, New York, 1976.
> 3. Malik,S.C. and Savita Arora. Mathematical Anslysis, Wiley Eastern Limited.New Delhi, 1991.
$>$ 4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991.
$>$ 5. Gelbaum, B.R. and J. Olmsted, Counter Examples in Analysis, Holden day, San Francisco, 1964.
$>$ 6. A.L.Gupta and N.R.Gupta, Principles of Real Analysis, Pearson Education, (Indian print) 2003.

WEB RESOURCES:

* http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
* http://www.opensource.org, www.mathpages.com

| Nature of
 Course | EMPLOYABILITY | | \checkmark | SKILL ORIENTED | | ENTREPRENEURSHIP | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Curriculum
 Relevance
 Changes | LOCAL | REGIONAL | | NATIONAL | \checkmark | GLOBAL | | |
| Made in the
 Course | Percentage of Change | $\mathbf{7 0}$ | No Changes Made | | | | New Course | |

* Treat 20% as each unit $(20 * 5=100 \%)$ and calculate the percentage of change for the course.

COURSE OUTCOMES:

K LEVEL

After studying this course, the students will be able to:

CO1	Analyze and evaluate functions of bounded variation and Rectifiable Curves.	K1 to K5
$\mathbf{C O 2}$	Describe the concept of Riemann-Stieltjes integral and its properties.	K1 to K5
$\mathbf{C O 3}$	Demonstrate the concept of step function, upper function, Lebesgue function and their integrals.	$\mathbf{K 1}$ to K5
$\mathbf{C O 4}$	Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.	K1 to K5
$\mathbf{C O 5}$	Formulate the concept and properties of inner products, norms and measurable functions.	K1 to K5

MAPPING WITH PROGRAM OUTCOMES:

$\mathbf{C O} / \mathbf{P O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
$\mathbf{C O 1}$	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
CO5	3	1	2	3	3	3				

S- STRONG
M - MEDIUM
L - LOW
CO / PO MAPPING:

COS	PSO 1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS	3				

LESSON PLAN:

UNIT	REAL ANALYSIS - I	HRS	PEDAGOGY
	Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation. Absolute and conditional convergence - Dirichlet's test and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series.	$\mathbf{1 8}$	 Talk
	Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral - Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.	$\mathbf{1 8}$	
	Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval - Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann-	$\mathbf{1 8}$	
Stieltjes integrals depending on a parameter- Differentiation under integral sign-Lebesgue criteriaon for existence of Riemann integrals.	Talk		
Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products. Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.	$\mathbf{1 8}$		
Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions - Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration - Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence.	$\mathbf{1 8}$		
Talk			

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of. Questions	K - Level		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	K Level	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1 - K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	$\mathrm{CO5}$	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level						
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks without choice)	Consolidated \%
K1	5			5	3.6	4
K2	5	20		25	17.8	18
K3		30	32	62	44.3	44
K4			48	48	34.3	34
Marks	10	50	80	140	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Answer ALL the questions				PART - B	($5 \times 5=25$ Marks)
11. a)	Unit - I	CO1	K2		
OR					
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO 2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14.b)	Unit - IV	$\mathrm{CO4}$	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	$\mathrm{CO3}$	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	$\mathrm{CO5}$	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
 PG AND RESEARCH DEPARTMENT OF MATHEMATICS
 FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	ORDINARY DIFFERENTIAL EQUATIONS			
Course Code	23PMTCC13	L	P	C
Category	CORE	6	-	4
COURSE OBJECTIVES:				
To develop strong background on finding solutions to linear differential equations with constant and variable coefficients and also with singular points, to study existence and uniqueness of the solutions of first order differential equations				

UNIT - I Linear equations with constant coefficients 18

Second order homogeneous equations-Initial value problems-Linear dependence and independenceWronskian and a formula for Wronskian-Non-homogeneous equation of order two.
UNIT - II Linear equations with constant coefficients 18

Homogeneous and non-homogeneous equation of order n-Initial value problems- Annihilator method to solve non-homogeneous equation- Algebra of constant coefficient operators.

UNIT - III Linear equation with variable coefficients

Initial value problems -Existence and uniqueness theorems - Solutions to solve a non-homogeneous equation - Wronskian and linear dependence - reduction of the order of a homogeneous equation homogeneous equation with analytic coefficients-The Legendre equation
UNIT - IV Linear equation with regular singular point 18

Euler equation - Second order equations with regular singular points -Exceptional cases - Bessel Function.
UNIT - V 18

Existence and uniqueness of solutions to first order equations: Equation with variable separated - Exact equation - method of successive approximations - the Lipschitz condition - convergence of the successive approximations and the existence theorem.

BOOKS FOR STUDY:

$>$ E.A.Coddington, A introduction to ordinary differential equations ($3^{\text {rd }}$ Printing) Prentice-Hall of India Ltd., New Delhi, 1987.

Unit I-Chapter 2: Section 1 to 6
Unit II - Chapter 2 : Section 7 to 12
Unit III - Chapter 3: Section 1 to 8
Unit IV - Chapter 4: Section 1 to 8
Unit V - Chapter 5: Section 1 to 8
BOOKS FOR REFERENCES:
$>$ Williams E. Boyce and Richard C. DI Prima, Elementary differential equations and boundary value problems, John Wiley and sons, New York, 1967.
$>$ George F Simmons, Differential equations with applications and historical notes, Tata McGraw Hill, New Delhi, 1974.
$>$ N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.
> W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
$>$ M.D.Raisinghania, Advanced Differential Equations, S.Chand \& Company Ltd. New Delhi 2001
> B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi, 2002.

WEB RESOURCES:

- http://mathforum.org,
* http://ocw.mit.edu/ocwweb/Mathematics,
* http://www.opensource.org,
* www.mathpages.com

Nature of Course	EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP				
Curriculum Relevance	LOCAL	REGIONAL		NATIONAL			GLOBAL		
Changes Made in the Course	Percentage of Change			No Changes Made	\checkmark		New Course		

* Treat 20% as each unit $(20 * 5=100 \%)$ and calculate the percentage of change for the course.

After studying this course, the students will be able to:

$\mathbf{C O 1}$	Establish the qualitative behavior of solutions of systems of differential equations.	K1 to K5
$\mathbf{C O 2}$	Recognize the physical phenomena modeled by differential equations and dynamical systems.	$\mathbf{K 1}$ to K5
$\mathbf{C O 3}$	Analyze solutions using appropriate methods and give examples.	$\mathbf{K 1}$ to K5
$\mathbf{C O 4}$	Formulate Green's function for boundary value problems.	K1 to K5
$\mathbf{C O 5}$	Understand and use various theoretical ideas and results that underlie the mathematics in this course.	$\mathbf{K 1}$ to K5

MAPPING WITH PROGRAM OUTCOMES:

CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	1	3	2	3	3				
$\mathrm{CO2}$	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
$\mathrm{CO5}$	3	1	2	3	3	3				

CO / PO MAPPING:

COS		PSO1	PSO2	PSO3	PSO		PSO5
CO 1		3	2	1			
CO 2		3	2	1			
CO 3		3	2	1			
CO 4		3	2	1			
CO 5		3	2	1			
WEIGHTAGE		15	10	5			
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS		3	2	1			
LESSON PLAN:							
UNIT	ORDINARY DIFFERENTIAL EQUATIONS					HRS	PEDAGOGY
I	Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian-Non-homogeneous equation of order two.					18	Chalk 8 Talk
II	Homogeneous and non-homogeneous equation of order n-Initial value problems- Annihilator method to solve non-homogeneous equation-					18	$\begin{gathered} \text { Chalk }{ }^{\text {Talk }} \\ \text { Ta } \end{gathered}$

Algebra of constant coefficient operators.
Initial value problems -Existence and uniqueness theorems - Solutions to solve a non-homogeneous equation - Wronskian and linear dependence - reduction of the order of a homogeneous equation homogeneous equation with analytic coefficients-The Legendre equation.

IV Euler equation - Second order equations with regular singular points Exceptional cases - Bessel Function.
Existence and uniqueness of solutions to first order equations: Equation with variable separated - Exact equation - method of successive approximations - the Lipschitz condition - convergence of the

Chalk \& Talk Chalk \& 18 Talk successive approximations and the existence theorem.

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of Questions	K - Level		
$\begin{gathered} \text { CI } \\ \text { AI } \end{gathered}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 - K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40
(Figures in parenthesis denotes, questions should be asked with the given K level)						

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks (ithout choice)	Consolidated \%
K1	$\mathbf{5}$			5	$\mathbf{3 . 6}$	
K2	5	20		$\mathbf{2 5}$	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{4 8}$
K4			$\mathbf{4 8}$	$\mathbf{4 8}$	$\mathbf{3 4 . 3}$	$\mathbf{3 4}$
Marks	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{1 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		($10 \times 1=10$ Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO2	K2		
				a)	b)
				c)	d)
5.	Unit - III	$\mathrm{CO3}$	K1		
				a)	b)
				c)	d)
6.	Unit - III	CO3	K2		
				a)	b)
				c)	d)
7.	Unit - IV	CO4	K1		
				a)	b)
				c)	d)
8.	Unit - IV	CO4	K2		
				a)	b)
				c)	d)
9.	Unit - V	CO5	K1		
				a)	b)
				c)	d)
10.	Unit - V	CO5	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	($5 \times 5=25$ Marks)
11. a)	Unit - I	CO1	K2		
OR					
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO 2	K3		
13. a)	Unit - III	CO 3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO 3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	CO5	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
PG AND RESEARCH DEPARTMENT OF MATHEMATICS
FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	GRAPH THEORY AND APPLICATIONS			
Course Code	23PMTEC11	L	P	C
Category	ELECTIVE	6	-	3
COURSE OBJEC	VES: he fundamental concepts in graph theory. theory in different fields different types of proof writing skills. el problems using graphs roblems algorithmically.			
UNIT - I				8

The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees, Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and Bonds, Cut vertices
UNIT - II 18
Euler tours, Hamiltonian cycles, The travelling salesman problem, Matchings, Matchings and Coverings in Bipartite graphs
UNIT - III 18Edge Chromatic Number, Vizing's Theorem, Chromatic number, Brook's theorem.
UNIT - IV 18

Plane and Planar graphs, Dual Graphs ,Euler's formula ,Bridges ,Kuratowski's Theorem, Directed Graphs, Directed Paths, Directed Cycles, Flows, Cuts, The Max-Flow Min -Cut theorem
UNIT - V 18

Algorithms : connectedness and components - spanning tree - cut vertices and separability - directed circuits - shortest path algorithm - planarity testing - isomorphism

BOOKS FOR STUDY:

$>$ J.A.Bondy and U.S.R.Murty, Graph Theory with Applications. North Holland Publications, New york, 1976.

Unit I - Chapter 1 : Section 1.3 to 1.7 and 1.9
Chapter 2: Section 2.1 to 2.3
Unit II - Chapter 4: Section 4.1, 4.2 and 4.4
Chapter 5: Section 5.1 to 5.2
Unit III - Chapter 6 : Section 6.1, 6.2
Chapter 8 : Section 8.1, 8.2
Unit IV - Chapter 9 : Section 9.1 to 9.5
Chapter 10 : Section 10.1 to 10.3
$>$ Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, 1979.

Unit V - Chapter 11 : Section 11.4 to 11.7

BOOKS FOR REFERENCES:

$>$ John Clark and Derek Allan Holton, A first look at Graph Theory, World ScientificPublications, Singapore, 1991.
$>$ Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
> S.K.Yadav, Elements of Graph Theory, Ane Books Pvt. Ltd,New Delhi, 2010

WEB RESOURCES:

* https://nptel.ac.in/courses/111/106/111106102/
* https://nptel.ac.in/courses/111/106/111106050/
* https://www.math.kit.edu/iag6/lehre/graphtheo2015w/media/lecture_notes .pdf

* Treat 20% as each unit $(20 * 5=100 \%)$ and calculate the percentage of change for the course.

After studying this course, the students will be able to:

CO1	Understand the definition of different types of graphs and Sperner's lemma.	K1 to K5
CO2	Make use of graph theory concepts in travelling salesman problem, Matching and covering.	K1 to K5
CO3	Categorize chromatic number, edge chromatic number with theorems.	K1 to K5
CO4	Develop the different types of proof writing skills for planar graphs and directed graphs	K1 to K5
C05	Al	K1 to K5

CO5 Apply various types of algorithms in graph.
K1 to K5
MAPPING WITH PROGRAM OUTCOMIS:

$\begin{gathered} \text { CO/P } \\ 0 \end{gathered}$	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	P010
CO1	3	2	1	-	-	2				
CO2	2	2	2	1	2	1				
CO3	2	1	1	1	2	-				
CO4	3	2	1	1	1	1				
CO5	3	2	3	2	2	1				

S- STRONG
M - MEDIUM
L - LOW
CO / PO MAPPING:

COS	PSO 1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS	3				
LESSON PLAN:					

UNIT

GRAPH THEORY AND APPLICATIONS

The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees,
I Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and Bonds, Cut vertices

II
Euler tours, Hamiltonian cycles, The travelling salesman problem,
Matchings, Matchings and Coverings in Bipartite graphs

HRS

18

18

PEDAGOGY
PPT, Chalk
\&
Talk, quiz
Chalk \&
Talk, PPT

| III | Edge Chromatic Number, Vizing's Theorem, Chromatic number,
 Brook's theorem | $\mathbf{1 8}$ |
 Talk |
| :---: | :--- | :---: | :---: | :---: |
| IV | Plane and Planar graphs, Dual Graphs ,Euler's formula ,Bridges ,
 Kuratowski's Theorem, Directed Graphs, Directed Paths, Directed
 Cycles, Flows, Cuts, The Max-Flow Min -Cut theorem. | $\mathbf{1 8}$ |
 Talk, |
| Assignment | | | |

Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of. Questions	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1 - K5	2	K2	2(K2,K2)	2(K3,K3)
	CO 2	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40
(Figures in parenthesis denotes, questions should be asked with the given K level)						

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks without choice)	Consolidated \%
K1	5			5	$\mathbf{3 . 6}$	
K2	5	20		25	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		30	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{1 8}$
K4			48	48	34.3	$\mathbf{4 4}$
Marks	$\mathbf{1 0}$	50	80	140	100	$\mathbf{1 4}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		(10 x 1 = 10 Marks)
1.	Unit - I	$\mathrm{CO1}$	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO 2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO 2	K2		
				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
6.	Unit - III	$\mathrm{CO3}$	K2		
				a)	b)
				c)	d)
7.	Unit - IV	$\mathrm{CO4}$	K1		
				a)	b)
				c)	d)
8.	Unit - IV	$\mathrm{CO4}$	K2		
				a)	b)
				c)	d)
9.	Unit - V	$\mathrm{CO5}$	K1		
				a)	b)
				c)	d)
10.	Unit - V	$\mathrm{CO5}$	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	(5×5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
OR					
11.b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16.a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO 3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO 4	K4		
OR					
19. b)	Unit - IV	CO4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	CO5	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

COURSE NAME	FUZZY SETS AND THEIR APPLICATIONS			
COURSE CODE	23PMTEC12	L	P	C
CATEGORY	ELECTIVE	6	-	3
$>$ To familiarize the concept of crisp set and its properties $>$ To learn the basics of fuzzy sets and its operations $>$ To differentiate crisp logic, multi-valued logic and fuzzy logic $>$ To use inference theory in fuzzy logic $>$ To learn the application in real life				
UNIT - I		18		
Fuzzy sets: Basic types- Basic concepts - Additional properties of α - cuts - Representation of fuzzy sets Extension principle for fuzzy sets - Types of operations - Fuzzy complements				
UNIT - II				

Fuzzy numbers - Linguistic variables - Arithmetic operation on intervals - Arithmetic operation on fuzzy numbers
UNIT - III 18

Fuzzy relation : Crisp versus Fuzzy relation - projection and cyclinderic extensions- Binary fuzzy relation on : single set - fuzzy equivalence relations - Fuzzy compatibility relation
UNIT - IV 18

Fuzzy logic: Classical logic - An over view - multi valued logic - Fuzzy propositions -Fuzzy quantifiers Linguistic hedges - Inference from conditional fuzzy propositions - Inference from conditional and quantified propositions - Inference from quantified propositions
UNIT - V 18

Applications: Applications to Civil Engineering -Computer Engineering - Reliability theory - Robotics Medicine - Economics.

BOOKS FOR STUDY:

> George J Klir and B.Yuan, Fuzzy sets and Fuzzy logic - Theory and application, Second edition, Prentice Hall, New Delhi, 1995.

Unit I- Chapter 1 : Sections 1.2 to 1.4
Chapter 2 : Sections 2.1 to 2.3
Chapter 3 : Sections 3.1,3.2
Unit II - Chapter 4 : Section 4.1 to 4.4
Unit III - Chapter 5 : Sections 5.1 to 5.6
Unit IV - Chapter 8 : Sections 8.2 to 8.8
Unit V - Chapter 16 : Sections 16.1, 16.2, 16.5 to 16.7, Chapter 17 : Sections 17.1 to 17.3.

BOOKS FOR REFERENCES:

$>$ H.J.Zimmermann, Fuzzy Set Theory and its Applications, Fourth Edition, Springer Publishers, New Delhi, 2006.
> Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition, Willey, 2010.
$>$ Michal Baczynski and Balasubramaniam Jayaram, Fuzzy Implications, Springer Verlag, Heidelberg, 2008

WEB RESOURCES:

\% https://www.thesisscientist.com/docs/Study\ Notes/66860129-5a91-459d-810f-54eOfc41175d

* https://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-spring-2003/lecture-notes/lecture4.pdf
* https://www.iitk.ac.in/eeold/archive/courses/2013/intel-info/d1pdf3.pdf
* https://nptel.ac.in/courses/106105173/2
* https://www.cse.iitb.ac.in/~cs621-2011/lectures_2009/cs621-lect38-fuzzy-logic-2009-11-11.ppt

Nature of Course	EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP				
Curriculum Relevance	LOCAL	REGIONAL		NATIONAL		\checkmark	GLOBAL		
Changes Made in the Course	Percentage of Change			No Changes Made	\checkmark	\checkmark	New Course		

After studying this course, the students will be able to:

CO1	Interpret fuzzy set theory, representation, operation and extension principle									K1 to K5 K1 to K5
CO2	Identify fuzzy numbers and its linguistic variables									
CO3	Validate fuzzy relation, projections and its equivalence.									K1 to K5
CO4	Analyse multi valued logic and fuzzy logic with inference theory									K1 to K5
CO5	Apply fuzziness in real valued problems								K1 to K5	
MAPPING WITH PROGRAM OUTCOMIS:										
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	2	-	1	2	-				
CO2	2	2	-	-	2	-				
CO3	2	1	1	2	2	1				
CO4	2	1	1	2	2	1				
CO5	2	1	1	1	-	2				
S- STRO	ONG			M -	DIUM			L -		

CO / PO MAPPING:

COS		PSO1	PSO2	PSO3	PSO		PSO5
CO 1		3	2	1			
CO 2		3	2	1			
CO 3		3	2	1			
CO 4		3	2	1			
CO 5		3	2	1			
WEIGHTAGE		15	10	5			
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS		3	2	1			
LESSON PLAN:							
UNIT	FUZZY SETS AND THEIR APPLICATIONS					HRS	PEDAGOGY
I	Fuzzy sets: Basic types- Basic concepts - Additional properties of α cuts - Representation of fuzzy sets - Extension principle for fuzzy sets - Types of operations - Fuzzy complements					18	Chalk ${ }^{8}$ Talk
II	Fuzzy numbers - Linguistic variables - Arithmetic operation on intervals - Arithmetic operation on fuzzy numbers					18	Chalk \& Talk
III	Fuzzy relation : Crisp versus Fuzzy relation - projection and cyclinderic extensions- Binary fuzzy relation on a single set - fuzzy equivalence relations - Fuzzy compatibility relation					18	Chalk \& Talk

Fuzzy logic: Classical logic - An over view - multi valued logic Fuzzy propositions -Fuzzy quantifiers - Linguistic hedges - Inference quantified propositions - Inference from quantified propositions

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print ticulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	Section A		Section B Either or Choice	Section C Either or Choice
			MC			
			No. of. Questions	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	$\mathrm{CO2}$	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1 - K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40
(Figures in parenthesis denotes, questions should be asked with the given \mathbf{K} level)						

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks (ithout choice)	Consolidated \%
K1	$\mathbf{5}$			5	$\mathbf{3 . 6}$	
K2	5	20		$\mathbf{2 5}$	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{4 8}$
K4			$\mathbf{4 8}$	$\mathbf{4 8}$	$\mathbf{3 4 . 3}$	$\mathbf{3 4}$
Marks	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{1 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		($10 \times 1=10$ Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO2	K2		
				a)	b)
				c)	d)
5.	Unit - III	$\mathrm{CO3}$	K1		
				a)	b)
				c)	d)
6.	Unit - III	$\mathrm{CO3}$	K2		
				a)	b)
				c)	d)
7.	Unit - IV	$\mathrm{CO4}$	K1		
				a)	b)
				c)	d)
8.	Unit - IV	CO4	K2		
				a)	b)
				c)	d)
9.	Unit - V	CO5	K1		
				a)	b)
				c)	d)
10.	Unit - V	CO5	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	($5 \times 5=25$ Marks)
11. a)	Unit - I	CO1	K2		
OR					
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO 2	K3		
13. a)	Unit - III	CO 3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO 4	K3		
OR					
14. b)	Unit - IV	CO 4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO2	K4		
18. a)	Unit - III	CO3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO4	K4		
20.a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	CO5	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
PG AND RESEARCH DEPARTMENT OF MATHEMATICS
FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

BOOKS FOR STUDY:

$>$ I.N. Herstein. Topics in Algebra (II Edition) Wiley EasternLimited, New Delhi, 1975.

UNIT I: Chapter 5: Section 5.1 and 5.2

UNIT 2: Chapter 5: Sections 5.3 and 5.5
UNIT 3: Chapter 5 : Section 5.6
UNIT 4: Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)
UNIT 5: Chapter 5: Section 5.7 (omit Lemma 5.7.1, Lemma 5.7.2 and Theorem 5.7.1)

Chapter 7 : Sections 7.3 and 7.4

BOOKS FOR REFERENCES:

> M.Artin, Algebra, Prentice Hall of India, 1991.
$>$ P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)
> I.S.Luther and I.B.S.Passi, Algebra, Vol. I -Groups(1996); Vol. II Rings,Narosa Publishing House , New Delhi, 1999
> D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York. 1997.
$>$ N.Jacobson, Basic Algebra, Vol. I \& II Hindustan Publishing Company, New Delhi.

WEB RESOURCES:

* http://mathforum.org
* http://ocw.mit.edu/ocwweb/Mathematics,
* http://www.opensource.org,
* www.algebra.com

Nature of Course	EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP			
Curriculum Relevance	LOCAL	REGIONAL		NATIONAL	\checkmark	GLOBAL		
Changes Made in the Course	Percentage of Change		100	No Changes Made		New Course		

* Treat $\mathbf{2 0 \%}$ as each unit $(20 * 5=100 \%)$ and calculate the percentage of change for the course.

After studying this course, the students will be able to:

CO1	Prove theorems applying algebraic ways of thinking.	K1 to K5
$\mathbf{C O 2}$	Connect groups with graphs and understanding about Hamiltonian graphs.	K1 to K5
$\mathbf{C O 3}$	Compose clear and accurate proofs using the concepts of Galois Theory.	K1 to K5
$\mathbf{C O 4}$	Bring out insight into Abstract Algebra with focus on axiomatic theories.	K1 to K5
CO5	Demonstrate knowledge and understanding of fundamental concepts including extension fields, Algebraic extensions, Finite fields, Class equations and Sylow's theorem.	K1 to K5

MAPPING WITH PROGRAM OUTCOMIPS:	PO4	PO								
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	3	2	3	3				
CO2	2	1	3	1	3	3				
CO3	3	2	3	1	3	3				
CO4	1	2	3	2	3	3				
CO5	3	1	2	3	3	3				

S- STRONG
CO / PO MAPPING:

COS	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTIO N TO POS	3				
LESSON PLAN:					
LTAN					

UNIT	ADVANCED ALGEBRA	HRS	PEDAGOGY
I	Extension fields - Transcendence of e.	$\mathbf{1 8}$	 Talk
II	Roots or Polynomials.- More about roots	$\mathbf{1 8}$	 Talk
III	Elements of Galois theory.	$\mathbf{1 8}$	 Talk

IV Finite fields - Wedderburn's theorem on finite division rings.
Solvability by radicals - A theorem of Frobenius - Integral Quaternions
V and the Four - Square theorem.

Chalk \& Talk

Chalk \& Talk

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of. Questions	K - Level		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II							
	$\underset{\text { Level }}{K}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4

	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1 - K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40

Distribution of Marks with K Level						
K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks without choice)	Consolidated \%
K1	5			5	3.6	4
K2	5	20		25	17.8	18
K3		30	32	62	44.3	44
K4			48	48	34.3	34
Marks	10	50	80	140	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.						

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		(10 x 1 = 10 Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO 2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO2	K2		
				a)	b)
				c)	d)
5.	Unit - III	CO3	K1		
				a)	b)
				c)	d)
6.	Unit - III	CO 3	K2		
				a)	b)
				c)	d)
7.	Unit - IV	CO4	K1		
				a)	b)
				c)	d)
8.	Unit - IV	CO 4	K2		
				a)	b)
				c)	d)
9.	Unit - V	$\mathrm{CO5}$	K1		
				a)	b)
				c)	d)
10.	Unit - V	$\mathrm{CO5}$	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	(5×5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
OR					
11. b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO 2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)
 PG AND RESEARCH DEPARTMENT OF MATHEMATICS
 FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name	REAL ANALYSIS - II			
Course Code	23PMTCC22	L	P	C
Category	CORE	6	-	5
To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals, in-depth study in multivariable calculus.				
UNIT - I Measure on the Real line				18
Lebesgue Outer Measure - Measurable sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability.				
UNIT - II Integration of Functions of a Real variable				18
Integration of Non- negative functions - The General Integral - Riemann and Lebesgue Integrals				
UNIT - III Fourier Series and Fourier Integrals				18
Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The Riesz-Fischer Thorem The convergence and representation problems in for trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point Cesarosummability of Fourier series- Consequences of Fejes's theorem - The Weierstrass approximation theorem				

UNIT - IV Multivariable Differential Calculus

Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives Taylor's theorem for functions of R^{n} to R^{1}

UNIT - V Implicit Functions and Extremum Problems

Functions with non-zero Jacobian determinants - The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables-Extremum problems with side conditions.

$$
\text { Total Lecture Hours } 90
$$

BOOKS FOR STUDY:

$>$ G. de Barra, Measure Theory and Integration, Wiley Eastern Ltd., New Delhi, 1981. (for Units I and II)

UNIT I : Chapter - 2 Sec 2.1 to 2.5
UNIT II: Chapter - 3 Sec 3.1,3.2 and 3.4
$>$ Tom M.Apostol : Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Company Inc. New York, 1974. (for Units III, IV and V)

UNIT III: Chapter 11 : Sections 11.1 to 11.15
UNIT IV: Chapter 12 : Section 12.1 to 12.14
UNIT V: Chapter 13 : Sections 13.1 to 13.7

BOOKS FOR REFERENCES:

> Burkill,J.C.The Lebesgue Integral, Cambridge University Press, 1951.
> Munroe,M.E.Measure and Integration. Addison-Wesley, Mass.1971.
> Roydon,H.L.Real Analysis, Macmillan Pub. Company, New York, 1988.
$>$ Rudin, W. Principles of Mathematical Analysis, McGraw Hill Company, New York,1979.
$>$ Malik,S.C. and Savita Arora. Mathematical Analysis, Wiley Eastern Limited. New Delhi, 1991.
$>$ Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991

WEB RESOURCES:

http://mathforum.org,
(http://ocw.mit.edu/oc.

* wweb/Mathematics
* http://www.opensource.org

Nature of Course	EMPLOYABILITY		\checkmark	SKILL ORIENTED		ENTREPRENEURSHIP		
Curriculum Relevance	LOCAL	REGIONAL			NATIONAL	\checkmark	GLOBAL	
Changes Made in the Course	Percentage of Change			No Changes Made			New Course	\checkmark

After studying this course, the students will be able to:

CO / PO MAPPING:

COS	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS	3				

LESSON PLAN:

UNIT	REAL ANALYSIS II	HRS	PEDAGOGY
I	Lebesgue Outer Measure - Measurable sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability	$\mathbf{1 8}$	 Talk
II	Integration of Non- negative functions - The General Integral - Riemann and Lebesgue Integrals	$\mathbf{1 8}$	 Talk

Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The RieszFischer Thorem - The convergence and representation problems in for trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point Cesarosummability of Fourier series- Consequences of Fejes's theorem The Weierstrass approximation theorem
Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of R^{n} to R^{1}
Functions with non-zero Jacobian determinants - The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables-Extremum problems with side

Chalk \& Talk

Chalk \& Talk

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \text { MCQs } \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of. Questions	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$		
$\begin{aligned} & \text { CI } \\ & \text { AI } \end{aligned}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1 - K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40
(Figures in parenthesis denotes, questions should be asked with the given K level)						

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks (ithout choice)	Consolidated \%
K1	$\mathbf{5}$			5	$\mathbf{3 . 6}$	
K2	5	20		$\mathbf{2 5}$	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{4 8}$
K4			$\mathbf{4 8}$	$\mathbf{4 8}$	$\mathbf{3 4 . 3}$	$\mathbf{3 4}$
Marks	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{1 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		($10 \times 1=10$ Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO 2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO 2	K2		
				a)	b)
				c)	d)
5.	Unit - III	CO 3	K1		
				a)	b)
				c)	d)
6.	Unit - III	$\mathrm{CO3}$	K2		
				a)	b)
				c)	d)
7.	Unit - IV	$\mathrm{CO4}$	K1		
				a)	b)
				c)	d)
8.	Unit - IV	$\mathrm{CO4}$	K2		
				a)	b)
				c)	d)
9.	Unit - V	$\mathrm{CO5}$	K1		
				a)	b)
				c)	d)
10.	Unit - V	$\mathrm{CO5}$	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	(5×5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
OR					
11.b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO 2	K4		
18. a)	Unit - III	CO3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO 4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	$\mathrm{CO5}$	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS
 FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

| Course Name | PARTIAL DIFFERENTIAL EQUATIONS | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | 23PMTCC23 | L | P | C |
| Category | Core | 6 | - | 4 |
| COURSE OBJECTIVES: | | | | |
| | $>$ | To classify the second order partial differential equations and to study Cauchy problem, method of | | |
| separation of variables, boundary value problems | | | | |

UNIT - I Mathematical Models and Classification of second order equation 18

Classical equations-Vibrating string - Vibrating membrane - waves in elastic medium - Conduction of heat in solids - Gravitational potential - Second order equations in two independent variables - canonical forms equations with constant coefficients - general solution
UNIT - II Cauchy Problem 18

The Cauchy problem - Cauchy-Kowalewsky theorem - Homogeneous wave equation - Initial Boundary value problem- Non-homogeneous boundary conditions - Finite string with fixed ends - Non-homogeneous wave equation - Riemann method - Goursat problem - spherical wave equation - cylindrical wave equation.

UNIT - III Method of separation of variables 18

Separation of variable- Vibrating string problem - Existence and uniqueness of solution of vibrating string problem - Heat conduction problem - Existence and uniqueness of solution of heat conduction problem Laplace and beam equations

UNIT - IV Boundary Value Problems

Boundary value problems - Maximum and minimum principles - Uniqueness and continuity theorem Dirichlet Problem for a circle, a circular annulus, a rectangle - Dirichlet problem involving Poisson equation - Neumann problem for a circle and a rectangle.
UNIT - V Green's Function 18

The Delta function - Green's function - Method of Green's function - Dirichlet Problem for the Laplace and Helmholtz operators - Method of images and eigen functions - Higher dimensional problem - Neumann Problem.

BOOKS FOR STUDY:

$>$ TynMyint-U and Lokenath Debnath, Partial Differential Equations for Scientists and Engineers (Third Edition), North Hollan, New York, 1987.

UNIT I : Chapter 2 : Sections 2.1 to 2.6
Chapter 3 : Sections 3.1 to 3.4 (Omit 3.5)
UNIT II: Chapter 4 : Sections 4.1 to 4.11
UNIT III: Chapter 6 : Sections 6.1 to 6.6 (Omit section 6.7)
UNIT IV : Chapter 8 : Sections 8.1 to 8.9
UNIT V: Chapter 10 : Section 10.1 to 10.9

BOOKS FOR REFERENCES:

$>$ M.M.Smirnov, Second Order partial Differential Equations, Leningrad, 1964.
> I.N.Sneddon, Elements of Partial Differential Equations, McGraw Hill, New Delhi, 1983.
$>$ R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems, McGraw Hill, New York, 1968.
> M.D.Raisinghania, Advanced Differential Equations, S.Chand \& Company Ltd., New Delhi, 2001.
$>$ S, Sankar Rao, Partial Differential Equations, $2{ }^{\text {nd }}$ Edition, Prentice
$>$ Hall of India, New Delhi. 2004

WEB RESOURCES:

* http://mathforum.org,
* http://ocw.mit.edu/ocwweb/Mathematics,
* http://www.opensource.org, www.mathpages.com

* Treat 20% as each unit $(20 * 5=100 \%)$ and calculate the percentage of change for the course.

After studying this course, the students will be able to:

CO1 To understand and classify second order equations and find general solutions
K1 to K5
CO2 To analyse and solve wave equations in different polar coordinates
K1 to K5
CO3
To solve Vibrating string problem, Heat conduction problem, to identify and solve
Laplace and beam equations
K1 to K5
To apply maximum and minimum principle's and solve Dirichlet, Neumann problems for various boundary conditions

K1 to K5
To apply Green's function and solve Dirichlet, Laplace problems, to apply Helmholtz operation and to solve Higher dimensional problem
MAPPING WITH PROGRAM OUTCOMIES:

CO / PO MAPPING:

COS	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	3	2	1		
CO 2	3	2	1		
CO 3	3	2	1		
CO 4	3	2	1		
CO 5	3	2	1		
WEIGHTAGE	15	10	5		
WEIGHTED PERCENTAGE OF COURSE CONTRIBUTI ON TO POS	3				

LESSON PLAN:

PARTIAL DIFFERENTIAL EQUATIONS
HRS
PEDAGOGY
Classical equations-Vibrating string - Vibrating membrane - waves in
I elastic medium - Conduction of heat in solids - Gravitational potential - Second order equations in two independent variables - canonical 18

Chalk \& Talk

The Cauchy problem - Cauchy-Kowalewsky theorem - Homogeneous wave equation - Initial Boundary value problem- Non-homogeneous boundary conditions - Finite string with fixed ends - Non-homogeneous

Chalk 8

 wave equation - Riemann method - Goursat problem - spherical wave Talk equation - cylindrical wave equation.Separation of variable- Vibrating string problem - Existence and uniqueness of solution of vibrating string problem - Heat conduction
III problem - Existence and uniqueness of solution of heat conduction problem - Laplace and beam equations

Boundary value problems - Maximum and minimum principles Uniqueness and continuity theorem - Dirichlet Problem for a circle , a
IV circular annulus, a rectangle - Dirichlet problem involving Poisson 18 equation - Neumann problem for a circle and a rectangle.

The Delta function - Green's function - Method of Green's function Dirichlet Problem for the Laplace and Helmholtz operators - Method of images and eigen functions - Higher dimensional problem - Neumann Talk Problem

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)						
Internal	Cos	K Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B Either or Choice	Section C Either or Choice
			No. of. Questions	$\underset{\text { Level }}{\text { K - }}$		
$\begin{gathered} \text { CI } \end{gathered}$	CO1	K1-K5	2	K2	2(K2,K2)	2(K3,K3)
	CO2	K1 - K5	2	K2	2(K3,K3)	2(K4,K4)
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	K1 - K5	2	K2	2(K2,K2)	2(K3,K3)
	CO4	K1-K5	2	K2	2(K3,K3)	2(K4,K4)
Question Pattern CIA I \& II		No. of Questions to be asked	4		4	4
		No. of Questions to be answered	4		2	2
		Marks for each question	1		5	8
		Total Marks for each section	4		10	16

Distribution of Marks with K Level CIA I \& CIA II

	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Either / Or Choice)	Section C (Either / Or Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2			2	3.6	25
	K2	2	10		12	21.4	
	K3		10	16	26	46.4	46.4
	K4			16	16	28.6	28.6
	K5						
	Marks	4	20	32	56	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2			2	3.6	7.2
	K2	2			2	3.6	
	K3		10	16	26	46.4	46.4
	K4		10	16	26	46.4	46.4
	K5						
	Marks	4	20	32	56	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)						
S. No	Cos	K - Level	Section A (MCQs)		Section B (Either / or Choice) With K - LEVEL	Section C (Either / or Choice) With K - LEVEL
			No. of Questions	K - Level		
1	CO1	K1 - K5	2	K1,K2	2(K2,K2)	2(K3,K3)
2	CO2	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
3	CO3	K1-K5	2	K1,K2	2(K2,K2)	2(K3,K3)
4	CO4	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
5	CO5	K1-K5	2	K1,K2	2(K3,K3)	2(K4,K4)
No. of Questions to be Asked			10		10	10
No. of Questions to be answered			10		10	5
Marks for each question			1		1	8
Total Marks for each section			10		10	40
(Figures in parenthesis denotes, questions should be asked with the given K level)						

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Either or Choice	Section C (Either/ or Choice)	Total Marks	\% of (Marks (ithout choice)	Consolidated \%
K1	$\mathbf{5}$			5	$\mathbf{3 . 6}$	
K2	5	20		$\mathbf{2 5}$	$\mathbf{1 7 . 8}$	$\mathbf{4}$
K3		$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 2}$	$\mathbf{4 4 . 3}$	$\mathbf{4 8}$
K4			$\mathbf{4 8}$	$\mathbf{4 8}$	$\mathbf{3 4 . 3}$	$\mathbf{3 4}$
Marks	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{1 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Q. No.	Unit	CO	K-level		
Answer ALL the questions			PART - A		(10×1 = 10 Marks)
1.	Unit - I	CO1	K1		
				a)	b)
				c)	d)
2.	Unit - I	CO1	K2		
				a)	b)
				c)	d)
3.	Unit - II	CO 2	K1		
				a)	b)
				c)	d)
4.	Unit - II	CO 2	K2		
				a)	b)
				c)	d)
5.	Unit - III	CO 3	K1		
				a)	b)
				c)	d)
6.	Unit - III	CO 3	K2		
				a)	b)
				c)	d)
7.	Unit - IV	$\mathrm{CO4}$	K1		
				a)	b)
				c)	d)
8.	Unit - IV	CO4	K2		
				a)	b)
				c)	d)
9.	Unit - V	$\mathrm{CO5}$	K1		
				a)	b)
				c)	d)
10.	Unit - V	$\mathrm{CO5}$	K2		
				a)	b)
				c)	d)

Answer ALL the questions				PART - B	(5×5 = 25 Marks)
11. a)	Unit - I	CO1	K2		
OR					
11.b)	Unit - I	CO1	K2		
12. a)	Unit - II	CO2	K3		
OR					
12. b)	Unit - II	CO2	K3		
13. a)	Unit - III	CO3	K2		
OR					
13. b)	Unit - III	CO3	K2		
14. a)	Unit - IV	CO4	K3		
OR					
14. b)	Unit - IV	CO4	K3		
15. a)	Unit - V	CO5	K3		
OR					
15. b)	Unit - V	$\mathrm{CO5}$	K3		

Answer ALL the questions				PART - C	($5 \times 8=40$ Marks)
16. a)	Unit - I	CO1	K3		
OR					
16. b)	Unit - I	CO1	K3		
17. a)	Unit - II	CO2	K4		
OR					
17. b)	Unit - II	CO 2	K4		
18. a)	Unit - III	CO3	K3		
OR					
18. b)	Unit - III	CO3	K3		
19. a)	Unit - IV	CO4	K4		
OR					
19. b)	Unit - IV	CO 4	K4		
20. a)	Unit - V	CO5	K4		
OR					
20. b)	Unit - V	$\mathrm{CO5}$	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS
 FOR THOSE WHO JOINED IN 2023-2024 AND AFTER

Course Name

NUMERICAL ANALYSIS

Course Code	23PMTEC21	L	P	C
Category	ELECTIVE	6	-	4

COURSE OBJECTIVES:
$>$ To develop Numerical computational skills.
$>$ To practice Numerical computational applications.
$>$ To introduce difference equations and recurrence equations.
$>$ To demonstrate understanding and implementation of numerical solution of algorithms based for employability
$>$ To find the errors in the approximation
UNIT - I 18

Bisection method - Iteration method (approximation method) based on first degree equation, second degree equation.

UNIT - II 18
Direct methods: forward substitution method, back substitution method, Cramer rule, Gauss elimination method, Gauss Jordan method - triangulation method - LU decomposition- Cholesky method - Partition method.

```
UNIT - III

Iterative methods - Jacobi iteration methods, Gauss-Seidel iteration methods, Similarity transformation Eigen values - Eigen vectors -Jacobi method for symmetric matrices.
UNIT - IV ..... 18

Lagrange's and Newton Interpolation, Finite Difference Operators, Interpolating Polynomials using Finite Differences, Hermite Interpolation.

\section*{UNIT - V}18

Numerical Differentiation, Partial Differentiation, Numerical Integration, Methods based on Interpolation, Composite Integration methods.

Total Lecture Hours

\section*{BOOKS FOR STUDY:}
\(>\) M.K.Jain, S.R.K.Iyengar, R.K.Jain, Numerical Methods for scientific and Engineering computation 4th edition, New age international Pvt limited, New Delhi, 2009.

Unit I - Chapter 2 : Section 2.1-2.4 and 2.5
Unit II - Chapter 3 : Section 3.1, 3.2
Unit III - Chapter 3 : Section 3.4, 3.5 and 3.7
Unit IV - Chapter 4 : Section 4.1 - 4.5
Unit V - Chapter 5 : Section 5.1, 5.2, 5.5-5.7, 5.9.

\section*{BOOKS FOR REFERENCES:}
> G.Shankar Rao, Numerical Analysis, New Age International publishers, New Delhi,1997.
\(>\) Rainer Kress, Numerical Analysis, Springer international Edition, New Delhi, 2010.
\(>\) S.R.K.Iyengar ,R.K.Jain ,Numerical Methods, , New age international Pvt limited, New Delhi, 2008.

\section*{WEB RESOURCES:}
* http://www.ece.mcmaster.ca/~xwu/part6.pdf
* http://www.cis.upenn.edu/~cis515/cis515-12-s12.pdf
* https://wiki.math.ntnu.no/_media/tma4215/2012h/note.pdf
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Nature of Course & \multicolumn{2}{|l|}{EMPLOYABILITY} & \(\checkmark\) & \multicolumn{2}{|l|}{SKILL ORIENTED} & \multicolumn{4}{|l|}{ENTREPRENEURSHIP} \\
\hline Curriculum Relevance & LOCAL & \multicolumn{2}{|l|}{REGIONAL} & & NATIONAL & \(\checkmark\) & GLOBAL & & \\
\hline Changes Made in the Course & \multicolumn{2}{|l|}{Percentage of Change} & 10\% & \multicolumn{2}{|l|}{No Changes Made} & \multicolumn{3}{|c|}{New Course} & \\
\hline
\end{tabular}

\section*{After studying this course, the students will be able to:}
\begin{tabular}{l|l|l|}
\hline CO1 & Demonstrate the understanding of direct methods and iterative methods for equations & K1 to K5 \\
\hline \(\mathbf{C O 2}\) & Apply proper methods for solving transcendental, algebraic and system of equations & K1 to K5 \\
\hline \(\mathbf{C O 3}\) & Evaluate interpolation and extrapolation using tabular values & K1 to K5 \\
\hline CO4 & Associate tabular values with integration and differentiation & K1 to K5 \\
\hline CO5 & Use iterative methods for PDE & K1 to K5 \\
\hline
\end{tabular}

\section*{MAPPING WITH PROGRAM OUTCOMIES:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline CO/PO & PO1 & PO2 & PO3 & PO4 & PO5 & PO6 & PO7 & PO8 & PO9 & PO10 \\
\hline CO1 & 3 & 3 & 3 & 1 & 1 & 1 & & & & \\
\hline CO2 & 3 & 3 & 2 & 2 & 1 & - & & & & \\
\hline CO3 & 3 & 3 & 3 & 1 & 1 & 1 & & & & \\
\hline CO4 & 3 & 3 & 2 & 2 & 1 & - & & & & \\
\hline CO5 & 3 & 3 & 2 & 2 & 2 & 1 & & & & \\
\hline S- STRONG
\end{tabular}

\section*{CO / PO MAPPING:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Cos} & PSO1 & PSO2 & PSO3 & PSO & & PSO5 \\
\hline \multicolumn{2}{|r|}{CO 1} & 3 & 2 & 1 & & & \\
\hline \multicolumn{2}{|r|}{CO 2} & 3 & 2 & 1 & & & \\
\hline \multicolumn{2}{|r|}{CO 3} & 3 & 2 & 1 & & & \\
\hline \multicolumn{2}{|r|}{CO 4} & 3 & 2 & 1 & & & \\
\hline \multicolumn{2}{|r|}{CO 5} & 3 & 2 & 1 & & & \\
\hline \multicolumn{2}{|l|}{WEIGHTAGE} & 15 & 10 & 5 & & & \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { WEIGHTED } \\
\text { PERCENTAGE } \\
\text { OF COURSE } \\
\text { CONTRIBUTI } \\
\text { ON TO POS }
\end{gathered}
\]} & 3 & 2 & 1 & & & \\
\hline \multicolumn{8}{|l|}{LESSON PLAN:} \\
\hline UNIT & \multicolumn{5}{|c|}{NUMERICAL ANALYSIS} & HRS & PEDAGOGY \\
\hline I & \multicolumn{5}{|l|}{Bisection method - Iteration method (approximation method) based on first degree equation, second degree equation.} & 18 & Chalk \& Talk, PPT \\
\hline II & \multicolumn{5}{|l|}{Direct methods: forward substitution method, back substitution method, Cramer rule, Gauss elimination method, Gauss Jordan method triangulation method - LU decomposition- Cholesky method - Partition method.} & 18 & Chalk 8 Talk \\
\hline
\end{tabular}

Iterative methods - Jacobi iteration methods, Gauss-Seidel iteration methods, Similarity transformation - Eigen values - Eigen vectors Jacobi method for symmetric matrices.

Lagrange's and Newton Interpolation, Finite Difference Operators,
IV Interpolating Polynomials using Finite Differences, Hermite Interpolation.

Numerical Differentiation, Partial Differentiation, Numerical
V Integration, Methods based on Interpolation, Composite Integration methods.

\section*{Chalk \&}

18 Talk

Chalk 8 Talk, PPT

\section*{Chalk \& Talk}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print \\
Articulation Mapping - K Levels with Course Outcomes (COs)
\end{tabular}} \\
\hline \multirow{3}{*}{Internal} & \multirow{3}{*}{Cos} & \multirow{3}{*}{K Level} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Section A } \\
\hline \text { MCQs }
\end{gathered}
\]}} & \multirow[b]{3}{*}{Section B Either or Choice} & \multirow{3}{*}{\begin{tabular}{l}
Section C \\
Either or Choice
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & No. of. Questions & \begin{tabular}{l}
K - \\
Level
\end{tabular} & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CI } \\
& \text { AI }
\end{aligned}
\]} & CO1 & K1-K5 & 2 & K2 & 2(K2,K2) & 2(K3,K3) \\
\hline & CO2 & K1 - K5 & 2 & K2 & 2(K3,K3) & 2(K4,K4) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CI } \\
\text { AII }
\end{gathered}
\]} & CO3 & K1-K5 & 2 & K2 & 2(K2,K2) & 2(K3,K3) \\
\hline & CO4 & K1 - K5 & 2 & K2 & 2(K3,K3) & 2(K4,K4) \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Question Pattern CIA I \& II}} & No. of Questions to be asked & 4 & & 4 & 4 \\
\hline & & No. of Questions to be answered & 4 & & 2 & 2 \\
\hline & & Marks for each question & 1 & & 5 & 8 \\
\hline & & Total Marks for each section & 4 & & 10 & 16 \\
\hline
\end{tabular}

\section*{Distribution of Marks with K Level CIA I \& CIA II}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\underset{\text { Level }}{\text { K }}
\] & Section A (Multiple Choice Questions) & Section B (Either / Or Choice) & Section C (Either / Or Choice) & Total Marks & \% of (Marks without choice) & Consolidate of \% \\
\hline \multirow{6}{*}{\[
\begin{array}{|c|c|}
\text { CIA } \\
\text { I }
\end{array}
\]} & K1 & 2 & & & 2 & 3.6 & \multirow[t]{2}{*}{25} \\
\hline & K2 & 2 & 10 & & 12 & 21.4 & \\
\hline & K3 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K4 & & & 16 & 16 & 28.6 & 28.6 \\
\hline & K5 & & & & & & \\
\hline & Marks & 4 & 20 & 32 & 56 & 100 & 100 \\
\hline \multirow{6}{*}{\[
\begin{gathered}
\text { CIA } \\
\text { II }
\end{gathered}
\]} & K1 & 2 & & & 2 & 3.6 & \multirow[t]{2}{*}{7.2} \\
\hline & K2 & 2 & & & 2 & 3.6 & \\
\hline & K3 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K4 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K5 & & & & & & \\
\hline & Marks & 4 & 20 & 32 & 56 & 100 & 100 \\
\hline
\end{tabular}

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)} \\
\hline \multirow[b]{2}{*}{S. No} & \multirow[b]{2}{*}{Cos} & \multirow[b]{2}{*}{K - Level} & \multicolumn{2}{|l|}{Section A (MCQs)} & \multirow[t]{2}{*}{Section B (Either / or Choice) With K - LEVEL} & \multirow[t]{2}{*}{Section C (Either / or Choice) With K - LEVEL} \\
\hline & & & No. of Questions & K - Level & & \\
\hline 1 & CO1 & K1-K5 & 2 & K1,K2 & 2(K2,K2) & 2(K3,K3) \\
\hline 2 & CO2 & K1-K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline 3 & CO3 & K1-K5 & 2 & K1,K2 & 2(K2,K2) & 2(K3,K3) \\
\hline 4 & CO4 & K1-K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline 5 & CO5 & K1-K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline \multicolumn{3}{|l|}{No. of Questions to be Asked} & 10 & & 10 & 10 \\
\hline \multicolumn{3}{|l|}{No. of Questions to be answered} & 10 & & 10 & 5 \\
\hline \multicolumn{3}{|l|}{Marks for each question} & 1 & & 1 & 8 \\
\hline \multicolumn{3}{|l|}{Total Marks for each section} & 10 & & 10 & 40 \\
\hline \multicolumn{7}{|c|}{(Figures in parenthesis denotes, questions should be asked with the given K level)} \\
\hline
\end{tabular}

\section*{Distribution of Marks with K Level}
\begin{tabular}{|c|c|c|c|c|c|c} 
K Level & \begin{tabular}{c} 
Section A \\
(Multiple \\
Choice \\
Questions)
\end{tabular} & \begin{tabular}{c} 
Section B \\
(Either or \\
Choice
\end{tabular} & \begin{tabular}{c} 
Section C \\
(Either/ or \\
Choice)
\end{tabular} & \begin{tabular}{c} 
Total \\
Marks
\end{tabular} & \begin{tabular}{c} 
\% of \\
(Marks \\
(ithout \\
choice)
\end{tabular} & Consolidated \% \\
\hline K1 & \(\mathbf{5}\) & & & 5 & \(\mathbf{3 . 6}\) & \\
\hline K2 & 5 & 20 & & \(\mathbf{2 5}\) & \(\mathbf{1 7 . 8}\) & \(\mathbf{4}\) \\
\hline K3 & & \(\mathbf{3 0}\) & \(\mathbf{3 2}\) & \(\mathbf{6 2}\) & \(\mathbf{4 4 . 3}\) & \(\mathbf{4 8}\) \\
\hline K4 & & & \(\mathbf{4 8}\) & \(\mathbf{4 8}\) & \(\mathbf{3 4 . 3}\) & \(\mathbf{3 4}\) \\
\hline Marks & \(\mathbf{1 0}\) & \(\mathbf{5 0}\) & \(\mathbf{8 0}\) & \(\mathbf{1 4 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 0}\) \\
\hline
\end{tabular}

NB: Higher level of performance of the students is to be assessed by attempting higher level of \(K\) levels.

Summative Examinations - Question Paper - Format
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q. No. & Unit & CO & K-level & & \\
\hline \multicolumn{3}{|l|}{Answer ALL the questions} & \multicolumn{2}{|r|}{PART - A} & ( \(10 \times 1=10\) Marks) \\
\hline \multirow{3}{*}{1.} & Unit - I & CO1 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{2.} & Unit - I & CO1 & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{3.} & Unit - II & CO 2 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{4.} & Unit - II & CO 2 & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{5.} & Unit - III & CO 3 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{6.} & Unit - III & \(\mathrm{CO3}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{7.} & Unit - IV & \(\mathrm{CO4}\) & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{8.} & Unit - IV & \(\mathrm{CO4}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{9.} & Unit - V & \(\mathrm{CO5}\) & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{10.} & Unit - V & \(\mathrm{CO5}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Answer ALL the questions} & PART - B & ( \(5 \times 5\) = 25 Marks) \\
\hline 11. a) & Unit - I & CO1 & K2 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 11.b) & Unit - I & CO1 & K2 & & \\
\hline 12. a) & Unit - II & CO2 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 12. b) & Unit - II & CO2 & K3 & & \\
\hline 13. a) & Unit - III & CO3 & K2 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 13. b) & Unit - III & CO3 & K2 & & \\
\hline 14. a) & Unit - IV & CO4 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 14. b) & Unit - IV & CO4 & K3 & & \\
\hline 15. a) & Unit - V & CO5 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 15. b) & Unit - V & \(\mathrm{CO5}\) & K3 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Answer ALL the questions} & PART - C & ( \(5 \times 8=40\) Marks) \\
\hline 16.a) & Unit - I & CO1 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 16. b) & Unit - I & CO1 & K3 & & \\
\hline 17. a) & Unit - II & CO2 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 17. b) & Unit - II & CO2 & K4 & & \\
\hline 18. a) & Unit - III & CO 3 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 18. b) & Unit - III & CO3 & K3 & & \\
\hline 19. a) & Unit - IV & CO 4 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 19. b) & Unit - IV & CO4 & K4 & & \\
\hline 20. a) & Unit - V & CO5 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 20. b) & Unit - V & CO5 & K4 & & \\
\hline
\end{tabular}

\section*{MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS \\ FOR THOSE WHO JOINED IN 2023-2024 AND AFTER}
\begin{tabular}{|c|c|c|c|c|}
\hline Course Name & RESOURCE MANAGEMENT TECHNIQUES & & & \\
\hline Course Code & 23PMTEC22 & L & P & C \\
\hline Category & ELECTIVE & 6 & - & 4 \\
\hline \begin{tabular}{l}
COURSE OBJE \\
\(>\) To familiar \\
\(>\) To solve op \\
\(>\) To introduc \\
\(>\) To identify \\
\(>\) To learn ab
\end{tabular} & \begin{tabular}{l}
IVES: \\
arious decisions- making tools. \\
zation problems. \\
application on inventory control system and etc. \\
resources required for a project and generate a plan and work schedule. queuing models.
\end{tabular} & & & \\
\hline UNIT - I & & & & 8 \\
\hline
\end{tabular}

Network definitions- Minimal Spanning Tree Algorithm-Shortest route problem-Maximal Flow Model - CPM and PERT.
UNIT - II 18

Recursive nature of computations in DP - Forward and Backward recursion - Selected DP applications. Genera inventory models - Static Economic Order Quantity(EOQ) models.
UNIT - III ..... 18

Decision making under certainty-Analytic Hierarchy Process(AHP)-Decision making under risk- Decision under uncertainty-Game theory.
UNIT - IV 18

Queuing systems - Elements of Queuing model - Role of Exponential Distribution - Pure Birth and Death Models - Generalized Poisson Queuing Models - Specialized Poisson Queues.
UNIT - V \(\mathbf{1 8}\)

Unconstrained Problems - Necessary and Sufficient Conditions- Newton - Raphson Method - Constrained Problems - Equality Constraints- Inequality Constraints- Karush-Kuhn-Tucker Conditions.

\section*{BOOKS FOR STUDY:}
\(>\) Hamdy A. Taha, Operations Research - An introduction, \(8^{\text {th }}\) Edition, PHI, New Delhi.
Unit I- Chapter 6: sections 6.1 to6.5
Unit II - Chapter 10: sections 10.1 to10.3
Chapter 11:sections 11.1 to 11.3
Unit III - Chapter 13:sections 13.1 to 13.4
Unit IV - Chapter 15:sections 15.1 to 15.6
Unit V - Chapter 18: sections 18.1 to18.2
BOOKS FOR REFERENCES:
> KantiSwarup , P.K. Gupta and Man Mohan, "Operations Research", Sultan Chand \& sons Publications, Reprint 2006, NewDelhi.
> Harvey M. Wagner, "Principles of Operations Research", Second Edition, Prentice Hall of Pvt Ltd, 1998, NewDelhi.
> Prem Kumar Gupta and D.S.Hira, "Operations Research", S.Chand Publications, 2009, New Delhi.

\section*{WEB RESOURCES:}
* https://nptel.ac.in/courses/111/105/111105100/
* https://nptel.ac.in/courses/111/104/111104071/
- http://apmonitor.com/me575/


After studying this course, the students will be able to:
\begin{tabular}{l|l|l|}
\hline CO1 & Identify various decisions- making tools. & K1 to K5 \\
\hline CO2 & Analyze various models in inventory system. & K1 to K5 \\
\hline \(\mathbf{C O 3}\) & Apply suitable method in game theory. & K1 to K5 \\
\hline CO4 & Explain Poisson Queuing Models & K1 to K5 \\
\hline CO5 & Classify the constrained and unconstrained Problems & K1 to K5 \\
\hline
\end{tabular}

MAPPING WITH PROGRAM OUTCOMES:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{C O / P O}\) & PO1 & PO2 & PO3 & PO4 & PO5 & PO6 & PO7 & PO8 & PO9 & PO10 \\
\hline \(\mathbf{C O 1}\) & 3 & 2 & 3 & 2 & 3 & 3 & & & & \\
\hline \(\mathbf{C O 2}\) & 3 & 2 & 3 & 2 & 2 & 3 & & & & \\
\hline CO3 & 3 & 2 & 3 & 2 & 2 & 3 & & & & \\
\hline CO4 & 2 & 2 & 2 & 2 & 2 & 3 & & & & \\
\hline CO5 & 2 & 2 & 2 & 2 & 2 & 3 & & & & \\
\hline
\end{tabular}

S- STRONG
M - MEDIUM
L-LOW
CO / PO MAPPING:
\begin{tabular}{|c|c|c|c|c|c|}
\hline COS & PSO 1 & PSO2 & PSO3 & PSO4 & PSO5 \\
\hline CO 1 & 3 & 2 & 1 & & \\
\hline CO 2 & 3 & 2 & 1 & & \\
\hline CO 3 & 3 & 2 & 1 & & \\
\hline CO 4 & 3 & 2 & 1 & & \\
\hline CO 5 & 3 & 2 & 1 & & \\
\hline WEIGHTAGE & 15 & 10 & 5 & & \\
\hline \begin{tabular}{c} 
WEIGHTED \\
PERCENTAGE \\
OF COURSE \\
CONTRIBUTI \\
ON TO POS
\end{tabular} & 3 & & & & \\
\hline LESSON PLAN: & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline UNIT & RESOURCE MANAGEMENT TECHNIQUES & HRS & PEDAGOGY \\
\hline I & \begin{tabular}{l} 
Network definitions- minimal spanning tree algorithm-Shortest route \\
problem-maximal flow model - CPM and PERT.
\end{tabular} & \(\mathbf{1 8}\) & \begin{tabular}{c} 
Chalk and \\
Board, \\
Virtual \\
Class room, \\
LCD
\end{tabular} \\
\hline II & \begin{tabular}{l} 
Recursive nature of computations in DP - Forward and Backward \\
recursion - Selected DP applications. General inventory models - Static \\
Economic Order Quantity(EOQ) models
\end{tabular} & \(\mathbf{1 8}\) & \begin{tabular}{c} 
Guest \\
Lectures.
\end{tabular} \\
\hline III & \begin{tabular}{l} 
Decision making under certainty-Analytic Hierarchy Process(AHP)- \\
Decision making under risk- decision under uncertainty-Game theory.
\end{tabular} & \(\mathbf{1 8}\) & \begin{tabular}{c} 
Chalk \& \\
Talk
\end{tabular} \\
\hline IV & \begin{tabular}{l} 
Queuing systems - Elements of Queuing model - Role of Exponential \\
Distribution - Pure Birth and Death Models - Generalized Poisson \\
Queuing Models - Specialized Poisson Queues.
\end{tabular} & \(\mathbf{1 8}\) & \begin{tabular}{c} 
Chalk \& \\
Talk
\end{tabular} \\
\hline \(\mathbf{V}\) & \begin{tabular}{l} 
Unconstrained Problems - Necessary and Sufficient Conditions- \\
Newton - Raphson Method - Constrained Problems - Equality \\
Constraints- Inequality Constraints- Karush-Kuhn-Tucker Conditions
\end{tabular} & \(\mathbf{1 8}\) & \begin{tabular}{c} 
Chalk \& \\
Talk
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print \\
Articulation Mapping - K Levels with Course Outcomes (COs)
\end{tabular}} \\
\hline \multirow{3}{*}{Internal} & \multirow{3}{*}{Cos} & \multirow{3}{*}{K Level} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Section A } \\
\hline \text { MCQs } \\
\hline
\end{gathered}
\]}} & \multirow[b]{3}{*}{Section B Either or Choice} & \multirow{3}{*}{\begin{tabular}{l}
Section C \\
Either or Choice
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & No. of. Questions & K Level & & \\
\hline CI & CO1 & K1-K5 & 2 & K2 & 2(K2,K2) & 2(K3,K3) \\
\hline AI & CO2 & K1-K5 & 2 & K2 & 2(K3,K3) & 2(K4,K4) \\
\hline CI & CO3 & K1 - K5 & 2 & K2 & 2(K2,K2) & 2(K3,K3) \\
\hline AII & CO4 & K1-K5 & 2 & K2 & 2(K3,K3) & 2(K4,K4) \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Question Pattern CIA I \& II}} & No. of Questions to be asked & 4 & & 4 & 4 \\
\hline & & No. of Questions to be answered & 4 & & 2 & 2 \\
\hline & & Marks for each question & 1 & & 5 & 8 \\
\hline & & Total Marks for each section & 4 & & 10 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Distribution of Marks with K Level CIA I \& CIA II} \\
\hline & \[
\underset{\text { Level }}{\text { K }}
\] & Section A (Multiple Choice Questions) & Section B (Either / Or Choice) & Section C (Either / Or Choice) & \begin{tabular}{l}
Total \\
Marks
\end{tabular} & \% of (Marks without choice) & Consolidate of \% \\
\hline \multirow{6}{*}{\[
\underset{\text { I }}{\text { CIA }}
\]} & K1 & 2 & & & 2 & 3.6 & \multirow[t]{2}{*}{25} \\
\hline & K2 & 2 & 10 & & 12 & 21.4 & \\
\hline & K3 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K4 & & & 16 & 16 & 28.6 & 28.6 \\
\hline & K5 & & & & & & \\
\hline & Marks & 4 & 20 & 32 & 56 & 100 & 100 \\
\hline \multirow{6}{*}{\[
\begin{gathered}
\text { CIA } \\
\text { II }
\end{gathered}
\]} & K1 & 2 & & & 2 & 3.6 & \multirow[b]{2}{*}{7.2} \\
\hline & K2 & 2 & & & 2 & 3.6 & \\
\hline & K3 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K4 & & 10 & 16 & 26 & 46.4 & 46.4 \\
\hline & K5 & & & & & & \\
\hline & Marks & 4 & 20 & 32 & 56 & 100 & 100 \\
\hline
\end{tabular}

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)} \\
\hline \multirow[b]{2}{*}{S. No} & \multirow[b]{2}{*}{Cos} & \multirow[b]{2}{*}{K - Level} & \multicolumn{2}{|l|}{Section A (MCQs)} & \multirow[t]{2}{*}{Section B (Either / or Choice) With K - LEVEL} & \multirow[t]{2}{*}{Section C (Either / or Choice) With K - LEVEL} \\
\hline & & & No. of Questions & K - Level & & \\
\hline 1 & CO1 & K1-K5 & 2 & K1,K2 & 2(K2,K2) & 2(K3,K3) \\
\hline 2 & CO2 & K1-K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline 3 & CO3 & K1-K5 & 2 & K1,K2 & 2(K2,K2) & 2(K3,K3) \\
\hline 4 & CO4 & K1-K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline 5 & CO5 & K1 - K5 & 2 & K1,K2 & 2(K3,K3) & 2(K4,K4) \\
\hline \multicolumn{3}{|l|}{No. of Questions to be Asked} & 10 & & 10 & 10 \\
\hline \multicolumn{3}{|l|}{No. of Questions to be answered} & 10 & & 10 & 5 \\
\hline \multicolumn{3}{|l|}{Marks for each question} & 1 & & 1 & 8 \\
\hline \multicolumn{3}{|l|}{Total Marks for each section} & 10 & & 10 & 40 \\
\hline \multicolumn{7}{|c|}{(Figures in parenthesis denotes, questions should be asked with the given \(\mathbf{K}\) level)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Distribution of Marks with K Level} \\
\hline K Level & Section A (Multiple Choice Questions) & Section B (Either or Choice & \begin{tabular}{l}
Section C \\
(Either/ or Choice)
\end{tabular} & Total Marks & \(\%\) of (Marks without choice) & Consolidated \% \\
\hline K1 & 5 & & & 5 & 3.6 & 4 \\
\hline K2 & 5 & 20 & & 25 & 17.8 & 18 \\
\hline K3 & & 30 & 32 & 62 & 44.3 & 44 \\
\hline K4 & & & 48 & 48 & 34.3 & 34 \\
\hline Marks & 10 & 50 & 80 & 140 & 100 & 100 \\
\hline \multicolumn{7}{|l|}{NB: Higher level of performance of the students is to be assessed by attempting higher level of \(K\) levels.} \\
\hline
\end{tabular}

Summative Examinations - Question Paper - Format
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q. No. & Unit & CO & K-level & & \\
\hline \multicolumn{3}{|l|}{Answer ALL the questions} & \multicolumn{2}{|r|}{PART - A} & ( \(10 \times 1\) = 10 Marks) \\
\hline \multirow{3}{*}{1.} & Unit - I & CO1 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{2.} & Unit - I & CO1 & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{3.} & Unit - II & CO 2 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{4.} & Unit - II & \(\mathrm{CO2}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{5.} & Unit - III & CO 3 & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{6.} & Unit - III & CO 3 & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{7.} & Unit - IV & \(\mathrm{CO4}\) & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{8.} & Unit - IV & \(\mathrm{CO4}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{9.} & Unit - V & \(\mathrm{CO5}\) & K1 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline \multirow{3}{*}{10.} & Unit - V & \(\mathrm{CO5}\) & K2 & & \\
\hline & & & & a) & b) \\
\hline & & & & c) & d) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Answer ALL the questions} & PART - B & ( \(5 \times 5=25\) Marks) \\
\hline 11. a) & Unit - I & CO1 & K2 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 11. b) & Unit - I & CO1 & K2 & & \\
\hline 12. a) & Unit - II & CO2 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 12. b) & Unit - II & CO 2 & K3 & & \\
\hline 13. a) & Unit - III & CO 3 & K2 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 13. b) & Unit - III & CO3 & K2 & & \\
\hline 14. a) & Unit - IV & CO4 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 14. b) & Unit - IV & CO4 & K3 & & \\
\hline 15. a) & Unit - V & CO5 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 15. b) & Unit - V & \(\mathrm{CO5}\) & K3 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Answer ALL the questions} & PART - C & ( \(5 \times 8=40\) Marks) \\
\hline 16.a) & Unit - I & \(\mathrm{CO1}\) & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 16. b) & Unit - I & CO1 & K3 & & \\
\hline 17. a) & Unit - II & CO2 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 17. b) & Unit - II & CO2 & K4 & & \\
\hline 18. a) & Unit - III & CO3 & K3 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 18. b) & Unit - III & CO3 & K3 & & \\
\hline 19. a) & Unit - IV & CO4 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 19. b) & Unit - IV & CO4 & K4 & & \\
\hline 20. a) & Unit - V & CO5 & K4 & & \\
\hline \multicolumn{6}{|c|}{OR} \\
\hline 20. b) & Unit - V & \(\mathrm{CO5}\) & K4 & & \\
\hline
\end{tabular}```

