M.Sc., PHYSICS

Program Code: PPH

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS)

Re-accredited with "A" Grade by NAAC

PASUMALAI, MADURAI – 625 004

Regulations

Eligibility condition for admission

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years degree course (under 10 + 2 + 3 pattern) (B.Sc., Physics) recognized by the university as equivalent there to.

Duration

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

Attendance

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

Evaluation procedure:

A mark Statement with CGPA = $\sum (MarksXcredits)$

Where the summations are over all paper appeared up to the current semester.

Examinations: 3 hours duration. Total marks 100 for all papers External Internal ratio 75:25 with 2 Internal tests.

--5 marks

25 Marks

The scheme of Examination

The components for continuous internal assessment are:

Two tests and their average --15 marks

Seminar /Group discussion --5 marks

Assignment

Total

	Volume II – Science Syllabus / 2021 -2022					
Pattern of the questions paper for the continuous Internal Assessment						
(For Part I, Part II, Part III, NME & Skilled Pape	r in Part IV)					
The components for continuous internal assessment a Part –A	re:					
Four multiple choice questions (answer all) Part –B	4 x01= 04 Marks					
Three short answers questions (answer all)	3 x02= 06 Marks					
Part –C Two questions ('either or 'type)	2 x 05=10 Marks					
Two questions out of three	∞ 2 x 10 =20 Marks					
Total	40 Marks					
Pattern of the question paper for the Summative Exar	ninations:					
Note: Duration- 3 hours						
Part – A Ten multiple choice questions	= 10 Marks					
No Unit shall be omitted: not more than two question	s from each unit.)					
Part –B						
Short answer questions (one question from each unit)	$= 5 \times 02 = 10$ Marks					
Part – C						
Five Paragraph questions ('either or 'type)	5 x 05 = 25 Marks					
(One question from each Unit)						
Part –D	2					
Three Essay questions out of five	$= 3 \times 10 = 30$ Marks					
(One question from each Unit)						
Total	75 Marks					
	80 °					

Minimum Marks for a Pass

50% of the aggregate (Internal +Summative Examinations).No separate pass minimum for the Internal Examinations.34 marks out of 75 is the pass minimum for the Summative Examinations.

VISION

The Department of P.G. Physics undertakes the responsibility to preserve and enhance an atmosphere in which scholarly activities in the young minds of the students and thereby improving the total personality.

MISSION

- To produce employable graduates in many areas such as research, teaching, industry etc.
- To inculcate social responsibility.
- To nurture environmental awareness.
- To develop communal harmony & national integration.

The 12 Graduate Attributes:

- 1. (KB) A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
- 2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions
- 3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.
- 4. (Des.) Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
- 5. (Tools) Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
- 6. (Team) Individual and teamwork: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
- 7. (Comm.) Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.

- 8. (Prof.) Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
- 9. (Impacts) Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.
- 10. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.
- 11. (Econ.) Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
- 12. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

WA	Graduate Attributes	Caption as
1	Knowledge Base	KB
2, 3	Problem Analysis & Investigation	PA and
		Inv.
7,4	Communication Skills & Design	Comm. &
	5 11 5	Des.
6	Individual and Team Work	Team
8, 10	Professionalism, Ethics and equity	Prof. &
	" J MALLEYA WALLAND A	Ethics
12	Lifelong learning	LL

PROGE	RAM EDUCATIONAL OBJECTIVES (PEOs)
PEO1 :	Gain broad knowledge on various fields in Physics such as Solid state Physics, Optics,
	Electronics, Quantum Mechanics etc.,
PEO2 :	Develop the interest to take up competitive exams such as GATE, SET and NET and also
	opt for higher education to achieve their dream career.
PEO3 :	Communicate effectively by writing reports, speaking fluently, listening to give effective
	response and comprehending the documentations.
PEO4 :	Acquire a wide range of skills such as reasoning, problem solving and soft skills to get
	placement in Educational institutions, Research & Development and Industrial sectors.
PEO5 :	Solve societal problems with innovative and creative ideas.
PEO6 :	Upgrade to join as a researcher to work independently by the experience acquired during
	the project period.

PROC	GRAMME OUTCOMES (POs)
PO1 :	Demonstrate analytical and practical knowledge in the field of Science, Technology and
	other domains.
PO2 :	Make proficiency by using Computer Technology in learning activities and update their
	knowledge, skills to fulfill the requirements at the workplace in their life span.
PO3 :	Employ critical and analytical thinking in understanding the concepts of Mathematical
	&Computing Sciences and qualify competitive examinations like CSIR NET/ SET/ TET
	etc.
PO4 :	Identify Mathematical and Computational methods in order to solve critical problems.
PO5 :	Work independently and do detailed study of various concepts of Science.
PO6 :	Plan, execute, report the results of an experiment/investigation together as a group/team
	with interest and work efficiently as a member of a team.

PROG	RAM SPEC <mark>IFIC OUTCOME (PSOs</mark>)
PSO1:	Understand, demonstrate and solve the major findings in all branches of Physics
PSO2:	Employ critical thinking and scientific ideas to design, carry out the work and analyze the
	problems in real time
PSO3:	Communicate effectively and develop skills such as effective oral presentations, writing
	of reports of practical works and documentation work of research projects
PSO4:	Work effectively in a team to use modern techniques, recent equipments and software's in
	Physics in the fields of Electronics, Optics, Condensed Matter Physics and Quantum
	Mechanics
PSO5 :	Inculcate the scientific temperament and green route for sustainable development and
	moral values in their profession with active participation
PSO6 :	Extend contemporary research innovations based on societal needs regarding new
	renewable energy harvesting methods

MANNAR THIRUMALAI NAICKER COLLEGE (Autonomous), Madurai DEPARTMENT OF PG PHYSICS

M.Sc., PHYSICS Curriculum

(For the student admitted during the academic year 2021-2022 onwards)

I SEN	AESTER						
S.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
<i>NO</i> .		Mathematical Dhawing L	Mothematical Dhusias I			75	100
1	21PPHC11 21DDUC12	Mathematical Physics-1	0	4	25	15	100
2	21PPHC12	Classical Mechanics	0	4	25	75	100
3	21PPHC13	Communications	6	4	25	75	100
4	21PPHC14	Electrodynamics	6	4	25	75	100
5	21PPHCP1	Practical-I- General Physics	6	4	40	60	100
		TOTAL	30	20	140	360	500
II SE	MESTER	SUDION	1 2			•	
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC21	Mathematical Physics-II	6	4	25	75	100
2	21PPHC22	Quantum Mechanics-I	6	4	25	75	100
3	21PPHC23	Digital Electronics	6	4	25	75	100
4	21PPHCP2	Practical-II-Electronics I	6	4 0	40	60	100
5	21PPHN21	NME-Nanotechnology	6	6	25	75	100
		TOTAL	30	22	140	360	500
III SF	EMESTER		5				
S. No.	Subject Code	Title of the Subject	Hrs	Credi t	Int.	Ext.	Total
1	21PPHC31	Solid State Physics-I	6	4	25	75	100
2	21PPHC32	Quantum Mechanics-II	6	4	25	75	100
3	21PPHCP3	Practical-III- Electronics-II	6	4	40	60	100
4		Elective-I	- 0	5			
	21PPHE31	Energy Physics	6	6	25	75	100
	21PPHE32	Computational Physics	6	6	25	75	100
	21PPHE33	Physics of Human body	6	6	25	75	100
5		Elective-II					
	21PPHE34	Microprocessor and Microcontroller	6	6	25	75	100
	21PPHE35	Analytical Instrumentation	6	6	25	75	100
	21DDHE36	Crystal Growth Methods &	6	6	25	75	100
	Characterization		0	0	23	75	100
		TOTAL	30	24	140	360	500
IV SE	EMESTER	1	1	I		T	1
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC41	Solid State Physics-II	6	4	25	75	100
2	21PPHC42	Nuclear and Particle Physics	6	4	25	75	100
3	21PPHPR1	Project	6	4	40	60	100
4		Elective-III					

Academic Council Meeting Held on 29.04.2021

Page 203

	21PPHE41	Astrophysics	6	6	25	75	100
	21PPHE42	Communication Electronics	6	6	25	75	100
	21PPHE43	Advanced Optics	6	6	25	75	100
5		Elective-IV					
	21PPHE44	Atomic and Molecular Spectroscopy		6	25	75	100
	21PPHE45	Bio-medical Instrumentation	6	6	25	75	100
	21PPHE46	Computer Oriented Numerical methods		6	25	75	100
		Total	30	24	140	360	500
		Grand Total	120	90	560	1440	2000

Semester	Sub Code	List of Elective Courses		
Ι		Nil		
II	21PPHN21	NME-Nanotechnology		
III		Elective-I		
	21PPHE31	Energy Physics		
	21PPHE <mark>32</mark>	Computational Physics		
	21PPHE <mark>33</mark>	Physics of Human body		
		Elective-II		
	21PPHE <mark>34</mark>	Microprocessor and Microcontroller		
	21PPHE <mark>35</mark>	Analytical Instrumentation		
	21PPHE36	Crystal Growth Methods & Characterization		
	010	P. C.		
IV		Elective-III		
	21PPHE41	Astrophysics		
	21PPHE42	Communication Electronics		
	21PPHE43	Advanced Optics		
		Elective-IV		
	21PPHE44	Atomic and Molecular Spectroscopy		
	21PPHE45	Bio-medical Instrumentation		
	21PPHE46	Computer Oriented Numerical methods		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	Mathematical Physics-I	[
Course Code	21PPHC11						L	Р	С
Category	Core						6	-	4
Nature of cour	se: EMPLOYBILITY	SF	XILL ORIENTED	1	ENT	FREPRE	ENUR	SHI	P
Course Object	ives:	SIL	5.02						
 Course Objectives: To recall various matrices and also know to apply characteristic equations for determining the Eigen values and Eigen vectors To remember the basics of vectors and to solve their differentiations To compare different integrals and to relate their relations between them To perform differentiation and integration operations to bring down complex functions to analytic forms To determine residues of various complex functions and also can able to evaluate real definite integrals by contour integration Unit: I Matrix Definition - various types of matrices -algebra of matrices -Adjoint of a square matrix -property of adjoint matrix - Inverse of a matrix - elementary transformations - elementary matrices and its theorem - to compute the inverse of a matrix from elementary- the inverse of a symmetric matrix. Consistency of linear system of equations and their solution: Solution of simultaneous equations - types of linear equations - consistency of a system of linear equations. Eigen values, Eigen values, Eigen vectors, Cayley Hamilton theorem: Eigen values - Cayley Hamilton 									
two Eigen vecto	ors.	1 11011-		105 -	- mau	IX Havi	ig om	y on	e allu
Unit: II Ve	ctors							15	Hrs.
Vectors- Additi point- ratio form scalar product- a parallelogram interpretation – vector - vector of vectors - for function - geom of a vector funct Unit: III Int	on of vectors- rectangular nula- product of two vector vector product or cross pro- n, moment of a force-a co-planarity questions - product of four vectors. D mulae of differentiation - etrical meaning of gradien tion- physical interpretatio egration of vectors	resoliors- so oduct- ingula vecto Differe scala it, nor on of c	ation of a vectors- calar or dot product vector product exp r velocity - scala r product of three ntiation of vectors: and vector point mal - normal and d ivergence – curl an	unit ct- u ressour tr vec Vec fun irect id its	vecto seful ed as iple tor - ctor fu ctions ional s phys	rs- posi results- a detern product scalar p inction s - grad derivati ical mea	tion v work - ge produ - diffe ient c ve - d aning	done done t - An eome ct of erention of a s livers	r of a e as a rea of etrical f our iation scalar gence Hrs.
Line integral- method of prov divergence theo	surface integral- volume ving Stokes theorem – G rem – Helmholtz theorem.	integ auss's	ral- Green's theore theorem of diver	em - genc	– Sto ce - c	kes the leductio	orem ns fro	–An om (other Gauss

Unit: IV Complex variables	18 Hrs.			
Complex variable – functions and limit of a complex variable –continuity – differentiability – analytic function – necessary and sufficient condition for complex function to be analytic-Cauchy's integral theorem-extension of Cauchy's theorem to multiple connected region-Cauchy integral formula -Cauchy integral formula for the derivative of an analytic function-Poisson integral formula for a circle. Series: Taylor's and Laurent's series: Convergence of a series of complex				
expansion of a function – Taylor's theorem – Laurent's theorem.				
Unit: V Calculus of residues	18 Hrs.			
Zero of analytic function-singular point– residue at a pole-residue at infinity-method residues- residue by definition – finding residues of various functions - residue evaluation of real definite integrals by contour integration – Integration round unit circle – Evaluation of polynomials – Rectangular contour – Indented semi-circular contour.	of finding theorem - of the type			
Total Lecture Hours	s 90			
 Book for study: 1. H. K. Dass & Dr. Rama Verma, Mathematical Physics, VIII Edition, S. Chand and limited, Ram Nagar, New Delhi – 55, 2018. UNIT I - Chapters 38, 40 (40.1 - 40.3), 41 (41. 1 – 41. 13) UNIT II - Chapters 1, 2 UNIT III - Chapter 3 UNIT IV - Chapter 22 (22.1-22.11), 24 (24.1-24.6, 24.11), 25(25.1-25.8) UNIT V - Chapter 26 Books for References: 1. G. B. Arfken, H. J. Weber and Harris, Mathematical methods for Physicists, I Academic press, India, 2005 2. Advanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publi 3. B. D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private Delhi-55, Reprint 2018. Web Resources: https://www.coursera.org/courses?query=vector%20calculus https://nptel.ac.in/courses/111/105/111105122/ https://nptel.ac.in/courses/111/106/111106100 	l Company V Edition, shers Ltd., New			
Course Outcomes	K			
On Completion of this course, the student will be able to	Level			
CO1: Determine the rank of a matrix and also apply characteristic equation to fin Eigen values and Eigen vectors	d K3			
CO2: Solve the differential operations in vectors	K3			
CO3: Understand and compare different integrals such as line, surface and volumexclusively	e K4			
CO4: Simplify complex functions through differentiation and integration	K4			
CO5: Determine residues of various complex functions and can evaluate the definit integrals	e K5			

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO 1	2	2	2	3	2	3
CO 2	2	2	2	2	2	2
CO 3	2	3	3	1	2	2
CO 4	2	2	2	2	2	1
CO 5	1	2	1	2	1	2
Weightage	9	11	10	10	9	10

3-Advanced Application; **2** – Intermediate Development; **1** – Introductory Level

LESSON PLAN

UNIT	Course Name	Hrs	Pedagogy
Ι	Matrix Definition, various types of matrices, algebra of matrices, Adjoint of a square matrix, property of adjoint matrix, Inverse of a matrix, elementary transformations, elementary transformations, elementary matrices and its theorem, to compute the inverse of a matrix from elementary, the inverse of a symmetric matrix. Rank of matrix: Rank of a matrix, Normal form. Consistency of linear system of equations and their solution: Solution of simultaneous	6	Chalk &
	equations, types of linear equations, consistency of a system of linear equations.		Talk, PPT
	Eigen values, Eigen vectors, Cayley Hamilton theorem: Eigen values, Cayley Hamilton theorem , power of matrix, Eigen vectors and its Properties, orthogonal vectors, non-symmetric and symmetric matrices with repeated and non-repeated Figure values matrix having only one	6	
	and two Eigen vectors		
Π	Vectors Vectors, Addition of vectors, rectangular resolution of a vectors, unit vectors, position vector of a point, ratio formula, product of two vectors, scalar or dot product, useful results, work done as a scalar product, vector product or cross product, vector product expressed as a determinant, Area of a parallelogram, moment of a force, angular velocity, scalar triple product, geometrical interpretation, coplanarity questions, vector product of three vector, scalar product of four vector, vector product of four vectors.	4	Chalk, Talk& Assignment
	Differentiation of vectors: Vector function, differentiation of vectors, formulae of differentiation, scalar and vector point functions, gradient of a scalar function, geometrical meaning of gradient, normal, normal and directional derivative.	5	

	Volume II – Science Sylla	bus / 2	021 -2022
	Divergence of a vector function, physical interpretation of divergence, curl and its physical meaning	6	
III	Line integral, surface integral, volume integral, Green's theorem, area of a plane region by Green's theorem	7	Chalk,
	Stokes theorem, another method of proving Stokes theorem	7	Talk&
	Gauss's theorem of divergence, deductions from gauss divergence theorem, Helmholtz theorem.	7	Exercise
IV	Complex variable, functions and limit of a complex variable, continuity, differentiability, analytic function, necessary and sufficient condition for complex function to be analytic, Cauchy's integral theorem	6	
	Extension of Cauchy's theorem to multiple connected region, Cauchy integral formula, Cauchy integral formula for the derivative of an analytic function, Poisson integral formula for a circle	6	Chalk & Talk, PPT
	Series: Taylor's and Laurent's series: Convergence of a series of complex terms, power series, region of convergence, radius of convergence of a power series, method of expansion of a function, Taylor's theorem, Laurent's theorem.	6	
V	Zero of analytic function, singular point– residue at a pole, residue at infinity, method of finding residues, residue by definition, finding residues of various functions, residue theorem	7	Chalk,
	Evaluation of real definite integrals by contour integration, Integration	5	Talk&
	Round unit circle of the type		Seminar
	Evaluation of polynomials, Rectangular contour, Indented Semi- circular contour.	6	

Course Designed by: **Dr. D. Ruby Josephine Mrs. S. Nagadeepa**

	Learning Outcome Based Education & Assessment (LOBE)									
	Formative Examination - Blue Print									
Into	Articulation Mapping - K Levels with Course Outcomes (COS) Inte Cos K Level Section A Section B Section C Section D									
rnal	0.05	K Level	MCO	C C	Short An	Swore	Either or	Open		
				S К-		K-	Choice	Choice		
			Questions	Level	Questions	Level				
	CO1	K2	2	K1 &	1	K1	2 (K2&K2)	1(K2)		
	CO2	К3	2	K1 & K2	2	K2	2 (K3&K3)	2(K2 & K3)		
CI AII	CO3	K2	222	K1 & K2	1	K2	2 (K2&K2)	1(K2)		
	CO4	K4	2	K1 & K2	2	K2	2 (K3&K3)	2(K3 &K4)		
Que: Pat	stion tern	No. of Questions to be asked	4	$\mathbf{\omega}$	3	·94'	4	3		
CIA I & II		No. of Questions to be answered	4		3	Ģ	2	2		
		Marks fo <mark>r each</mark> ques <mark>tion</mark>	1	S	2		5	10		
Total Marks for each section4610							20			
		6		457		5				

	Distribution of Marks with K Level CIA I & CIA II								
	K Section A Level (Multiple		Section B (Short	Section C (Either /	Section D (Open	Total Marks	% of (Marks	Consolidate of %	
		Choice	Answer	//Or	Choice)		without		
		Questions)	Questions)	Choice)	1 menes		choice)		
	K1	2	2			4	6.67	67	
	K2	2	4	10	20	36	60		
CIA	K3	-	200	10	10	20	33.33	33	
I	K4	-		JE min 1 m	- 173	-	-	-	
	Marks	4	6	20	30	60	100	100	
	K1	2	2	-	-	4	6.67	50	
CIA	K2	2	4	10	10	26	43.33		
II	K3	_	-	10	10	20	33.33	33	
	K4	_	-	_	10	10	16.67	17	
	Marks	4	6	20	30	60	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Academic Council Meeting Held on 29.04.2021

Page 210

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course								
	Outcomes (COs)								
S.No	COs	K - Level	MCC)s	Short An	swers	Section C	Section D	
•			No. of	K –	No. of	K –	(Either /	(Open	
			Questions	Level	Question	Level	or	Choice)	
							Choice)		
1	CO1	Up to K 3	2	K1,K2	1	K1	2	1(K3)	
							(K3&K3)		
2	CO2	Upto K3	2	K1&K	1	K1	2	1(K3)	
		-		2			(K3&K3)		
3	CO3	Up to K 5	2 2 8	K1&K	^b 661	K2	2	1(K3)	
		•		2			(K5&K5)		
4	CO4	Up to K 3	2	K1&K	5	K2	2	1(K3)	
				2			(K3&K3)		
5	CO5	Up to K 5	2	K1&K	- 1	K2	2	1(K5)	
				2		1.04.	(K3&K3)		
No	of Quest	ions to be 🥢	10		5		10	5	
	Aske	ed 🗾				1.04			
No	.of Quest	ions to be	10		5	- 04	5	3	
	answe	red				F			
Mar	ks for eac	h question	1	N. M.	2		5	10	
Total I	Marks for	each section	10	A L	10		25	30	
	(Figures in parenthesis denotes, questions should be asked with the given K level)								
				127					
		6							

	Distribution of Marks with K Level									
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated			
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%			
	Choice	Answer &	Choice)	Choice)	2	without				
	Questions)	Questions)			20	choice)				
K1	5	4	0	1	9	7.5	17			
K2	5	6	தாய	89 <u>1</u>	11	9.16	17			
K3	-	-	40	40	80	66.67	83			
K4	-	-	-	-	-	-				
K5	-	-	10	10	20	16.6				
Marks	10	10	50	50	120	100	100			
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level of K									
			leve	ls.						

	Section A (Multiple Choice Questions)						
O N-	An	swer All Q	uestions (10x1=10 marks)				
Q. No	CO	K Level	Questions				
1	COI	K1	Select a idempotent matrix a) $\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 6 & 8 \end{pmatrix}$				
2	CO1	K2	Show AB, if A= $ \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & 1 \\ -3 & 1 & 2 \end{bmatrix} $ and B = $ \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix} $ a) $ \begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 & b \\ 3 & 6 & 8 \end{bmatrix} $ $ \begin{bmatrix} 4 & 4 & -2 & 0 & 0 & 1 \\ -1 & 1 & 10 & c \\ 4 & 0 & 1 & d \\ -1 & 5 & -4 & 3 & 0 & 8 \end{bmatrix} $ $ \begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 6 & 8 \end{bmatrix} $				
	000	TZ 1					
3	CO2	KI	Identify the directional derivative of the function $\Phi = x^2yz + 4xz^2$ at (1, -2, 1) in the direction of $2\hat{i} - \hat{i} - 2\hat{k}$				
4	CO2	K2	Express grad Φ at the point $(1 - 2 - 1)$ Where $\Phi = 3xz^2y-y^3z^2$				
		•	a) $-16\hat{i} + 9\hat{j} + 3\hat{k}$ b) $-16\hat{i} + 4\hat{j} + 4\hat{k}$ c) $-16\hat{i} + \hat{j} + 4\hat{k}$ d) $-16\hat{i} + 9\hat{j} + 4\hat{k}$				
5	CO3	K1 Don	 Which is defined as the integral of the components of F along the normal to the surface a) Surface integral of scalar function b) surface integral of a vector function c) even function d) odd function 				
6	CO3	K2	Indicate the volume integral a) $\iiint \vec{F} dv$ c) $\iint \vec{F} dv$ d) none of these				
7	CO4	K1	Identify the other names of analytic function				
			a) holomorphic b) regular c) monogenic d) all the above				
8	CO4	K2	Express the polar form of complex variable a) $z=r(\cos \theta + i \sin \theta)$ b) $z=r(\cos \theta + \sin \theta)$ c) $z=r(\cos \theta + 2i \sin \theta)d)z=r(\cos \theta + i \sin \theta)$				
9	CO5	K1	Locate the definition for singular point a) a point at which a function f(z) is not analytic b) a point at which a function f(z) is negative c) a point at which a function f(z) is positive d) none of these				
10	CO5	K2	When m=1, the pole is said to be a				
			Section B (Short Answers)				
	Aı	nswer All (Duestions (5x2=10 marks)				
Q.No	CO	K Level	Questions				
11	CO1	K1	Define a singular matrix				
12	CO2	K1	Define vector point function				
· · · · ·							

Summative Examinations - Question Paper – Format

13	CO3	КЭ	Describe in short on stroke's theorem					
14	C03	K2	Write in short on single valued and multi valued function					
15	CO5	K2	Explain in short about isolated singular point					
15	Section C (Either/Or Type)							
	Ansv	ver All Qu	estions $(5 \times 5 = 25 \text{ marks})$					
Q. No	CO	K Level	Questions					
16) a	1	К3	Determine AB and BA and show that AB=BA or not, if A= $\begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ and B= $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix}$					
16) b	1	K3	Determine the values of α , β , γ when $\begin{pmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{pmatrix}$ is orthogonal					
17) a	2	К3	Find the constants a, b, c so that $\vec{F} = (x+2y+az) \hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\vec{k}$ is irrotational and hence find function φ such that $\vec{F} = \delta \varphi$					
17) b	2	K3 6	Show that $\vec{A} = (6xy + z^3)\hat{\iota} + (3x^2 - z)\hat{j} + (3xz^2 - y)\vec{k}$ is irrotational and find Φ such that $A = \vec{\Delta} \Phi$					
18) a	3	K5	Using stoke s theorem or otherwise evaluate $\int (2x - y)dx - yz 2dy - yz dz$ where c is the circle $x^2+y^2=1$ corresponding to the surface of sphere of unit radius					
18) b	3	K5	Evaluate $\iint \vec{F}$. \hat{n} ds where $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and s is the surface of the cube bounded by x=0, x=1, y=0, y=1, z=0 and z=1					
19) a	4	K3	Find the value $\int_0^{1+i} (x - y + ix^2) dz$ a) Along the straight line from z=0 to z= 1+i b) Along the real axis from z=0 to z=1 and then along a line parallel to the imaginary axis from z=1 to z=1+i					
19) b	4	K3	Find the value of the integral $\int (x + y) dx + x^2 y dy$ (a) Along $y=x^2$ having (0,0), (3,9)end points (b) Along $y=3x$ between the same points Do the values depend upon path					
20) a	5	К3	Determine the poles of the following function and residue at each pole $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\int_c \frac{z^2 dz}{(z-1)^2(z+2)}$ where $c: z = 3$					
20) b	5	K3	Find the value of $\oint z \rho_z^{\frac{1}{2}}$ around the unit circle					
NB:	Higher	· level of pe	erformance of the students is to be assessed by attempting higher					
			Section D (Open Choice)					
	Ans	swer Anv T	Three questions (3x10=30 marks)					
Q. No	CO	K Level	Questions					

-			
21	CO1	K3	
			Apply $A= 2$ 1 2 and show that A^2 -4A-5I=0, Where I and 0 are
			unit and null matrix of order 3 respectively. Use this result to find A^{-1}
22	CO2	K3	If r is the distance of a point (x, y, z) from the origin, solve for curl
			$(k \approx \operatorname{grad} \frac{1}{r}) + \operatorname{grad} \left(k \cdot \operatorname{grad} \frac{1}{r}\right) = 0$, where k is the unit vector in
			the direction OZ
23	CO3	K3	Determine surface integral $\iint \vec{F}$. \hat{n} ds where $\vec{F} = (x^2 + y^2 + z^2)(\hat{\iota} + \hat{j} + \hat{k})$,
			S is the surface of the tetrahedron $x=0$, $y=0$, $z=0$, $x+y+z=2$ and n is
			the unit normal in the outward direction to the closed surface S
24	CO4	К3	Determine $\int_{1-i}^{2+i} (2x + iy + 1) dz$ along the two paths i) x=t+1,
			$y=2t^2-1$ ii) the straight line joining 1-i and 2 +i
25	CO5	K5	Evaluate
			$\int 12z - 7$ dz where C is the sizele
			$(z-1)^2(2z+3)$ az, where c is the circle
			i) $ z =2$ ii) $ z+i =\sqrt{3}$

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	Classical Mechanics								
Course Code	21PI	PHC12					L	Р	С
Category	Core 6 -								4
Nature of Cou	rse	EMPLOYBILITY		SKILL ORIENTED	~	ENTREPR	ENU	RSHI	P
Course Object	ives:								
 To understa To general formulation To analyze 	and th ize a n the K	e knowledge about Lag solid foundation in th epler's law in central f	gra e 1 fore	ngian formulations. motion of particles and ce problem	d it	s extension	to Ha	amilto	nian
• To agree th	e kno	wledge about oscillato	ory	motion and stability o	f os	<mark>cil</mark> latory mo	tion		
• To apply the Poisson brain t	he co ckets	ncept of Canonical tra	ans	formation and to gain	ı kr	nowledge or	ı Lag	range	and
Unit: I La	gran	gi <mark>an Dynamics</mark>	-			5.		18	Hrs
Basic Concept	ts-Co	ns <mark>traints-Gene</mark> ralized	Co	ordinates-Principle o	f V	/irtual worl	k-D'A	lemb	ert's
principle-Lagra	inge's	Equations from I)' <i>[</i>	Alembert's principle-	Proc	cedure for	forn	nation	of
Lagrange's Eq	uation	s-Lagrange's equation	ns	in presence of non-co	onse	ervative for	ces-G	eneral	1zed
potential-Lagra	ngian	for a charged particle	mo	oving in an electromag	neti	c field.		16	Llas
Concrelized m	Unit: II Hamiltonian Dynamics 16 Hrs						HIS n U		
and conservati	on of	energy: Jacobi's inte	uii or	al-Hamilton's Equation	nen	Examples	in He	milto	п п nian
Dynamics		chergy. Jacobi s inte	gi	al-mainten s' Equation	-	Lampics	111 116	umno	man
Unit: III Tw	vo-bo	dy c <mark>entral</mark> force prob	len	n'A to a	-			18	Hrs
Reduction of T	wo-b	ody central force prob	ole	m to the equivalent of	ne-t	ody problem	n-Cer	ntral f	orce
and motion in	a pl	ane-equations of mot	ior	n under central force	and	d first integ	gral-D	iffere	ntial
equation for a	n orbi	it- invers <mark>e squar</mark> e law	of	f force-Kepler's laws	of 1	Planetary m	otion	and	their
deduction-Stab	ility o	of orbit under central fo	orce	e- artificial satellites-V	iria	l theorem			
Unit: IV Th	e rigi	d body equations of n	no	tion and Oscillations				20	Hrs
Angular mome	ntum	and Kinetic energy of	mc	otion about a point- Ter	isoi	s-The inerti	a tens	or and	l the
moment of ine	rtia-T	he Eigen values of th	ne	inertia tensor and the	pri	ncipal axis	transf	ormat	ion-
solving rigid bo	ody pr	oblems and the Euler e	equ	ations of motion-Torq	ue-f	free motion (of a ri	gid bo	ody
Oscillation: Fo	ormul	ation of the problem	n-T	The Eigen value equ	atio	on and the	prine	cipal	axis
transformation-	ransformation-Frequencies of free vibration and normal coordinates-Free vibrations of a linear							near	
Unite V	ule-F	orced vibrations and tr	ie (effect of dissipative for	ces	•		10	LL.
The equations	nome of ca	cal transformations	F	vamples of canonical	trat	eformation	The	harm	onic
oscillator-The	simn	listic approach to ca	anc	nical transformations	$-P_0$	isson brack	ets a	and c	other
canonical invar	iants-	Equation of motion in	nfii	nitesimal canonical tra	nsfe	ormations a	nd con	iserva	tion
theorems in the	e Pois	sson Bracket formulati	ion	- The angular momen	tum	Poisson br	acket	relati	ons.
symmetry grou	ps in	mechanical systems-Li	lou	ville's theorem					·,
	•	v							

	Total Lecture Hour	rs 90
Books	for study:	
1. J.C	Upadhyaya, Classical Mechanics, 2 nd Edition, Himalaya Publishing House Ltd.	, Mumbai,
Re	print 2018.	
UNIT ·	- I: Chapter 2 , 2.1-2.10	
UNIT ·	- II: Chapter 3, 3.1-3.7	
UNIT ·	- III: Chapter 4, 4.1-4.9	
2. He	rbert Goldstein, Charles P.Poole, John Safko, Classical Mechanics, 3 rd Ed	lition, 21 st
im	pression, Pearson Education, Inc., Uttar Pradesh, 2018	
UNIT	– IV: Chapter 5 , 5.1-5.6, Chapter 6, 6.1-6.5	
UNIT ·	- V: Chapter 9, 9.1-9.9	
Books	for References:	
1. Gu	pta Kumar Sharma, Classical Mechanics, Pragati Prakashan, Meerut, 30	th edition
20)4	
2. S.I	N.Biswas, Classical Mechanics, Books and Allied Ltd, Kolkata,3rd Edition 199	98
Web F	Resources:	
https://	nptel.ac.in/courses/115/106/115106123/	
https://	nptel.ac.in/courses/115/103/115103113/	
Cours	e Outcomes	K Level
On Co	mpletion of this course, the student will be able to a student will be a	
CO1:	Demonstrate the Lagrangian principles and D'alembert Principle	K1
CO2:	Acquire the fundamental Principles of Hamiltonian principles in various	K3
	classical mechanical problems.	
CO3:	Connect the principles of central body problems into Kepler's law.	K2
CO4:	Analyze the fundamentals of rigid body problem and oscillations.	K4
CO5:	Apply Hamilton's characteristic function to solve problems in Lagrange's and	K3
	Poisson's brackets	

CO & PO Mapping:

Course Outcomes (CO's)	(Δu_{Δ})	2 -424 Weighted Programme Outc omes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	2	2	2			
CO2	3	1	62	2	2	3			
CO3	2	2	1	1	2	2			
CO4	2	8°1	2	2	2	3			
CO5	2	3	1	3	1	1			
Weightage	12	9	8	10	9	11			

*3- Advanced Application 2- Intermediate Development 1-Introductory Level

Units	Classical & Statistical Mechanics	Hrs	Pedagogy
	Basic Concepts-Constraints, Generalized Coordinates, Principle of Virtual work, D'Alembert's principle	6	
I Lagrangian Dynamics	Lagrange's Equations from D'Alembert's principle, Procedure for formation of Lagrange's Equations	6	Chalk &
Lugi ungiun Dynumics	Lagrange's equations in presence of non-conservative forces, Generalized potential, Lagrangian for a charged particle moving in an electromagnetic field.	6	
II	Generalized momentum and cyclic coordinates, Conservation theorems	6	Chalk,
Hamiltonian Dynamics	Hamiltonian function H and conservation of energy: Jacobi's integral, Hamilton's Equations	5	Talk& Assignment
	Examples in Hamiltonian Dynamics	5	
	Reduction of Two-body central force problem to the equivalent one-body problem, Central force and motion in a plane	5	
III Two-body central force problem	equations of motion under central force and first integral, Differential equation for an orbit, inverse square law of force, Kepler's laws of Planetary motion and their deduction	6	Chalk, Talk& Exercise
	Stability of orbit under central force, artificial satellites, Virial theorem	7	
IV The rigid body	Angular momentum and Kinetic energy of motion about a point, Tensors, The inertia tensor and the moment of inertia, The Eigen values of the inertia tensor and the principal axis transformation	6	Chalk &
equations of motion and Oscillations	solving rigid body problems and the Euler equations of motion, Torque, free motion of a rigid body Oscillation: Formulation of the problem	6	Talk, PPT
	The Eigen value equation and the principal axis	5	

LESSON PLAN:

	transformation, Frequencies of free vibration and normal coordinates, Free vibrations of a linear triatomic molecule, Forced vibrations and the effect of dissipative forces		
V Canonical transformations	The equations of canonical transformation, Examples of canonical transformations, The harmonic oscillator, The simplistic approach to canonical transformations- Poisson brackets and other canonical invariants, Equation of motion, infinitesimal canonical transformations, and conservation theorems in the Poisson Bracket formulation	6	Chalk, Talk& Seminar
	symmetry groups in mechanical systems, Liouville's theorem	6	

Course Designed by: Mrs. S. Nagadeepa & Dr. P.P. Kannan

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)												
Internal	Co)S	K Level	Section	I A	Section	n B 45)	Section C	Section D			
			1	MCQ	s	Short An	swers	Either or	Open			
			100	No. of. Ouestions	K -	No. of.	K -	Choice	Choice			
CI	CC)1	К2	Questions 2	K1	Questions	K1	2 (K2&K2)	1(K2)			
AI	CC)2	K4	2	K2	2 2	K2	2 (K3&K3)	2 (K3 & K4)			
CI	CC)3	K2	62	K1	1	K2	2 (K2&K2)	1(K2)			
AII	CC)4	K4	2 5	K2	2	K2	2 (K3&K3)	2 (K3 & K4)			
Questio	n	No. of		4		3		4	3			
Pattern	1	Questions to be										
CIA I &	Π		asked									
		_	No. of	4		3		2	2			
		Q	uestions to be									
			answered									
		Μ	larks for each	1		2		5	10			
			question									
		Τc	otal Marks for	4		6		10	20			
		(each section									

	Distribution of Marks with K Level CIA I & CIA II												
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %					
	K1	2	2	-	-	4	6.67	50					
	K2	2	4	10	10	26	43.33						
CIA	K3	-	-	10	10	20	33.33	50					
Ι	K4	-	-	-	10	10	16.67						
	Marks	4	6	20	30	60	100	100					
	K1	2	2	5	-	4	6.67	50					
CIA	K2	2	4 8	10	10	26	43.33						
II	K3	-		10	10	20	33.33	50					
	K4	-	6	XXXX	10 %	10	16.67						
	Marks	4	6 /	//20 10	<mark>30</mark>	60	100	100					
			g Q			.94.							

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)													
S.No	COs	K -	M	CQs	Short A	nswers	Section C	Section D					
		Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open					
			Questions		Question		Choice)	Choice)					
1	CO1	K2	2	K1 & K2	1	K1	2 (K1 &	1 (K2)					
			- 6				K1)						
2	CO2	K3	2 🧲	K1 & K2	1	K1	2 (K2 &	1 (K3)					
			2· 1				K2)						
3	CO3	K3	o 2	K1 & K2		K2	2 (K2 &	1 (K3)					
			3.4				K2)						
4	CO4	K4	2	K1 & K2	1	K2	2 (K3 &	1 (K4)					
			190 19				K3)						
5	CO5	K5	2	K1 & K2	1	K2	2 (K3 &	1 (K5)					
			21			- <u>_</u>	K3)						
No. of	f Questi	ons to	10		5	6	10	5					
t	e Aske	d		CO)									
No. of	f Questi	ons to	10	தா	LL 85 ⁰		5	3					
be	answer	red											
Marks for each		1		2		5	10						
question													
Total Marks for		10		10		25	30						
ea	ch secti	on											
	(Figure	es in pa	renthesis de	notes, questi	ons should l	be asked wit	h the given K	level)					

Distribution of Marks with K Level										
K	Section A Section B Section C Section D Total % of Consolid									
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%			
	Choice	Answer	Choice)	Choice)		without				
	Questions)	Questions)				choice)				
K1	5	4	10	-	19	15.83	50			
K2	5	6	20	10	41	34.17				
K3	-	-	20	20	40	33.34	50			
K4	-	-	-	10	10	8.33				
K5	-	-	-	-	10	8.33				
Marks	10	10	50	50	120	100	100			
NB: H	NB: Higher level of performance of the students is to be assessed by attempting higher level									
			of K le	evels.						

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)							
	A	Answer All	Questions (10x1=10 marks)					
Q.No	CO	K Level	Questions					
1	CO1	K1 9	Each parcel in the Lagrangian formulation is tagged using					
		6	a)time-dependent position vector					
			b)time-independent position vector					
			c)time-dependent velocity vector					
			d) time-independent velocity vector					
2	CO1	K2 =	Scleronomous constraints have:					
		5	a) Explicit time dependence.					
		3	b) no explicit time dependence.					
		2	c) both explicit time dependence and no explicit time dependence.					
			d) neither explicit time dependence nor no explicit time dependence.					
			e) a sclerous time dependence.					
3	CO2	K1	Generalized coordinate is defined as <u>coordinates</u> coordinates to describe					
			the system					
			a) Maximum b) Minimum c) Finite d) Infinite					
4	CO2	K2	Hamilton's equations are <u>order</u> equations					
			a) first b) second c) third d) fourth					
5	CO3	K1	The electrostatic forces are very muchthan the gravitational					
			forces in the interaction of atomic and subatomic particles.					
			(a) Poor (b) Stronger (c) Equal (d) Lower					
6	CO3	K2	All the planet moves around the Sun in orbit.					
			(a) circular (b) parabolic					
			(c) hyperbolic (d) elliptical					
7	CO4	K1	On which of the following factor does the moment of inertia of an					
			object not depend upon					
			(a) Axis of rotation (b) Angular velocity					
			(c) Distribution of mass d) Mass of an object					
8	CO4	K2	If simple harmonic variations of a pendulum die away after some time,					
			Due to energy dissipation by viscous forces in the air, then oscillation is					
•	•							

said to be... c. free d dependent a. undamped b. damped 9 CO5 K1 In case of canonical transformation a) Hamilton's principle is satisfied in old as well as in new coordinates b) The form of the Hamilton's equations is preserved c) The form of Hamilton's equations cannot be preserved d) The form of Hamilton's equations may or may not be preserved 10 CO5 K2 For Lagrange brackets a) $\{pi,pj\}=\delta i j$ b) $\{pi,pj\}=0$ c) $\{qi,pj\}=0$ d) $\{qi,pj\}=\delta i j s$ Section B (Short Answers) **Answer All Questions** (5x2=10 marks)**O.No** CO K Level **Ouestions** CO1 K1 Define D'Alembert principle. 11 12 CO₂ **K**1 What is meant by constrained motion? 13 CO3 K2 Define Kepler's thrird law. What is the condition for stable oscillation? 14 CO4 K2 15 K2 CO5 Define the term generating function Section C (Either/Or Type) **Answer All Questions** $(5 \times 5 = 25 \text{ marks})$ CO K Level Questions Q.No 16) a CO1 K1 Write a short note on Lagrangian formulations. 16) b CO1 K1 Describe the particle in electromagnetic field in Lagrangian approach. CO₂ K2 Write about the advantage of Hamiltonian approach 17) a 17) b CO₂ K2 Give Hamilton's equation of motion for particle moving near the surface of Earth CO3 K2 Write a note on Kepler's law 18) a 18) b CO3 **K**2 Write a neat sketch on artificial satellite in classical mechanics. 19) a CO4 K3 Write about moment of inertia tensor. CO4 Describe the effect of dissipative forces. 19) b K3 20) a CO5 K3 Demonstrate the advantage of canonical transformation and give some example for it K3 Give the relation between Lagrange and Poisson bracket 20) b CO5 NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels Section D (Open Choice) Answer Any Three questions (3x10=30 marks) Q.No CO K Level Questions 21 **CO1 K**2 Describe the procedure for forming Lagrange's equations. 22 **CO3** K3 Elaborate an equation of motion for fictious force 23 **CO4 K3** Derive the central force equation in detailed manner. **K4** Analyze the theory of Free vibrations of a linear triatomic molecule. 24 **CO2** 25 **CO5** K5 Compare the normal transformation and canonical transformation?

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name Analog Electronics and Communications 21PPHC13 С **Course Code** L Р Core 4 Category 6 SKILL ORIENTED **ENTREPRENURSHIP** Nature of Course: EMPLOYBILITY **COURSE OBJECTIVES:** To summarize different type of transistors and amplifiers and to be explained how it works To demonstrate the knowledge of operational amplifiers in both linear and non-linear analog systems and their applications To relate the oscillators which are constructed with operational amplifiers To understand the various modulation and demodulation techniques To compare the type of modulations and make use of them for communications Unit: I JFETs and MOSFETs 19 Hrs Basic Ideas- Drain curves- Transconductance curves- Biasing in the ohmic region, Biasing in the active region, Voltage-Divider bias, Current-source bias. Transconductance- JFET amplifiers-Depletion mode MOSFET: Amplifiers-Enhancement mode MOSFET- Ohmic regions. Unit: II **Operational amplifiers and linear applications** 17 Hrs Bias and offsets- CMRR- Slew rate- Inverting amplifier- Virtual ground- Voltage gain- Band width- Non-inverting amplifier- Op-amp applications: Summing amplifier, Voltage follower, Linear IC amplifier- Differential amplifiers and Instrumentation amplifiers. Unit: III Non-linear OPAMP circuit and Oscillators 17 Hrs Integrator- Wave form conversion- Wave form generation-Triangular generator- Active diode circuits- Differentiator. Type of Oscillators: Sinusoidal, Wien bridge, RC type, phase shift, Colpitt and Hartley (CE-connection only) Oscillators. Unit: IV **Amplitude Modulation** 19 Hrs Need for frequency translation- Double side band - Suppressed carrier modulation- Double side band with carrier- Single side band modulation-Angle modulation Tone modulated FM signal-Arbitrary modulated FM signal. **Modulators and Communications** Unit: V 18 Hrs

Variation method-Armstrong's direct method- Frequency multiplication- Armstrong FM system-FM demodulator- SSB-AM, SSB-FM- Stereophonic FM broadcasting. Optical communication -Mobile communication - Satellite communication- Radar system.

Total Lecture Hours 90

Books for study:

1. Albert Malvino and David J Bates, Electronic Principles, VII Edition, McGraw Hill Education(India) Pvt. Ltd, New Delhi-16, Seventeenth Reprint, 2015.

Unit I – Chapter 13, Sec.13.1-13.7, Chapter 14, Sec.14.1 - 14.5

Unit II – Chapter 18, Sec.18.1 -18.6, Chapter 20, Sec.20.4 -20.5

Unit III – Chapter 22, Sec.22.5-22.10, Chapter 23, Sec.23.1 -23.5

 Herbert Taub, Donald L Schilling and Goutam Saha, Principles of Communication Systems, III Edition, Tata McGraw- Hill Publishing Company Limited, New Delhi-8, 2008.

Unit IV – Chapter 3, Sec.3.1-3.4, Chapter 4, Sec.4.1-4.3

Unit V – Chapter 4, Sec.4.4-4.6, Chapter 16, Sec. 16.3-16.6

Books for References:

- B.L. Theraja, Basic Electronics, Ist. Multicolour Edition, 2005, S.Chand & Company Pvt.Ltd, New Delhi-55, Reprint 2014.
- V.K.Mehta and Rohit Mehta, Principles of Electronics, First Edition, 1980, S.Chand &Company Pvt.Ltd, New Delhi-55, Reprint 2013.
- **3.** B.P.Lathi and ZhiDing , Modern Digitaland Analog Communication systems, International IVth Edition, 2010, Oxford University Press, New York, Reprint 2011

Books for References:

https://www.mooc-list.com/tags/analogue-electronics

https://www.classcentral.com/course/swayam-digital-electronic-circuits-12953

https://nptel.ac.in/courses/108/105/108105132/

COURSE OUTCOMES						
On Completion of this course, the student will be able to						
CO1:	Recognize the working of different semiconductor devices and describe their	K2				
	functions					
CO2:	Acquire the knowledge of operations of OP-AMP to perform the various	K1				

	mathematical logics	
CO3:	Use the significance of Op-amps and their importance in oscillator circuits	K4
CO4:	Appraise the use of amplitude and frequency modulation techniques	K3
CO5:	Construct devices used for various Communication systems efficiently	K5

CO & PO Mapping:

Course Outcomes (CO's)		Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	s\2_0	63	3	2	2	1			
CO2	3	1	3	2	2	3			
CO3		2	01	2	2	2			
CO4	2	3	2	2	2	3			
CO5	3	2	2	2	3	1			
Weightage	11	11	11	10	11	10			

3 – Advanced Application; **2** – Intermediate Development; **1** - Introductory Level

Units	21PPHC13- ANALOG ELECTRONICS AND	Hrs	Pedagogy
	COMMUNICTIONS		
Unit-1	Basic Ideas- Drain curves- Transconductance curves- Biasing		Chalk
JFETs and	in the ohmic region, Biasing in the active region.	6	&Talk,
MOSFETs			PPT
	Voltage-Divider bias, Current-source bias. Transconductance	6	
	JFET amplifiers-Depletion mode MOSFET: Amplifiers-	_	
	Enhancement mode MOSFET- Ohmic regions.	/	
Unit-2	Bias and offsets- CMRR- Slew rate- Inverting amplifier-	6	Chalk
Operational	Virtual ground- Voltage gain.		&Talk,
amplifiers and	Band width- Non-inverting amplifier- Op-amp applications:	5	Assignment
linear	Summing amplifier, Voltage follower.		
applications	Linear IC amplifier- Differential amplifiers and	6	
	Instrumentation amplifiers.		
Unit-3	Integrator- Wave form conversion- Wave form generation-	5	Chalk
Non-linear	Triangular generator.		&Talk,
OPAMP circuit	Active diode circuits- Differentiator. Type of Oscillators:	6	Class test
and Oscillators	Sinusoidal, Wien bridge		
	RC type, phase shift, Colpitt and Hartley(Ce-	6	
	connectiononly)Oscillators.		
Unit-4	Need for frequency translation- Double side band – Suppressed	6	Chalk
Amplitude	carrier modulation.		&Talk,
Modulation	Double side band with carrier- Single side band modulation	6	

LESSON PLAN

		-	
	Angle modulation Tone modulated FM signal- Arbitrary	7	PPT
	modulated FM signal		
Unit-5	Variation method-Armstrong's direct method- Frequency	6	Chalk
Modulators and	multiplication.		&Talk,
Communications	Armstrong FM system- FM demodulator- SSB-AM, SSB-FM-	6	Seminar
	Stereophonic FM broadcasting.		
	Optical communication - Mobile communication - Satellite	6	
	communication- Radar system.		

Course Designed by: Dr. M. Alagar & Dr.D.Ruby Josephine

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)												
Internal	Cos	K Level	Section	ALL	Section	B	SectionC	Section D				
		S.	MCQ	s	Short Ans	swers	Either or	Open				
		(I)	No. of.	K –	No. of.	К -	Choice	Choice				
			Questions	Level	Questions	Leve						
		1 A										
CI	CO1	K2	2	K1	1	K1	2 (K2&K2)	1(K2)				
AI	CO2	K4	2-2-1	K2	2	K2	2 (K3&K3)	2 (K3 & K4)				
CI	CO3	K2	2 2	K1		K2	2 (K2&K2)	1(K2)				
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)				
Quest	ion	No. of	- 4	111	3	Б	4	3				
Patte	rn	Questions to		17		- E						
CIA I d	& II	be asked 🧲		12-								
		No. of	14TN	HH A	3	1 20	2	2				
		Questions to				$\langle \Xi \rangle$						
		be answered		1 here	ا المالية ا	~~/						
		Marks for	1	<u> </u>	2111211		5	10				
		each 🎸				7						
		question			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r						
		Total Marks	0.4		6		10	20				
		for each	IR I	111.18.8	611							
		section	No.	u o,								

Distribution of Marks with K Level CIA I & CIA II										
	K	Section A	Section B	Section C	Section D	Total	% of	Consolidate		
	Level	(Multiple	(Short	(Either /	(Open	Marks	(Marks	of %		
		Choice	Answer	Or	Choice)		without			
		Questions)	Questions)	Choice)			choice)			
	K1 2		2			4	6.67	50		
CIA	K2	2	4	10	10	26	43.33			
	K3	-	-	10	10	20	33.33	50		
Ι	K4	-	-	-	10	10	16.67			
	Marks	4	6	20	30	60	100	100		
	K1	2	2		-	4	6.67	50		
CIA	K2	2	4	5 -10 0	10	26	43.33			
II	K3	-	5.2.2	10	10	20	33.33	50		
	K4	-		NAAN	10	10	16.67			
	Marks	4	6	20	30	60	100	100		
			9 G			194.				

Summative Examination – Blue Print Articulation Mapping – K Level with Course										
S.No	COs	K -	M	COs	Short A	nswers	Section C	Section D		
		Leve	No. of	K – Level	No. of	K – Level	(Either / or	(Open		
		1	Questions		Question	5	Choice)	Choice)		
1	CO1	K1	2	K1 & K2	1	K1	2 (K1 &	1 (K2)		
			2				K1)			
2	CO2	K2	5 2	K1 & K2	1	K1	<mark>2</mark> (K2 &	1 (K3)		
			ໄດ້. 🔚 🗖				K2)			
3	CO3	K3	2	K1 & K2		K2	2 (K2 &	1 (K3)		
			2 1				// K2)			
4	CO4	K3	2	K1 & K2	1	K2	2 (K3 &	1 (K4)		
				44444	الم حلقة في		K3)			
5	CO5	K4	2	K1 & K2	1.'.'.'	111 K2	2 (K3 &	1 (K5)		
			- S.	string -		- / <u>⊇</u> /_	K3)			
No. of	f Questi	ons to	10 🕥		5	120	10	5		
b	e Aske	d		0		5				
No. of	f Questi	ons to	10	00 IST	5		5	3		
be answered			2911							
Marks for each			1		2		5	10		
question										
Total Marks for			10		10		25	30		
ea	ch secti	on								
	(Figure	es in pa	renthesis der	notes, questi	ons should l	be asked wit	h the given K	level)		

Distribution of Marks with K Level									
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated		
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%		
	Choice	Answer	Choice)	Choice)		without			
	Questions)	Questions)				choice)			
K1	5	4	10	-	19	15.83	50		
K2	5	6	20	10	41	34.17			
K3	-	-	20	20	40	33.34	50		
K4	-	-	-	10	10	8.33			
K5	-	-	-	-	10	8.33			
Marks	10	10	50	50	120	100	100		
NB: Hi	igher level of	performance	of the studen	ts is to be as	sessed by	attemptin	g higher level		

of K levels.

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)							
	A	nswer All	Questions (2011) (10x1=10 marks)					
Q.No	CO	K Level	Questions					
1	CO1	K1 💦	The modulation index lies between 0 and 1					
		E E	a) 0-100 b) 0-5c) 0-16 d)0-90					
2	CO1	K2	The total power in a amplitude modulated wave to the unmodulated					
			carrier power is related by					
			a) Pt/Pc=1+m2/2 b) Pt/Pc=1-m2/2					
			c) $Pt/Pc=1+m2$ d) $Pt/Pc=1+13m2/2$					
3	CO2	K1	A differential amplifier					
		ા ગુન્	a) is a part of an Op-amp (b) is a part of an Op-amp					
		16	c) has two outputs d) has two outputs					
4	CO2	K2 🔗	With zero volts on both inputs, an OP-amp ideally should have an					
			output					
			a) equal to the positive supply voltage b) equal to the positive supply					
		,	voltagec) equal to zero					
5	CO3	K1	FET is a device					
			a) unipolar b) bipolarc) tripolar d) all the above					
6	CO3	K2	What is the output waveform of an integrator?					
			a) sine wave b) square wave c) sawtooth wave d) triangle wave					
7	CO4	K1	diodes are recently employed as microwave mixers					
			a) Schottky barrier b) Varacter diode					
			c) Crystal diodes d) Light emitting diode					
8	CO4	K2	The first magnetron was discovered by					
			a) E. W. Hull b) Faradayc) Gunn d) schottky					
9	CO5	K1	Colpitt oscillator contains					
			a) Two capacitors and one inductor b) Two capacitor and two					
			inductors					
			c) One capacitor and two inductors d) One capacitor and one					
			inductor					
10	CO5	K2	LC tuned oscillator produces					

			a) Cos wave b) Square wave c) Triangular d) Sine wave						
			Section B (Short Answers)						
Answer All Questions(5x2=10 marks)									
Q.No	CO	K Level	Questions						
11	CO1	K1	What are the characteristics of an ideal Op-Amp?						
12	CO2	K1	Give the principle of a mono-stable multivibrator.						
13	CO3	K2	Write a note on Armstrong oscillator.						
14	CO4	K2	Define SSB						
15	CO5	K2	List examples for communication in real time						
			Section C (Either/Or Type)						
	I	Answer All	Questions (5 x 5 = 25 marks)						
Q.No	CO	K Level	Questions						
16) a	CO1	K1	Write elaborately on the representation and power of a amplitude						
101	001	17.1	modulated wave						
16) b	COI	KI K2	Explain about the effect of noise on carrier noise triangle						
17) a	CO2	K 2	Draw the equivalent circuit of an op-amp and explain the various						
17) 1	COD	K2	parameters used in the equivalent circuit						
1/) b	02	K2	Explain how addition and subtraction may be accomplished using op-						
19) a	CO2	K2	amp Discuss in detail on the characteristic normators of UET2						
10)a 18)b	CO3	K2 K2	How high page PC giravit ha used as a differentiator?						
10) 0	CO_{4}	K2	Describe the detail behind isolators?						
19)a	C04	K3 K2	Explain about Schottlay Parrier diada and about backward diada in						
19)0	04	КJ	detail						
20) a	CO5	K3	RC phase shift oscillator using high pass filters						
20) b	CO5	K3 –	Draw the circuit of Hartley oscillator using FET						
NB: Hi	igher le	vel of <mark>perf</mark>	ormance of the students is to be asse <mark>ssed by at</mark> tempting higher level						
		12	of K levels						
			Section D (Open Choice)						
-	I	A	nswer Any Three questions (3x10=30 marks)						
Q.No	CO	K Level	Questions						
21	CO1	K2	Describe the direct method involve in the generation of frequency						
			modulation						
22	CO3	K3	Explain the Instrumentation amplifier. Draw a system whose gain is						
			controlled by a variable resistance?						
23	CO4	K3	Draw the Schmitt trigger circuit and explain with wave forms						
24	CO2	K4	Elaborate on the detailed theory on Gunn effect with illustrations						
25	CO5	K5	Evaluate the circuit of Colpitts oscillator. How is the feedback						
			requirements met in it?						

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	Electrodynamics										
Course Code	21PPHC14	L	P	С							
Category	Core					6	-	4			
Nature Of	EMPLOYBILITY		SKILL ORIENTED	\checkmark	ENTREPREN	NURSHIP					
Course:	Course:										
Course objectiv	ves:										
• To understan	nd the concepts on ele	ectro	ostatics and to use Gau	ss's la	aw in various a	pplica	tio	ns			
• To analyze t	he theory of magneto	stat	ics, Biot-Savort's law	and m	agnetic vector	potent	tial	Ĺ			
• To derive M	Maxwell's equation in	n di	ifferential and integra	l forn	ns, propagation	n of E	M	waves			
through diff	erent media	Q									
• To acquire	the knowledge of the	e va	rious modes of propa	gatior	n of electromag	gnetic	W	aves in			
waveguides	5	5			Sec.						
• To apply an	id analyze the concep	ots o	of interaction of electr	omag	netic waves wi	th ma	cro	oscopic			
matter	the state of the second File of	•			5.			10			
Unit: I Ele	tion and Laplace's	ric	Fields in Matter	a 1a	alized charge	dicto	:1	19 Ition			
equal	underwoonditions W	equ ork	and energy in electron	a 100	uprk dona to	aistr		horgo			
energy of point	charge distribution -	ane	and energy in electros	oe die	tribution I an	lace's	- С. А	marge -			
Laplace's equat	tion in one two an	d t	hree dimensions - bo	ge uis	v conditions	and u	uy nic	uation.			
theorem – con	ductors and second	u	niqueness theorem. N	Aultin	ole expansion	: Ap	oro	ximate			
potentials at la	rge distances - mond	pol	e and dipole terms.	Polar	ization: Dielec	trics	- i	nduced			
dipoles - alignm	ent of polar molecule	s									
Unit: II Ma	gnetosta <mark>tics an</mark> d Ma	gne	tic Fields in Matter					19			
Lorentz force la	w: Magne <mark>tic fiel</mark> ds –	mag	gnetic forces - currents	s. Bio	t <mark>-S</mark> avart law: S	teady	cui	rrents –			
magnetic field	of steady current. D	ive	rgence and curl of B	: App	olications of A	mpere	e's	law –			
comparison of	magnetostatics and e	lect	rostatics. Magnetic	vector	potential: Ve	ctor p	ote	ntial –			
magnetostatic b	oundary conditions –	m	ultipole expansion of	the ve	ctor potential.	Magr	ieti	zation:			
Diamagnets, par	ramagnets and ferrom	agr	iets - torques and force	es on	magnetic dipo	$les - \epsilon$	effe	ect of a			
magnetic field o	n atomic orbits.		றாயுக்க					10			
Unit: III Ele	ctrodynamics and Co	ons	ervation Laws	Ман				18			
houndary condit	tions. Charge and en	N -	- magnetic charge –	Dor	well's equation	ns m n Moi	III mo	atter –			
Newton's third	louis. Charge and en		y. Communy equation Maxwell's stress tenso	-r Oy	onservation of	mome	nti	intuini –			
angular momentum											
Unit: IV Electromagnetic Wayes 17											
Electromagnetic	waves in vacuum: V	Nav	ve equation for E and	$\mathbf{B} - 1$	nonochromatic	plane	e w	vaves –			
energy and mon	nentum in electromag	neti	ic waves. Electromagn	etic w	aves in matter	Prop	aga	ation in			
linear media –	reflection and transn	niss	ion at normal inciden	ce –	reflection and	transr	nis	sion at			
oblique incidend	ce. Absorption and di	spe	rsion: Electromagnetic	wave	es in conductor	s, refle	ecti	ion at a			
conducting surfa	ace, frequency depend	lenc	e of permittivity.			-					
ŭ			· · ·								

Unit: V	V Electric	Potential	and Relativistic Electrodynamics	17				
Guideo	l waves: Wav	e guides -	waves in a rectangular wave guide – coaxial transmission lin	ne. The				
potential formulation – Scalar and vector potential Gauge transformation. Coulomb's Gauge and								
Lorent	Lorentz Gauge. Relativistic electrodynamics: Magnetism as a relativistic phenomenon, field							
transfo	transform, field tensor, electrodynamics in tensor notation, relativistic potentials.							
	Total Lecture Hours 90							
Books	for Study:							
D.J., C	riffiths. Intro	duction to	Electrodynamics, 3 rd Edition, Prentice Hall of India Pyt, Lt	d New				
Delhi.	Reprint 1999.			,				
,	UNIT I	: (Chapter 2: Sections 2.3.3 to 2.4					
Chapter 3: Sections 3.1 to 3.4								
		(Chapter 4: Sections 4.1					
	UNIT II	: (Chapter 5. Chapter 6: Sections 6.1					
	UNIT III	: (Chapter 7: Sections: 7.33 to 7.36					
		(Chapter 8: Section 8.1 and 8.2					
	UNIT IV	: (Chapter 9: Sections 9.2 to 9.4					
	UNIT V	:	Chapter 9: Section 9.5					
Chapter 10: Sections 10.1.1.10.1.2 and 10.1.3								
		81	Chapter 12: Section 12.3					
Books	for Referenc	es:						
1. Ca	pri. A.Z., and	d Panat. I	P.V., Introduction to Electrodynamics, 3 rd Edition, Reprin	t 2006.				
Na	rosa Publishir	ng House.	New Delhi.	,				
2. Jac	kson. J.D., C	lassical El	ectrodynamics, 3 rd Edition, Reprint 2007, Wiley India Pyt, L	td. New				
De	lhi. 2007.							
3. P	uri, S.P., Clas	ssical Elec	trodynamics, First Edition, Reprint 2011, Narosa Publishing	y House				
Pv	. Ltd., New D	Delhi.						
Web R	lesources:							
https://	nptel.ac.in/co	urses/115/	101/115101004/					
https://	www.courser	a.org/learn	/electrodynamics-electric-magnetic-fields					
https://	www.classcei	ntral.com/o	course/swayam-electromagnetism-17586					
https://	www.my-mo	oc.com/en/	/mooc/electrodynamics-an-introduction/					
C	0			IZ.				
Cours	eOutcomes			K Lanal				
				Level				
COL	Solva alast	rostatio h	oundary value problems using Deisson's and Lerless	V 2				
	equations	rostatic D	oundary value problems using Poisson's and Laplace	КЭ				
CO2:	Acquire th Magnetostat	e knowle ics	edge in boundary conditions of electrostatics and	K1				
CO3:	Derive Maxwell's equation in differential and integral form K4							
CO4:	Discuss the	propagatio	n of electromagnetic waves in different medium	K2				
CO5:	Use the cond	cept of inte	eractions in electromagnetic waves with macroscopic matter	K5				
	for society	L						
L								

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	2	2	2		
CO2	3	1	2	2	2	3		
CO3	2	2	1	1	2	2		
CO4	2	1	2	2	2	2		
CO5	1	3	1	3	1	1		
Weightage	11	9	8	10	9	10		

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	Electrodynamics	Hrs	Pedagogy		
	Poisson's equation and Laplace's equation, potential of a localized charge distribution, electrostatic boundary conditions.	4			
I Floctrostatics and	Work and energy in electrostatics: work done to move charge, energy of point charge distribution, energy of continuous charge distribution.	5	Chalk Talk&		
Electric Fields in Matter	Laplace's equation: Laplace's equation in one, two, and three dimensions, boundary conditions and uniqueness theorem, conductors and second uniqueness theorem.	5	Assignment		
	Multipole expansion: Approximate potentials at large distances, monopole and dipole terms. Polarization: Dielectrics, induced dipoles, alignment of polar molecules.	5			
	Lorentz force law: Magnetic fields, magnetic forces, currents. Biot-Savart law: Steady currents, magnetic field of steady current.	6			
II Magnetostatics and Magnetic Fields in Matter	Divergence and curl of B : Applications of Ampere's law, comparison of magnetostatics and electrostatics. Magnetic vector potential: Vector potential, magnetostatic boundary conditions, multipole expansion of the vector potential.	7	Chalk, Talk& Exercise		
	Magnetization: Diamagnets, paramagnets and ferromagnets, torques and forces on magnetic dipoles, effect of a magnetic field on atomic orbits.	6			
III Electrodynamics and	Maxwell's equations: Ampere's law, magnetic charge, Maxwell's equations in matter, boundary conditions.	6	Chalk, Talk&		
Conservation Laws	Charge and energy: Continuity equation, Poynting's theorem Momentum, Newton's third	6	I I I		
	law in electrodynamics.				
---	--	---	-------------------------------		
	Maxwell's stress tensor, Conservation of momentum and angular momentum.	6			
	Electromagnetic waves in vacuum: Wave equation for E and B , monochromatic plane waves, energy and momentum in electromagnetic waves.	6			
IV Electromagnetic Waves	Electromagnetic waves in matter: Propagation in linear media, reflection and transmission at normal incidence, reflection and transmission at oblique incidence.	6	Chalk, Talk, PPT & Seminar		
	Absorption and dispersion: Electromagnetic waves in conductors, reflection at a conducting surface, frequency dependence of permittivity.	5			
	Guided waves: Wave guides, waves in a rectangular wave guide, coaxial transmission line.	6			
V Electric Potential and Relativistic	The potential formulation, Scalar and vector potential Gauge transformation, Columb's Gauge and Lorentz Gauge.	6	Chalk, Talk, PPT		
Electrodynamics	Relativistic electrodynamics: Magnetism as a relativistic Phenomenon, field transform, field tensor, electrodynamics in tensor notation, relativistic potentials.	5	&Assignment		

Course Designed by: Dr. P.P. Kannan & Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE)													
Formative Examination - Blue Print Articulation Manning - K Levels with Course Outcomes (COs)														
Internal	Internal Cos K Level Section A Section B Section C Section D													
		(B)	MCQ	s	Short Ans	swers	Either or	Open						
			No. of.	К -	No. of.	K -	Choice	Choice						
			Questions	Level	Questions	Leve								
			151	111 1 22 8	116	l								
CI	CO1	K2	2	K1	1	K1	2 (K2&K2)	1(K2)						
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)						
СІ	CO3	K2	2	K1	1	K2	2 (K2&K2)	1(K2)						
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	2 (K3 & K4)						
Questi	ion	No. of	4		3		4	3						
Patter	rn	Questions to												
CIA I &	& II	be asked												
		No. of	4		3		2	2						
		Questions to												
		be answered												
		Marks for	1		2		5	20						

each question				
Total Marks	4	6	10	20
for each				
section				

	Distribution of Marks with K Level CIA I & CIA II												
K		Section A	Section B	Section C	Section D	Total	% of	Consolidate					
	Level	(Multiple	(Short	(Either /	(Open	Marks	(Marks	of %					
		Choice	Answer	Or	Choice)		without						
		Questions)	Questions)	Choice)			choice)						
	K1	2	2 5	マイ 1 1 1	000 - TO ⁰⁰	4	6.67	50					
	K2	2	4.3/	10	10	26	43.33						
CIA	K3	-	6	10	10	20	33.33	50					
I	K4	-	0		10	10	16.67						
	Marks	4 🖌	6	20	30	60	100	100					
	K1	2	2		-	4	6.67	50					
CIA	K2	2	4 🧲	10	10	26	43.33						
II	K3	- 18	- 4	10	10	20	33.33	50					
	K4				10	10	16.67						
	Marks	4	6	20	30	60	100	100					

Summative Ex <mark>amina</mark> tion -	Blue Print Articulation Mapping – K Level with Cours	e
	Outcomes (COs)	

S.No	COs	К-	M	CQs	Short A	nswers	Section C	Section D			
		Leve	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
		1	Questions		Question		Choice)	Choice)			
1	CO1	K2	2	K1 & K2		K1/ 9	2 (K1&K1)	1 (K2)			
2	CO2	K3	2	K1 & K2	a wel an	K1	2 (K2&K2)	1 (K3)			
3	CO3	K3	2	K1 & K2		NIII K2	2 (K2&K2)	1 (K3)			
4	CO4	K4	2	K1 & K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1 & K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ons to	10	୦	5	8	10	5			
b	e Aske	d		In In	115.5						
No. of	f Questi	ons to	10	~~~	5		5	3			
be	answei	ed									
Mai	rks for e	each	1		2		5	10			
question											
Total Marks for		10		10		25	30				
each section											
	(Figure	es in pa	renthesis der	notes, questi	ons should l	be asked wit	h the given K	level)			

	Distribution of Marks with K Level												
K	Section A	Section B	Section B Section C Section D Total % of Con										
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%						
	Choice	Answer	Choice)	Choice)		without							
	Questions)	Questions)				choice)							
K1	5	4	10	-	19	15.86	50						
K2	5	6	20	10	41	34.17							
K3	-	-	20	20	40	33.34	50						
K4	-	-	-	20	10	8.33							
K5	-	-	-	-	10	8.33							
Marks	10	10	50	50	120	100	100						
NB: Hi	NB: Higher level of performance of the students is to be assessed by attempting higher level												
			of K le	evels.									

Summative Examinations - Question Paper – Format

00000

6/1

	Section A (Multiple Choice Questions)								
	A	nswer <mark>All</mark>	Questions (10x1=10 marks)						
Q.No	CO	K Le <mark>vel</mark>	Questions						
1	CO1	K1 🖸	From the below equations, which one is correct Poisson's equation?						
			a) $\nabla^2 V=0$ b) $\nabla^2 V=\rho/\epsilon 0$ c) $\nabla^2 V=-\rho/\epsilon 0$ d) $\nabla V=0$						
2	CO1	K2	The solutions of spherical co ordinates are Legendre polynomials in						
			the variable of						
		Б	a) $\sin \theta b$) $\tan \theta c$) $\cos \theta d$) $\cot \theta$						
3	CO2	K1 🕥 .	Steady currents produce a magnetic filed in a constant time are called						
		2	as						
		ğ	a) Electrostatics b) Magnetostatics						
			c) Continuity equation d) Uniqueness theorem						
4	CO2	K2	Biot-Savart law plays a role analogous to law in electrostatics						
			a) Gauss b) Coloumb's c) Maxwell d) Ampere						
5	CO3	K1	The component of D is perpendicular to the interfaces between						
			a) Continuousb) Discontinuous c) Infinity d) All the above						
6	CO3	K2	The Maxwell's equation $\nabla \mathbf{x} \mathbf{E}$ could be derived from						
			a) Faraday lawb) Coloumb's lawc) Maxwell law d) Ampere's law						
7	CO4	K1	The value of Reflection+Transmission=for the electromagnetic						
			wave at normal incidence						
			a) Constant b) Infinity d) Unity d) Zero						
8	CO4	K2	The divergence of H will be						
			a) 1 b) Infinityc) -1 d) Zero						
9	CO5	K1	The dominant mode in a rectangular wave guide is						
-			a) TE9 b) TE8c) TE10 d) TE6						
10	CO5	K2	If the propagation constant of an electromagnetic wave $v=\alpha+j\beta$ then α						
			is called						
			a) Real propagation constant b) Phase constant						
			c) Attenuation constant d) None of the above						
Academi	c Counc	il Meeting I	Held on 29.04.2021 Page 234						

radius R
ctors
gher level
one, two
ce & curl
ce

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	se Name PRACTICAL – I GENERAL PHYSICS LABORATORY											
Course Code	21PF	РНС15					L	Р	С			
Category	Core								4			
Nature of the	e of the Course EMPLOYBILITY SKILL ORIENTED CONTREPRENURSH											
Course Objec	Course Objectives:											
 To learn v To acquire To prepare To interprine To evaluate ANY TW 1. Erring 2. Reg 3. Deg 4. Deg 5. Reg 6. Deg 5. Reg 6. Deg 7. La 8. Deg 9. Deg 10. With 11. Rug 12. Gag 13. Neg 14. Sing 15. Transport 	arious e the app graphic e graphic e graphic e findin e possib ELVE or analy fractive termina termina le by for ser base termina en's bri nge-Ku uss Elin wton Ra npson's pezoida	xperimental and comporting data accurate cal presentations of land ags using the physical ole causes of discrepant EXPERIMENTS: ysis of experimental data index of a liquid holloc tion of Cauchy's constition of Cauchy's constition power of a prism tion of Young's moduler ming Elliptical fringed d diffraction experimental diffraction experimental diffraction experimental tion of the co-efficient erson's Bridge tion of mutual inductated dge and Owen's bridge that Method I& II using initation Method using aphson's method using one third rule using C al rule using C++ Program	ata bor scie acy ata bow tan the lus es. ents t of g C g C g C g C t++	ational tools thereby de and keep systematic re- ratory data and comput- entific tools in practical experiment prism t prominent lines by gr and Poisson's ratio of and Poisson's ratio of coupling between the e of a pair of coils by for ++Programming ++Programming -Programming -Programming mming	atin atin pai	oping analytica d of laboratory onal results. observations g-Oblique incid erspex r of coils ing Maxwell's	l sł act den Bri	cills. ivition ce	es.			
On Completio	n of this	s course the student w	-i11	be able to			1	X LC	vu			
CO1 Gain 1	ractical	exposure about theor	etic	cal concepts and invest	igat	te the principles	;	K3				
& effe	cts of o	ptics		in concepts and myest	-5 ^u							
CO2 Cultiv	ate tech	nical skills to troubles urate results.	ho	ot the errors in various	ins	truments and		K1				
CO3 Exam	ne the s	trength of material by	do	ing Young's modulus	exp	eriment.		K4				
CO4 Interp	et the s	cience behind the elec	tric	cal components and the	eir p	properties.	+	K2				
CO5 Devel	p the c	omputer programmin	g f	or Numerical method	pro	blems	T	K5				
Course Design	ed by: 1	Mrs. S. Nagadeepa &	k I	Dr.M.Alagar								

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	Ma	thematical Physics-II							
Course Code	21P	PPHC21	L	P	С				
Category	Cor	Core							
Nature of course: EMPLOYBILITY SKILLORIENTED ✓ ENTREPRENUR									
Course Object	ives:								
• To recall an	d sol	ve various types of differential equations							
• To solve var	rious	complex functions by Fourier series and also to determine	its transfo	orms					
• To explore a	about	t the concepts of different types of tensors							
• To analyze	speci	al functions using Legendre and Laguerre polynomials							
• To evaluate	the f	unctions using Bessel and Hermite functions							
Unit: I Dif	ferer	ntial equations of first and second order		19 H	Hrs				
Order, degree, f	forma	tion, solution and the geometrical meaning of a differentia	al equation	1 - sc	olving				
methods of dif	fferei	ntial equation: variables separable - Homogenous diffe	erential e	quati	ons -				
equations reduc	cible	to homogenous form - linear differential equations - eq	uations re	ducil	ole to				
linear and exac	t for	m – exact differential equation. Linear differential equation	ons of sec	ond	order:				
Linear and Nor	n-line	ea <mark>r differential equations - lin</mark> ear differential equations o	f second	order	with				
constant coeffi	cient	s - dimension of space of solution - Non-homogeno	us – Ho	moge	nous-				
superposition of	r line	arity principle equations - linear independence and depen	dence –W	rons	kian -				
Existence of lin	early	independence – method to find complementary function a	nd particu	lar in	tegral				
for any differen	tial e	quation.		• • •					
Unit: II Tra	ansfo	rms	1 '	20 I	Hrs 1				
Fourier Transfo	rm: I	Integral transforms-Fourier integral theorem-Fourier sine a	nd cosine	integ	rals –				
Fourier transfor		acquisition - Pourier transforms - Fourier sine and cosine transforms	Dornova	opert Void	antitu				
fourier transfor	IIIS –	Perseval's identity for sine transform Fourier transf	- Paiseva	i s iu rivot	ives				
relationship bet	weer	Eourier and Laplace transforms - solution of boundary	value pr	ohler	ns hv				
using integral tr	ansfo	rm	value pi	00101	lis Oy				
Unit: III Ve	ctor s	space and tensors		15 H	Hrs				
Introd	luctic	on – definition of real vector space – sub space – constructi	ion of vec	tor sr	ace –				
linear dependen	nce ar	ind independence – linear dependence and independence –	basis and	dime	ension				
– fundamental s	subsp	aces of a matrix – transformation – linear transformation -	- propertie	es of	linear				
transformation -	– mat	trices of linear transformation.							
Tensor	rs of	rank zero, one and two - dummy suffix- transformations -	- Cartesia	n ten	sors –				
relation betwee	n the	e direction cosines and kroneckar delta - substitution pr	operty of	kron	eckar				
delta - algebra of Cartesian tensor - quotient law - symmetric and antisymmetric tensor -scalar									
invariant of a se	econd	rank tensor.							
Unit: IV Spe	ecial	functions I		18 I	Hrs				
Legendre's equ	ation	- Legendre's polynomial $p_n(x)$ - Legendre's function of s	second kir	nd -ge	eneral				
solution of Leg	gendr	e's equation - Rodrigue's formula - Legendre's polyno	mial - a	gene	rating				
tunction of Le	gend	re's polynomial - orthogonality of Legendre's polynomial	mal - a	gene	rating				

function of Legendre's polynomial, orthogonality of Legendre polynomials -recurrence for	ormulae –										
aplace's first definite integral - Laplace second definite integral- Fourier Legendre expansion –											
Strum – Liouville equation – orthogonality – orthoganility of Eigen function -Laguerre's f	m – Liouville equation – orthogonality – orthoganility of Eigen function -Laguerre's function –										
Laguerre's function for different values of n - generating function of Laguerre poly	ynomial -										
recurrence relation - orthogonal property											
Unit: V Special function II 18 Hrs											
Bessel's function: Bessel's equation - solution of Bessel's equation- Bessel's function j_{nx} - Bessel											
function of the second kind of order n - recurrence formulae - equations reducible to Bessel's											
equation - orthogonality of Bessel function - a generating function for $j_n(x)$ - trigo	onometric										
expansion involving Bessel function - Bessel integral -Fourier-Bessel expansion - Ber	r and Bei										
functions. Hermite function: Hermite's equation - generating function of Hermite poly	nomials -										
orthogonal property - recurrence formula for $h_n(x)$ of Hermite equation.											
Total Lecture Hours	90										
Books for Study:											
1. H. K. Dass & Rama Verma, Mathematical Physics, VIII Edition, S. Chand and	Company										
limited, Ram Nagar, New Delhi – 55, Reprint 2019											
UNIT I (Chapter 12 (12.1 -12.13), 13)											
UNIT II (Chapter 45(45.1-45.15)											
UNIT IV (Chapter 28, 31)											
UNIT V(Chapter 29, 30)											
2. Vinod K. Sharma, Matrix methods and vector spaces in Physics, 2009, PHI Learning pi	rivate										
$\begin{array}{c} \text{Inflitted, New Definition -15} \\ \text{UNIT III (Chapter 2(21, 2, 7)) ((11, 4, 4, 7)) (2, 1, 2, 11)} \end{array}$											
UNIT III (Chapter 5(5.1- 5. 7) 4 (4.1-4.4, 4.7), 8 (8.1- 8.11),											
books for kelerences:											
1. G. B. Arfken, H. J.Weber and Harris, Mathematical methods for Physicists, IV	/ edition,										
Academic press, 2005,	,										
2. Advanced Engineering Mathematics, Erwin Kreyszig, IX Edition, Wiley publishers, 20	014.										
3. B. D. Gupta, Mathematical Physics, IV edition, Vikas Publishing House private L	Ltd., New										
Delhi-55, Reprint 2018.											
Web Resources:											
1 https://www.grc.nasa.gov/www/k12/Numbers/Math/documents/Tensors_TM20022117	716 pdf										
2 https://doi.org/10.1121/1.4776198	<u>, i oip di</u>										
3. https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html											
Course Outcomes	K Level										
On Completion of this course, the student will be able to											
CO1: Define differential equations of first and second order respectively	K 3										
CO2: Express various complex functions into simplified Fourier series form and as k	K 3										
transforms											
CO3: Distinguish tensors into different order and types	73										
CO4: Analyze special function in terms of Legendre and Leguerre polynomials	х <u>э</u> 7Л										
CO5. Evaluate various special functions by using Hamits and Descal functions.	75										
E valuate various special functions by using Hermite and Bessel functions	NJ										

CO & PO Mapping:

	0					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	2	2
CO 2	2	2	3	2	2	2
CO 3	1	2	1	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	2	1	1	2	2
Weightage	10	10	10	9	9	10

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
I	Order, degree, formation, solution and the geometrical meaning of a differential equation, solving methods of differential equation: variables separable, Homogenous differential equations, equations reducible to homogenous form, linear differential equations, equations reducible to linear and exact form, exact differential equation.	6	
	Linear differential equations of second order: Linear and Non- linear differential equations, linear differential equations of second order with constant coefficients, dimension of space of solution , Non-homogenous, Homogenous, superposition or linearity principle equations, linear independence and dependence, Wronskian, Existence of linearly independence	7	Chalk & Talk, PPT
	Method to find complementary function and particular integral for any differential equation.	6	
II	Fourier Transform: Integral transforms, Fourier integral theorem, Fourier sine and cosine integrals, Fourier's complex integral, convolution	7	
	Fourier transforms, Fourier sine and cosine transforms, properties of Fourier transforms	6	Chalk, Talk&
	Perseval's identity for Fourier transforms, Parseval's identity for cosine transform, Perseval's identity for sine transform, Fourier transform of derivatives, relationship between Fourier and Laplace transforms, solution of boundary value problems by	7	Assignment
	using integral transform		
	of vector space, linear dependence and independence, linear	4	Chalk,
	dependence and independence, basis and dimension		Talk&
	indiamental subspaces of a matrix, transformation, linear		

	Volume II – Science Sylla	bus / 2	021 -2022
	transformation, properties of linear transformation, matrices of linear transformation. Tensors of rank zero, one and two, dummy suffix, transformations Cartesian tensors – relation between the direction cosines and kroneckar delta – substitution property of kroneckar delta – algebra of Cartesian tensor – quotient law – symmetric and antisymmetric tensor –scalar invariant of a second rank tensor	4 7	Exercise
IV	Legendre's equation, Legendre's polynomial $p_n(x)$, Legendre's function of second kind, general solution of Legendre's equation, Rodrigue's formula, Legendre's polynomial, a generating function of Legendre's polynomial	6	
	Orthogonality of Legendre's polynomial, a generating function of Legendre's polynomial, orthogonality of Legendre polynomials, recurrence formulae, Laplace's first definite integral , Laplace second definite integral, Fourier Legendre expansion, Strum – Liouville equation	6	Chalk & Talk, PP
	Orthogonality, orthogonality of Eigen function, Laguerre's function, Laguerre's function for different values of n, generating function of Laguerre polynomial, recurrence relation, orthogonal property	6	
V	Bessel's function: Bessel's equation , solution of Bessel's equation, Bessel's function $j_{n}(x)$, Bessel function of the second kind of order n, recurrence formulae, equations reducible to Bessel's equation	6	Chalk,
	Orthogonality of Bessel function, a generating function for $j_n(x)$, trignomentric expansion involving Bessel function, Bessel integral, Fourier Bessel expansion, Ber and Bei functions.	6	Talk& Seminar
	Hermite function: Hermite's equation , generating function of Hermite polynomials , orthogonal property , recurrence formula for $h_n(x)$ of Hermite equation	6	

Course Designed by: Dr. D. Ruby Josephine & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE)								
	Formative Examination - Blue Print								
T	C	Articulation N	lapping – K	Levels w	vith Course C	Dutcome	s (COs)		
Inte	Cos	K Level	Section	Α	Section	B	Section C	Section D	
rnal			MCQ	S	Short Ans	swers	Either or	Open	
			No. of.	К-	No. of.	К-	Choice	Choice	
			Questions	Level	Questions	Level			
CI	CO1	K3	2	K1 &	1	K1	2 (K3&K3)	1(K3)	
AI				K2					
	CO2	K3	2	K1 &	2	K2	2 (K3&K3)	2(K3& K3)	
			- 51	K2	200				
CI	CO3	K3	(2)	K1 &	1	K2	2 (K3&K3)	1(K3)	
AII				<u> </u>	6				
	CO4	K4	2/11	K1 &	2	K2	2 (K3&K3)	2(K3 &K4)	
				K2	NA 8	2			
Que	stion	No. of	4	/ 2/	////3	54.	4	3	
Pat	tern	Questions to be							
CIA	I & II	asked				194			
		No. of	4		3		2	2	
		Questions to be				E.			
		answered		A de					
		Marks for each		でく	2		5	10	
		question				100			
		Total Marks for	4		6		10	20	
		each section		457		5	_	_	
		<u>ર</u> ા		43		6	•		

Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple	Section B (Short	Section C Section D Total (Either / (Open Marks		% of (Marks	Consolidate of %	
		Choice	Answer	Or	Choice)	E l	without	
		Questions)	Questions)	Choice)			choice)	
	K1	2	2		- 2	4	6.67	17
~ .	K2	2	4		55 57	6	10	
CIA	K3	-		20	<u>5</u> 30	50	83.33	83
I	K4	-	-		-	-	-	
	Marks	4	6	20	30	60	100	100
	K1	2	2	-	-	4	6.67	17
CIA	K2	2	4	-	-	6	10	
II	K3	-	-	20	20	40	66.67	83
	K4	-	-	-	10	10	16.67	
	Marks	4	6	20	30	60	100	100

Summative Examination – Blue Print Articulation Mapping – K Level with Course **Outcomes (COs)** S.No COs K - Level **MCQs Short Answers** Section C Section D No. of K – No. of К – (Either / (Open Choice) Questions Level Question Level or Choice) 1 CO1 Up to K 3 2 K1K2 1 K1 2 1(K3) (K3&K3) 2 CO2 Up to K3 2 K1&K 1 K1 2 1(K3) 2 (K3&K3) 3 CO3 Up to K 3 2 K1&K 1 K2 2 1(K3) 2 (K3&K3) CO4 Up to K 4 2 K1&K K2 1(K3) 4 1 2 2 (K3&K3) CO5 Up to K 5 K2 5 2 K1&K 1 2 1(K5) 2 (K5&K5) No. of Questions to be 10 5 10 5 Asked 10 5 3 No. of Questions to be 5 answered 2 1 5 10 Marks for each question 10 10 25 30 Total Marks for each section (Figures in parenthesis denotes, questions should be asked with the given K level)

Volume II – Science Syllabus	/ 2021 - 2022
------------------------------	---------------

Distribution of Marks with K Level									
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated		
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%		
	Choice	Answer	Choice)	Choice)	S	without			
	Questions)	Questions)		4		choice)			
K1	5	4	ର -		9	7.5	16.66		
K2	5	6	அரம	0.0	11	9.16	10.00		
K3	-	-	40	40	80	66.67	83.27		
K4	-	-	-	-	-				
K5	-	-	10	10	20	16.6			
Marks	10	10	50	50	120		100		
NB: Hi	igher level of	performance	of the studen	ts is to be as	sessed by	attemptin	g higher level		

Summative Examinations - Question Paper – Format

Section A (Multiple Choice Questions)						
	A	nswer All	Questions (10x1=10 marks)			
Q. No	CO	K Level	Questions			
1	COI	KI	Identify from the following, order of a differential equation can be obtained from			
			a) Highest order of the derivative involved			
			b) Lowest order of derivative involved			
			c) Constants			
			d) All the above			
2	CO1	K2	Show an example for linear differential equation from the following			
			a) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2 + x + 1$			
			b) $\frac{d^2y}{d^2y} = \frac{dx}{d^2y} = \frac{dx}{d^2y} = \frac{dx}{d^2y}$			
			$\frac{dx}{dx} + 3\frac{dx}{dx} + y = e$			
			c) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = \sin x$			
			d) $\frac{d^2y}{d^2y} + 5\frac{dy}{d^2} + y^3 = f(t)$			
		2	dy = dx + y + y + y + y + y + y + y + y + y +			
3	CO2	K1	Identify the fourier cosine integral			
5	002		$a)f(x) = \frac{2}{2} \int_{-\infty}^{\infty} \sin ux du \int_{-\infty}^{\infty} f(t) \sin ut dt$			
			$a)f(x) = \frac{1}{\pi} \int_0^\infty s(t) dx dt \int_0^\infty f(t) s(t) dt dt$			
			b) $f(x) = \int_0^{\infty} \sin ux du \int_0^{\infty} f(t) \sin ut dt$			
			c) $f(x) = \frac{2}{\pi} \int_0^\infty 8\sin ux du \int_0^\infty f(t) \sin ut dt$			
		5	d) $f(x) = 6 \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$			
4	CO2	K2	Locate the function of integral transforms			
		6	a) Solve partial differential equations with boundary condition			
		3	b) Solve partial integral equations with boundary condition			
			c) Solve non boundary problems			
5	CO3	V 1	d) All the above			
5	COS	K1	a) tensor b) scalar c) vector d) all the above			
6	CO3	К2	Linear operator are also known to be			
Ū	005	112	a) Linear transformation b) non linear transformation c)			
			symmetric transformation d) all the above			
7	CO4	K1	Legendre equation can be expressed as			
			a) $(1-x^2) d^2y/dx^2-2x dy/dx+n(n+1)y=0$			
			b) $(1-x) d^2y/dx^2-2x dy/dx+2n(n+1)y=0$			
			c) $(1-2x) d^2y/dx^2-2x dy/dx+4n(n+1)y=0$			
			d) $(1-x) d^2y/dx^2-2x dy/dx+8n(n+1)y=0$			
8	CO4	K2	The general solution of Legendre equation can be expressed as			
			a) $y=APn(x)+BQn(x)$			
			b) $2y=APn(x)+BQn(x)$			
			c) $y=APn(x)$			
	967		d) y=BQn(x)			
9	CO5	K1	Hermite polynomial can be expressed as			
Academi	c Counc	il Meeting H	Held on 29.04.2021 Page 244			

	1		d ² a, da
			a) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0$
			b) $\frac{d^2y}{d^2y} - 2r\frac{dy}{dy} + 2ny - 6$
			$\frac{dy}{dx^2} = 2x \frac{dy}{dx} + 2hy = 0$
			c) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 3$
			d) $\frac{d^2y}{d^2y} - \frac{dy}{d^2y} + 2ny = 0$
			$dx^2 dx^2 = dx^2 + 2hy = 0$
10	CO5	К2	Bessel differential equation can be expressed as
10	005	112	$\mathbf{Y}^{2d^2y} + \mathbf{y}^{dy} + (\mathbf{y}^2 - \mathbf{y}^2) = 0$
			a) $x \frac{dx^2}{dx^2} + x \frac{dx}{dx} + (x^2 - n^2) = 0$
			b) $X_2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$
			c) $X \frac{d^2y}{d^2y} + x \frac{dy}{dy} + (x^2 - n^2) = 0$
			$d^2 y$ $d^2 y$ $d^2 y$
			d) $3X \frac{dy}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$
			Section B (Short Answers)
- N	A	nswer All	Questions (5x2=10 marks)
Q. No	CO	K Level	Questions
11	COl	K1	Define Homogenous equation
12	CO2	K1	Express Laplace transform
13	CO3	K2	Define first order tensor
14	CO4	K2	Describe in short about Bessel function
15	CO5	K2	Describe in short about Legendre function
			Section C (Either/Or Type)
	A A	Answer All	Questions $(5 \times 5 = 25 \text{ marks})$
Q.NO			Questions
	COL		S_{0} (1) (1) (1) (1) (2) $(2$
16) a	CO1	K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$
16) a 16) b	CO1 CO1	K Level K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation
16) a 16) b	CO1 CO1	K Level K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this
16) a 16) b	CO1 CO1	K Level K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value
16) a 16) b 17) a	CO1 CO1 CO2	K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$
16) a 16) b 17) a 17) b	CO1 CO1 CO2 CO2	K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where a>0 Find the Fourier transform of $\frac{1}{x}$
16) a 16) b 17) a 17) b 18) a	CO1 CO1 CO2 CO2 CO3	K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the
16) a 16) b 17) a 17) b 18) a	CO1 CO1 CO2 CO2 CO3	K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent
16) a 16) b 17) a 17) b 18) a 18) b	CO1 CO1 CO2 CO2 CO3 CO3	K3 K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where a>0 Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also
16) a 16) b 17) a 17) b 18) a 18) b	CO1 CO1 CO2 CO2 CO3 CO3	K3 K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx +x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor
16) a 16) b 17) a 17) b 18) a 18) b 19) a	CO1 CO1 CO2 CO2 CO3 CO3 CO3	K3 K3 K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$. Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre
16) a 16) b 17) a 17) b 18) a 18) b 19) a	CO1 CO1 CO2 CO2 CO3 CO3 CO4	K3 K3 K3 K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre Polynomials
16) a 16) b 17) a 17) b 18) a 18) b 19) a 19) b	CO1 CO2 CO2 CO3 CO3 CO4 CO4	K3 K3 K3 K3 K3 K3 K3 K3 K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2-2x^2-3x+8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre Polynomials
16) a 16) b 17) a 17) b 18) a 18) b 19) a 19) b 20) a	CO1 CO2 CO2 CO3 CO3 CO4 CO4	K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K5	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre Polynomials Prove that $L_x(x)=(-1)^n \ln(x)$ Where n is a positive integer
16) a 16) b 17) a 17) b 18) a 18) b 19) a 19) b 20) a 20) b	CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO5 CO5	K3 K5 K5	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre Polynomials Prove that $J_{-n}(x) = (-1)^n Jn(x)$, Where n is a positive integer Show that (a) $J_{n+2} + J_{n+5} = 2/x (n+4) Jn+4$
16) a 16) b 17) a 17) b 18) a 19) a 19) b 20) a 20) b NR•	CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO5 CO5 Higher	K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K	Solve $y(xy+2x^2y^2)dx +x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where a>0 Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2-2x^2-3x+8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre Polynomials Prove that J _{-n} $(x)=(-1)^n$ Jn(x), Where n is a positive integer Show that (a) J _{n+3} +J _{n+5} =2/x (n+4) Jn+4 reformance of the students is to be assessed by attempting higher
16) a 16) b 17) a 17) b 18) a 18) b 19) a 20) a 20) b NB:	CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO5 CO5 Higher	K3 K4 K5 K5	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where a>0 Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre Polynomials Prove that $J_{-n}(x) = (-1)^n Jn(x)$, Where n is a positive integer Show that (a) $J_{n+3} + J_{n+5} = 2/x$ (n+4) Jn+4 erformance of the students is to be assessed by attempting higher level of K levels
16) a 16) b 17) a 17) b 18) a 18) b 19) a 20) a 20) b NB:	CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO5 CO5 Higher	K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K	Solve $y(xy+2x^2y^2)dx +x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2+\lambda x^2y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2-2x^2-3x+8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre Polynomials Prove that $J_{-n}(x)=(-1)^n Jn(x)$, Where n is a positive integer Show that (a) $J_{n+3}+J_{n+5}=2/x$ (n+4) Jn+4 erformance of the students is to be assessed by attempting higher level of K levels
16) a 16) b 17) a 17) b 18) a 19) a 19) b 20) a 20) b NB:	CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO5 CO5 Higher	K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K5 K5 S level of pe	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$ Find the value of λ for the differential equation $(xy^2 + \lambda x^2 y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value Find the Fourier transform of e^{-ax^2} , where $a>0$ Find the Fourier transform of $\frac{1}{x}$ Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor Express the polynomial $f(x) = 4x^2 - 2x^2 - 3x + 8$ in terms of Legendre Polynomials Express the polynomial $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre Polynomials Prove that $J_{-n}(x)=(-1)^n Jn(x)$, Where n is a positive integer Show that (a) $J_{n+3}+J_{n+5}=2/x$ (n+4) Jn+4 erformance of the students is to be assessed by attempting higher level of K levels

	Answer Any Three questions (3x10=30 marks)				
Q.No	CO	K Level	Questions		
21	1	K3	Find the complete solution of		
			$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$		
22	2	K3	Find Fourier cosine transform of $\frac{1}{1+u^2}$ and hence find fourier sine		
			transform of $\frac{x}{1+x^2}$		
23	3	K3	Discuss about the transformations in two dimensions		
24	4	K3	Express the function		
			$f(x) = \begin{cases} 0, -1 < x < 0 \\ x & 0 < x < 1 \end{cases}$ in Fourier Legendre expansion		
25	5	K5	Prove that		
			$\int x Jo(x) dx = x 2\{j2 + j1(x)\} + c$		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	Quantum Mechanics – I								
Course Code	21PPHC22	L	P	С					
Category	Core	6	-	4					
Nature of course	EMPLOYABILITY SKILL ORIENTED 🗸 ENTREPREN	URS	HIP						
Course Objectives:									
 To develop familiarity with the physical concepts and facility with the mathematical methods of quantum mechanics. To enable the students; learn the basic postulates of quantum mechanics. To cultivate the skills at formulating and solving physics problems To have acquired experience in using both types of methods on quantum mechanical problems. To apply the approximation methods for various quantum mechanical problems. Unit: I GENERAL FORMALISM OF QUANTUM MECHANICS 17 Hrs. Linear Vector Space – Linear operator – Eigen functions and Eigen values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous Measurability of Observables – General Uncertainty Relation –Dirac's Notation – Equations of Motion: Schrodinger representations, Heisenberg representations and Interaction representations-momentum representation. Unit: II EXACTLY SOLUBLE EIGEN VALUE PROBLEM 19 Hrs. One Dimensional Eigen value problem: Square-Well Potential with rigid walls- Square-Well Potential with finite walls – Square Potential Barrier-Alpha emission-Linear Harmonic oscillator: Schrodinger method-Linear Harmonic oscillator: Operator method-The free particle Three dimensional Eigen value problems: Particle moving in a spherically symmetric potential – Systems 									
Unit: III REI	PRESENTATIONS, TRANSFORMATIONS AND SYMMETRI	ES	18 H	lrs.					
Heisenberg Method- Matrix representation of wave function-Matrix representation of operator- properties of matrix elements-Schrodinger equation in matrix form-Eigen value problem-Unitary transformations-linear harmonic oscillator: Matrix method-Symmetry transformation-Translation in space: conservation of linear momentum-translation in time: conservation of energy-Rotation in space: conservation of angular momentum-space inversion: pairty conservation-time reversal									
Unit: IV API	PROXIMATION METHODS FOR BOUND STATES	1	17 H	irs.					
Stationary (Time Independent) Perturbation Theory in Non-Degenerate Case – First-orderperturbation- Degenerate Case-Stark Effect in Hydrogen atom - Variation Method – expectationvalue of energy-application to excited states-Ground state of Heliumvariation of the parameter ZUnit: VWKB APPROXIMATION & TIME DEPENDENT PERTURBATION19 Hrs.									
Classical limit- perturbation theo order perturbation with perturbation	approximate solutions-asymptotic nature of the solutions-T ory: First order perturbation –Harmonic Perturbation- Transition pro- on–Fermi's golden rule – Adiabatic approximation – choice of pha on theory-discontinuous change in H-Sudden approximation.	ime-I babili 1ses-c	Deper ty-se onne	ident cond ction					

	Total Lecture Hours	90
Books	for Study:	
1. G.	Aruldhas, Quantum Mechanics, PHI Learning Private Limited, Second Edition, 20	13
UNIT Chapte	- I r 3 (Section3.1 to 3.10)	
UNIT Chapte Chapte	– II r 4 (Section 4.1 to 4.4 & 4.7 to 4.9) r 5 (Section 5.1 to 5.8)	
UNIT- Chapte Chapte	III r 6 (Section 6.1 to 6.8) r 7(Section 7.1 to 7.6)	
2. L. Ko Unit-I Chapte	I. Schiff, Quantum Mechanics, 3 rd Edition, International Student Edition, MacGra gakusha, Tokyo, 2015. V r 8(Section 31 & 32)	w-Hill
Unit-V		
Chapte	r 8(Section 34 <mark>& 35)</mark>	
Books	for Reference:	
1. P.	M. Mathews and K. Venkatesan, 1976, A Text book of Quantum Mechanics	, Tata
Mo	Graw-Hill, New Delhi.	
2. V.	Devanathan, 2005, Quantum Mechanics, Narosa Publishing House, New Delhi.	
3. J	J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1993	T · · · 1
4. Ka	with an and the second se	Limited,
5 B	w Denni, 2012. K. Agarwal and Hari Prakash: Quantum Mechanics Prentice Hall of India Ne	w Delhi
200	A	w Denn,
6. Gl	natak A., Introduction to Quantum Mechanics, MacMillan India Ltd., Madras, 200	2
Web R	esources:	
1. <u>htt</u>	p://bookboon.com/Introduction to Quantum Mechanics, Intermediate Quantum M	lechanics,
<u>Ch</u>	emistry: Quantum Mechanics and Spectroscopy I, Chemistry: Quantum Mecha	anics and
<u>Spe</u>	ectroscopy II	
2. <u>htt</u>	os://swayam.gov.in/courses/3485-quantum-chemistry	
3. <u>htt</u>	<u>D://freevideolectures.com/Course/28/6/Fundamentals-of-Physics-III/191.</u>	V Lovel
The stu	e Outcomes	K Level
	Have a clear understanding of the foundation of Ouantum Mechanics	K1
CO2:	Express the Schrodinger equation to exactly solvable problems.	K2
CO3 :	Determine the effects of symmetries in quantum mechanics	K3
CO4:	Classify the properties of operators in quantum mechanics	K4
CO5:	Deduct the various perturbation methods to solve the quantum mechanical	K5
	problems.	

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	Progr PO1 PO2 3 1 2 2 1 3 2 2 1 3 2 2 1 3 0 0	PO3	PO4	PO5	PO6			
CO1	3	1	1	2	1	2		
CO2	2	2	3	2	2	2		
CO3	1	3	2	2	2	1		
CO4	2	2	2	1	2	2		
CO5	1	3	2	3	3	1		
Weightage	9	59	10	10	10	8		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	Quantum Mechanics-I	Hrs	Pedagogy	
	GENERALFORMALISMOFQUANTUMMECHANICS:Linear Vector Space,Linear operator,Eigenfunctions and Eigen values,HermitianOperator,Postulates ofQuantum MechanicsImage: Construction of the second	5		
Unit-1	Simultaneous Measurability of Observables , General Uncertainty Relation , Dirac's Notation	6	Chalk & Talk, Test	
	Equations of Motion: Schrodinger representations, Heisenberg representations and Interaction representations, momentum representation.	6		
	EXACTLY SOLUBLE EIGEN VALUE PROBLEM: One Dimensional Eigen value problem: Square Well Potential with rigid walls- Square Well Potential with finite walls	7	Chalk & Talk PPT	
Unit-2	Square Potential Barrier, Alpha emission, Linear Harmonic oscillator: Schrodinger method, Linear Harmonic oscillator: Operator method, The free particle , Three dimensional Eigen value problems: Particle moving in a spherically symmetric potential	6	Taik, 111	
	atom, The Free particle, Three dimensional Square, Well	6		

	potential ,The Deuteron		
	REPRESENTATIONS, TRANSFORMATIONS AND SYMMETRIES: Heisenberg Method,Matrix representation of wave function,Matrix representation of operator,properties of matrix elements, equation in matrix form	6	
Unit-3	Eigen value problem, Unitary transformations, linear harmonicoscillator:Matrixmethod, Symmetrytransformation, Translation in space:conservation of linearmomentum	6	Chalk & Talk, seminar
	translation in time: conservation of energy,Rotation in space: conservation of angular momentum, space inversion: parity conservation,time reversal	6	
	APPROXIMATION METHODS FOR BOUND STATES: Stationary (Time Independent) Perturbation Theory in Non- Degenerate Case	7	Chalk &
Unit-4	First-order perturbation,Degenerate Case,Stark Effect in Hydrogen atom ,Variation Method ,expectation value of energy	5	Talk, Assignment
	application to excited states,Ground state of Helium,variation of the parameter Z.	5	
	Classical limit, approximate solutions, asymptotic nature of the solutions, Time–Dependent perturbation theory: First order perturbation	6	Chalk &
Unit-5	Harmonic Perturbation, Transition probability, second order perturbation, Fermi's golden rule, Adiabatic approximation	6	Talk , Exercise,
	choice of phases, connection with perturbation theory, discontinuous change in H-Sudden approximation	7	

Course Designed by: Mrs. S. Nagadeepa & Mr. P. Dharmaraja

	Learning Outcome Deced Education & Assessment (LODE)							
	Even ming Outcome Dased Education & Assessment (LODE)							
		Articulation N	Mapping – K	Levels wit	h Course Ou	tcomes (COs)	
Internal	Cos	K Level	Sectio	on A	Section	Section		
			MC	Qs	Short Ans	swers	Section C	Section D
			No. of.	K -	No. of.	K -	Either or	Open
			Questions	Level	Questions	Level	Choice	Choice
CI	CO1	K2	2	K1 & K2	1	K1	2(K2&K2)	1(K2)
AI	CO2	K3	2	K1 & K2	2	K2	2(K3&K3)	2(K2&K3)
CI	CO3	K2	2	K1 & K2	1	K2	2(K2&K2)	1(K2)
AII	CO4	K4	2	K1 & K2	2	K2	2(K3&K3)	2(K3&K4)
Quest	ion	No. of	643		3		4	3
Patte	rn	Questions to		~~~~	6			
CIAI	& II	be asked	° / A		1 3			
		No. of	4	// 1444))	3 8		2	2
		Questions to				<u>A</u>		
		be answered						
		Marks for	1		2	194	5	10
		each question				(GA)		
		Total Marks	4		6	5.	10	20
		for each		NO/				
		section						

	Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %	
	K1	2	J 2/4/1	Lalles we	alle i	4	6.67	67	
	K2	2	2 4 4	10	.\:\\20\\	36	60		
CIA	K3	-	6	10 -	10	20	33.33	33	
I	K4	-	0		5	-	-	-	
	Marks	4	6	20	30	60	100	100	
	K1	2	2	Brinis	51 -	4	6.67	50	
CIA	K2	2	4	10	10	26	43.33		
II	K3	-	-	10	10	20	33.33	33	
	K4	-	-	-	10	10	16.67	17	
	Marks	4	6	20	30	60	100	100	

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course							
	Outcomes (COs)							
S.No	COs	K - Level	MO	Qs	Short An	swers	Section C	Section D
			No. of	K –	No. of K –		(Either /	(Open
			Question	Level	Question Level		or Choice)	Choice)
			S					
1	CO 1	Up to K 2	2	K1K2	1	K1	2(K1&K1)	1(K2)
2	CO 2	K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO 3	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)
4	CO 4	Up to K 5	2	K1&K2	1	K2	2 (K4&K4)	1(K5)
5	CO 5	Up to K 3	2	K1&K2	5 1	K2	2 (K2&K2)	1(K3)
No	. of Quest	ions to be	10 0	1	5		10	5
	Aske	ed		- A A A	× ×			
No	.of Questi	ions to be	<u> </u>		5	2	5	3
answered		5 / /3	(())		2			
Marks for each question				2	1.00-	5	10	
Total I	Marks for	each section	10		10		25	30
	(Figures	in pare <mark>nthes</mark> i	is denotes, q	uestions s	hould be as	ked with	the given K l	evel)

		9 D	istributi <mark>on</mark> of	Marks with	K Level	0.			
K	Section A	Section B	Section C	Section D	Total	<mark>%</mark> of	Consolidated		
Level	(Multiple	Short 📥	(Either/ or	(Open	Marks	(Marks	%		
	Choice	Answer	Choice)	Choice)		without			
	Questions)	Questions)				choice)			
K1	5	9.6	10		19	15.83	40		
K2	5	4	10	10	31	25.83	42		
K3	-	3.	20	30	50	41.67	42		
K4	-	- "- " · · ·	10	-	10	8.3	8		
K5	-	- CT		10	- 10	8.3	8		
Marks	10	10	50	50	120	100	100		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.									
			0						

Section A (Multiple Choice Questions)							
	Ansv	ver All Qu	estions (10x1=10 marks)				
Q.No	CO	K Level	Questions				
1	CO1	K1	The state vector changes with time but the operator remains				
			constant which is called Picture				
			a) Heisenberg b) Schrodinger				
			c) Interaction d) dual				
2	CO1	K2	The Eigen values of Hermitian operators are				
			a) real b) imaginary c) constant d) varying				
3	CO2	K1	In $\lambda = A + BE$ (LD 65 a)				
			Where A& B are constants. This is calledlaw				
			a) Bragg law b) Newton's law				
			c) Geiger-Nuttal law d) Bloch law				
4	CO2	K2	is the smallest nucleus in which a proton and a				
			neutron are held together by the nuclear potential				
		3	a) Deuteron b) Proton				
		Lev L	c) neutron d) electron (
5	CO3	K 1	In discrete symmetry transformation, the reflection through the				
		L L	origin called				
		9	a) parity inversion (b) space operation				
			c) space inversion c) parity operator				
6	CO3	K2	The time reversal invariance of the Schrodinger equation results				
			only if the commutator [T,H]=				
		51	a) 0 b) ih				
		2.	c) 1 c) h				
7	CO4	K1	The helium atom consists of two electrons and a nucleus with a				
		9	(a) One proton & one neutron (b) two protons & one neutron				
		3.	(c) Two protons & two neutrons (d) one proton & two				
			neutrons				
8	CO4	K2 🗸	The solution of the angular part of the equation called the				
			(a) Linear harmonics (b) an harmonics				
			(c) Spherical harmonics (d) circular harmonics				
9	CO5	K1	A relation between β and V _o is called				
			(a) WKB method (b) variation method				
			(c) Range depth relation (d) Rayleigh – Ritz method				
10	CO5	K2	The point at which $E = V(x)$ is called the				
			(a) Classical turning point (b) quantum turning point				
			(c) Barrier penetration point (d) all the above				
			Section B (Short Answers)				
	Ans	wer All Qu	estions (5x2=10 marks)				
Q.No	CO	K Level	Questions				
	COl	Kl	Write any two postulates of Quantum Mechanics				
12	CO2	Kl	What is meant by hydrogenic orbitals?				
13	CO3	K2	Define the symmetry transformation				

Summative Examinations - Question Paper – Format

14	CO4	K2	Explain non-degenerate case in quantum mechanics?					
15	CO5	K2	What is meant by harmonic perturbation?					
	Section C (Either/Or Type)							
	Answe	r All Ques	tions (5 x 5 = 25 marks)					
Q.No	CO	K Level	Questions					
16) a	CO1	K1	What are the properties of Orthogonal functions in the formalism of quantum mechanics?					
16) b	CO1	K1	Describe the theorems involving in the Hermitian operator.					
17) a	CO2	K3	Determine the Eigen value of Bloch waves in periodic potential					
17) b	CO2	K3	Estimate the energy value of Rigid rotator.					
18) a	CO3	K3	Calculate the space inversion with parity conservation					
18) b	CO3	K3	Determine the energy with translation in time.					
19) a	CO4	K4	Illustrate the first order stark effect in Hydrogen.					
19) b	CO4	K4	Analyze the variation method to find the energy Eigen values.					
20) a	CO5	K2	Describe the time independent perturbation theory.					
20) b	CO5	K2 🔨	Summarize the adiabatic approximation.					
NB: I	Higher le	evel of per	formance of the students is to be assessed by attempting higher level of K levels					
		12	Section D (Open Choice)					
	Answ	er A <mark>ny Th</mark>	ree questions (3x10=30 marks)					
Q.No	CO	K Level	Questions					
21	CO1	K2	Classify the different types of equation of motion and explain any two of them.					
22	CO2	K3	Calculate the energy Eigen values and energy functions for Hydrogen atom.					
23	CO3	K4	Analyze the linear harmonic oscillator by matrix method.					
24	CO4	K5	Evaluate the ground state energy values of Helium.					
25	CO5	K3	Compute the energy levels using WKB approximation.					

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Name	DIGITAL ELECTRO	ONI	CS						
Course Code	21PPHC23							Р	C
Category	Core							-	4
Nature of course: EMPLOYABILITY 🖌 SKILL ORIENTED 🖌 ENTREPRE							JURS	HIP	
Course Object	Course Objectives:								
• To familiarize	the combinational logic	circ	cuits and	Karnaugh ma	ap si	mplifications.			
• To formulate of	lata processing circuits a	nd p	program matia an	mable logics.	ita				
• To give an in	sight about fundamental	con	nenc an	echniques and	iits. Lant	lications of D	ioital	elect	ronic
Flip-flops.		001			i upi		igitui	cicci	lonic
• To describe th	ne constructions of regist	ers	and cour	nters for <mark>our r</mark>	egul	ar use.			
Unit: I Con	mbinati <mark>onal Logic C</mark> irc	uits						19	Hrs
Boolean laws	and theorems: Basic la	ws-	-OR and	l AND operation	atior	ns-De Morgan	's ar	nd D	uality
theorems-Exclu	sive-OR and Exclusive-	NO	R opera	tions-Cons <mark>ens</mark>	sus a	and Shanan's	theor	ems.	Sum-
of-products met	hod: Sum-of-products e	quat	tion. Tru	th table to Ka	arna	ugh map: Thre	e var	riable	, four
overlapping gro	Sintered Variable maps	. Pa and	Elimina	ting redundation	ctets	- Karnaugh	simp	condi	tions:
Product –of-su	ms method: Converting	g a	truth ta	ble to an ec	juati	ons-Logic cir	cuit-C	Conve	ersion
between SOP	and PO <mark>S. Product-of-su</mark>	ims	simplif	ication: Sum	of-p	products and	Com	pleme	entary
circuits- NOR-	NOR circuit-Duality. F	Five	variable	e Karnaugh	map	s- Minimizati	ion o	of mu	ltiple
Unit: II Dat	ta processing circuits		44	in alle .	1			17	Hrs
Data processing	circuits: Multiplexers		de-mulii	olexers - 1-	-16	5 decoder – F	SCD	to de	cimal
decoders – sev	en segment decoders –	en	coders -	- exclusive-C	DR g	gates – parity	gene	rator	s and
checkers – m	agnitude comparator -	- r	ead-only	memory -	- pi	rogrammable	array	v log	gic –
programmable l	ogic arrays – troublesho	otin	g with a	logic probe.				1.5	
Unit: III Ari	thmetic Circuits, Clock	s ai	nd Timi	ng circuits				17	Hrs
Binary addition	-Binary subtraction-Unsi	igne	ed binary	numbers-Sig	n m	agnitude numb	pers-2	2's	
complement ari	thmetic-Arithmetic build	ling	blocks:	Half-adder, F	ull-a	adder, Control	led In	verte	r-
Adder-Subtracter. Clocks: Clock wave forms-TTL clocks-Schmitt trigger. Multivibrator: 555timer,									
Unit: IV Flin	o - flop, D/A conversior	n an	d A/D c	onversion				19	Hrs
									~
KS flip-flop: B	asic idea, NOR-gate lat	ich,	NAND-	gate latch. G	atec	l tlip-flops: C	locke	d RS	flip-
negative-edge-t	riggered RS flin-flops	Edo	u KS III ve-trigger	red D flin-flo	uve-	Edge-triggered	d JK	flin-	flops.
Positive-edge-tr	iggered JK flip-flops,	neg	gative-ed	lge-triggered	JK	flip-flops. Fl	ip-flo	ops ti	ming

Course Outcomes (CO's)	Programme Outcomes (PO's)							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	1	2	2	2		
CO2	3	3	3	2	2	2		
CO3	2	2	1	2	2	1		
CO4	2	2	2	2	2	2		
CO5	1	3	2	3	2	3		
Weightage	10	°110	9	11	10	10		

CO & PO Mapping:

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	21PPHC23- Digital Electronics	Hrs.	Mode
Unit-1 Combinational Logic Circuits	Boolean laws and theorems: Basic laws, OR and AND operations, De Morgan's and Duality theorems, Exclusive-OR and Exclusive-NOR operations-Consensus and Shanan's theorems	5	Chalk &Talk, PPT
	Sum-of-products method: Sum-of-products equation. Truth table to Karnaugh map: Three variable, four variable and Entered variable maps. Pairs, Quads and Octets- Karnaugh simplifications: overlapping groups, Rolling the map and Eliminating redundant groups.	5	
	Don't care conditions. Product –of-sums method: Converting a truth table to an equations-Logic circuit-Conversion between SOP and POS.	4	
	Product-of-sums simplification: Sum-of-products and Complementary circuits- NOR-NOR circuit-Duality. Five variable Karnaugh maps- Minimization of multiple output function-Quine-McClusky method.	5	
Unit-2 Data processing	Data processing circuits: Multiplexers – de-muliplexers - 1- of-16 decoder – BCD to decimal decoders – seven segment decoders.	5	Chalk &Talk, PPT
circuits	encoders – exclusive-OR gates – parity generators and checkers – magnitude comparator.	6	
	Read-only memory – programmable array logic – programmable logic arrays – troubleshooting with a logic probe.	6	
Unit-3 Arithmetic Circuits, Clocks	Binary addition-Binary subtraction-Unsigned binary numbers-Sign magnitude numbers-2's complement arithmetic.	5	Chalk &Talk, Assignment
and Timing	Arithmetic building blocks: Half-adder, Full-adder,	6	

			1
circuits	Controlled Inverter-Adder-Subtracter. Clocks: Clock wave		
	forms-TTL clocks.		
	Schmitt trigger. Multivibrator: 555timer – astable and	6	
	monostable.		
Unit-4	RS flip-flop: Basic idea, NOR-gate latch, NAND-gate latch.		Chalk
Flip - flop,	Gated flip-flops: Clocked RS flip-flops, clocked D flip-flops.	5	&Talk,
D/A	Edge-triggered RS flip-flops: Positive-edge-triggered RS flip-		PPT, Class
conversion	flops, negative-edge-triggered RS flip-flops. Edge-triggered		Test
and A/D	D flip-flops.		
conversion	Edge-triggered JK flip-flops: Positive-edge-triggered JK flip-	5	
	flops, negative-edge-triggered JK flip-flops. Flip-flops timing		
	circuits. JK master-slave flip-flops.		
	Variable resistor networks: Binary equivalent weight,	4	
	resistive divider. Binary ladder.		
	D/A converters: Multiple signals, D/A converter testing and	5	
	available D/A converters. D/A accuracy and resolution. A/D		
	converter: Simultaneous conversion.		
Unit-5	Types of registers: Serial in-serial out, serial in-parallel out,	6	Chalk
Registers and	parallel in-serial out, parallel in-parallel out.		&Talk,
Counters	Asynchronous Counters: Ripple Counters. Decoding gates-	6	PPT
	Synchronous counters.		
	Counter modulus-Mod-3 and mod-6 counters. Decade	6	
	counters: Mod-5mod-10 counters.		

Course Designed by: Dr. M. Alagar & Dr. D. Ruby Josephine

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Internal	Cos	s K Level	Section	on A	Section	n B	Section	Section			
				CQs	Short Answers		Section C	Section D			
		्	No. of. Questions	K - Level	No. of. Questions	K - Level	Either or Choice	Open Choice			
CI	CO	1 K2	<u> </u>	K1 & K2	1.97	K1	2(K2&K2)	1(K2)			
AI	CO	2 K3	2	K1 & K2	\$2	K2	2(K3&K3)	2(K2&K3)			
CI	CO	3 K2	2	K1 & K2	1	K2	2(K2&K2)	1(K2)			
AII	CO	4 K4	2	K1 & K2	2	K2	2(K3&K3)	2(K3&K4)			
Questic Patter	on n	No. of Questions to be asked	4		3		4	3			
CIA I &	: II	No. of Questions to be answered	4		3		2	2			
		Marks for each question	1		2		5	10			
		Total Marks for each section	4		6		10	20			

		Di	istribution of	Marks with	K Level CI	A I & Cl	AII	
	K	Section A	Section B	Section C	Section D	Total	% of	Consolidate
	Level	(Multiple	(Short	(Either /	(Open	Marks	(Marks	of %
		Choice	Answer	Or	Choice)		without	
		Questions)	Questions)	Choice)			choice)	
	K1	2	2	-	-	4	6.67	67
CIA	K2	2	4	10	20	36	60	
	K3	-	-	10	10	20	33.33	33
Ι	K4	-	-	-	-	-	-	-
	Marks	4	6	20	30	60	100	100
	K1	2	2	AVIO 45	-	4	6.67	50
CIA	K2	2	4.5	10	² 00 10	26	43.33	
II	K3	-	1.357	10	10	20	33.33	33
	K4	-	6-/ 5	XXXX X	10 %	10	16.67	17
	Marks	4	6 /	20	30	60	100	100

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
S.No	COs	K - Level	MO	Qs	Short An	swers	Section C	Section D				
			No. of	K -	No. of	K –	(Either /	(Open				
			Question	Level	Question	Level	or	Choice)				
		-	S				Choice)					
1	CO 1	Up to K 2	2	K1K2	1	K1	2	1(K2)				
		3.1		111		G G	(K1&K1)					
2	CO 2	K3	2	K1&K	1	K1	2	1(K3)				
		3.		2		19	(K3&K3)					
3	CO 3	Up to K 4	1. 1.2(11)	K1&K	1.	K2	2	1(K4)				
		19	11111	7 2	d'una la	12	(K3&K3)					
4	CO 4	Up to K 5	2	K1&K	1	K2	2	1(K5)				
				2		S) [(K4&K4)					
5	CO 5	Up to K 3	2	K1&K	1.60	K2	2	1(K3)				
			N	2			(K2&K2)					
No	. of Quest	ions to be	10	தாயுக	5		10	5				
	Aske	ed										
No.of Questions to be			10		5		5	3				
answered												
Marks for each question			1		2		5	10				
Total 1	Marks for	each section	10		10		25	30				
	(Figures	in parenthesi	is denotes, q	uestions s	hould be as	ked with	the given K	level)				

		D	istribution of	Marks with	K Level		
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated
Level	(Multiple	(Short	(Either/ or	(Open	Marks	(Marks	%
	Choice	Answer	Choice)	Choice)		without	
	Questions)	Questions)				choice)	
K1	5	6	10	-	19	15.83	12
K2	5	4	10	10	31	25.83	42
K3	-	-	20	30	50	41.67	42
K4	-	-	10	-	10	8.3	8
K5	-	-	-	10	10	8.3	8
Marks	10	10	50	50	120	100	100
NB: Hi	igher level of	performance	of the studen	ts is to be as	sessed by	attemptin	g higher level
	-	-	of K le	vels		-	

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions)								
	A	Answer Al	Questions (10x1=10 marks)						
Q.No	CO	K Level	A CONTRACTOR OF A CONTRACTOR 						
1	CO1	K1 🕓	Any two minterms in adjacent squares that are together will						
		6	cause a removal of the different variable.						
			a) NOTed b) ANDed						
		X	c) ORed d) NORed oo						
2	CO1	K2	Eight adjacent squares represent a term of literal.						
		5	a) one b) two						
			c) three d) four						
3	CO2	K1 🧧	A combinational circuit that performs the addition of two bits is called a						
		2	a) half-adder b) full-adder						
			c) half-subtractor d) full-subtractor						
4	CO2	K2	The bubbled Or gate is equivalent to thegate.						
			a) AND b) OR						
			c) NAND d) NOR						
5	CO3	K1	A BCD adder is a circuit that adds two BCD digits in parallel and						
			produces a sum digit also in						
			a) MSI b) BCD						
			c) LSI d) Decimal						
6	CO3	K2	The is a combinational circuit with AND gates connected as a						
			decoder and a number of OR gates equal to the number output in the						
			unit						
			a) RAM b) CPU						
			c) ROM d) EAROM						
7	CO4	K1	A Flip-flop has inputs						
			a) 4 b) 2						
			c) 5 d) 1						
8	CO4	K2	The memory elements used in clocked sequential circuits are called						
			a) counter b) register						

[c) relay d) flip flop
9	CO5	K1	A group of flip flops sensitive to pulse duration is called a
	000		a) dynamics b) memory entangle
			c) latch d) array
10	CO5	К2	A group of flip flops sensitive to pulse transition is called as
10	005	112	a) shifting b) register
			c) transfer d) memory
			Section B (Short Answers)
	۵	nswer All	Ouestions $(5x2-10 \text{ marks})$
O No		K Level	Questions (322–10 marks)
11	C01	K Level K1	Define two variable man in the simplification of boolean functions
11	C01	K1 K1	Draw the three graphic symbol of invertor gate
12	CO_2		Draw the three graphic symbol of invertor gate
13	CO_{4}	K2 K2	Why is NAND gate called as a universal gate
14	C04	K2 K2	Why is NAND gate caned as a universal gate
15	COS	KZ	Section C (Fither (On Trans))
		A A 1	Section C (Enther/Or Type)
O N-	CO	Answer A	i Questions (5 x 5 = 25 marks)
Q.NO		K Level	
16) a	1	K3	Obtain the simplified expression in sum of products for the given
1()1	1	U 2	Boolean function: a b +bc+a bc
16) b	1	K3	Narrate the NAND implementation procedure in the digital circuits.
17) a	2	K4	Give the construction details of full-adder and also present the map and
1.7 \ 1		TT 4	logic circuits for it.
17) b	2	K4	How is the multilevel NOR circuits used as universal gate? Explain
10)			with an example.
18) a	3	K3	Show the designing procedure of a BCD-to-excess-3 code converter in
		2	brief.
18) b	3	K3 💿	Discuss about the details of decoder in detail.
19) a	4	K3	Provide a detailed note on flip flop excitation table.
19) b	4	K3	Write about state equation in elaborate.
20) a	5	K5	Discuss a complete note on Shift registers.
20) b	5	K5	Give a detailed account on BCD counter.
NB: H	ligher l	evel of per	formance of the students is to be assessed by attempting higher level
			of K levels
			Section D (Open Choice)
		A	Answer Any Three questions (3x10=30 marks)
Q.No	CO	K Level	Questions
21	CO1	K3	Discuss the product of sums simplifications with the following
			function: $F(A,B,C,D) = \Pi(0,1,2,5,8,9,10)$
22	CO2	K3	Explain the exclusive OR function and equivalence function for the
			map with four variable.
23	CO3	K5	Narrate the function of magnitude comparator with 4 bit formations.
24	CO4	K3	Provide a detailed note on JK flip flop with logic diagram, graphical
			symbol, characteristic table and equation.
25	CO 5	K3	Discuss about the working of Binary counter and binary up down
			counter.

Page 261

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course	e Name	PRACTICAL – II (El	ectronics – I)						
Course	e Code	21РРНСР2			L	Р	C		
Catego	ory	Core			-	6	4		
Nature	of cours	e: EMPLOYABILITY	✓ SKILL ORIENTED	✓ ENTREPREN	UR	SHIP			
Course	Course Objectives:								
• To	• To acquire knowledge of semiconductor devices and their applications.								
• To	understa	nd the concepts of OPA	MPS and their uses.						
• To	study os	cillator and amplifier cir	cuits.						
• To	develop	the skills in <mark>handling in</mark> s	truments and measuring d	evices.					
• To	prepare t	the students for the real l	ife with electronic instrun	nents.					
ANY 7	WELV	E EXPE <mark>RIME</mark> NTS							
1. FET	amplifie	r 👌 🖵							
2. UJT	characte	ristics 🔓 🧲							
3. Sing	le Stage	Amplif <mark>ier - Frequen</mark> cy re	esponse and bandwidth de	termination					
4. IC R	egulated	Power Supply [Single (:	5V) and Dual (12-0-12V)]						
5. Phas	e shift os	scillator							
6. Wier	n bridge	oscillator							
7. Saw	tooth Wa	ave ge <mark>nerator</mark>							
8. Emit	ter follov	wer							
9. UJT	– Relaxa	tion oscillator							
10. Wa	ve shapi	ng circu <mark>its – C</mark> lipping an	d Clamping	<u> 15</u>					
11. Pas	sive RC	filter cir <mark>cuits – Low, Hi</mark> g	gh and Band pass filters –	using OP AMP					
12. Ast	able Mul	tivibrators – using OP A	MP (1) when a we a						
13. Bis	table Mu	Itivibrators – using IC 5							
14. Mu	ltiplexer	and Demultiplexer circu	uts.						
15. Ch	aracterist	ics of LED and Photo di	ode						
COUR	SE OUT	COME	A STATE			KL	evel		
At the	end of th	e programme, the studen	t will be able to						
CO1:	Demons	strate UJT behavior in th	e detailed form with the e	lectronic circuits.		K3			
CO2:	Summa	rize different structural of	oscillators with their wave	forms.		K2			
CO3:	Develop	the knowledge to const	ruct various multivibrator	s and their uses.		K3			
CO4:	Analyze	e the circuit performance	s with theoretical formula	e.		K4			
CO5:	Use the	importance of application	ons of electronics in real li	fe situations.		K5			

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
oburse outcomes (00 s)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	1	2	2	2			
CO2	3	2	3	2	2	2			
CO3	2	1	1	2	2	1			
CO4	2	2	2	2	2	2			
CO5	2	3	2	3	1	3			
Weightage	211	9.07	9	11	9	10			

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. M. Alagar

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS

(For those who joined in 2021-2022 and after)

Course Nar	ne NI	ME-Nanotechnology						
Course Cod	le 21	PPHN21				L	Р	С
Category	NI	МЕ				6	-	6
Nature of c	ourse:	EMPLOYBILITY	~	SKILL ORIENTED	ENTREPRE	ENUF	SHI	P
Course Obj	Course Objectives:							
 To describe to describe to describe to explain the total of tota	 To describe the detailed aspects of nanomaterials of various dimension To explain different techniques and application of nanomaterials To list different measurement tools used in the analyze of nanomaterials To elaborate the extended application of nanomaterials To understand the influence of applications in nanomaterials 							
Unit: I	Funda	mentals of nanotechr	101(bgy and timeline	(13) th			rs.
Nanotechnology timeline: Pre 18 th century -19 th century and 20 th century- 21 st century. Core concepts of nanotechnology: nanotech generation- nanoscale – nanoscience -material science - new forms of carbon – nanocomposites - polymer nanocomposites - nanomaterials, properties of nanomaterials - one dimensional and two dimensional nanomaterials - nanomaterials in three dimension.								
Unit: II	Synthe	si <mark>s and Application</mark>					18 H	rs.
material by molecular el coupled dev	Two tyj self ass lectroni ices – p	pes of construction – sembly - nanophoton cs - biomedical scienc hotometry - giant mag	spi nics e - gne	intronics, molecular nano - electronics and optoele nanodevice can do in me to resistance.	otechnology - ectronics - pla dical field, nan	nano stic e opore	struc electr es - cl	ctures onics harge
	Ivicasu		4	the last a state of		1	10 111	5.
fabrication microscopy solved - us modification	s and f – purif – scan es and c n	ication of CNTs – E ning tunneling micro capabilities of STM –	nd Disp sco nea	persion – scanning probe ope - challenges for ST ar field scanning optical	metrology, ca e microscopy M – how the microscopy- el	chall ectric	nane mic enge al su	force s are orface
Unit: IV	Applic	ations of Nanotechno	olog	gy LL 60 C			18 hr	s.
Potential ap energy prod solar – Nar nanocapsule	Potential applications- types of applications- Nanotechnology addresses the challenges – new energy producers I and II – new applications - Nanotechnology for energy – portable power and solar – Nanotechnology for hydrogen energy- medicine : prevention, implants, artificial skin, nanocapsules monitoring and treatment. Security – other applications							
Unit: V	Applic	ations of Nanotechno	olog	gy in nanoelectronics			18 hr	s.
Plasti nano electro transport - o based on cry - 45 nanomo	Unit: vApplications of Nanotechnology in nanoelectronics18 hrs.Plastic Electronics - processes for nano Electronics, - nanocircuitry -nanoelectronic devices - nano electronic applications - Ambient intelligence – cleaner - safer and more comfortable transport - organic semiconductor materials for opto and microelectronic devices – nanoswitches based on crystalline conductive polymer nano needles – complementary metal oxide semiconductor - 45 nanometer - system on a chip							

	Total Lecture Hou	rs 90
Books fo	or Study:	
1. Er. R House P Unit 1 - Unit 2 - Unit 3 - Unit 4 - Unit 5 -	akesh Rathi, Nanotechnology, technology revolution of 21 st century, Vil vt. Ltd, Ghaziabad –201010, Reprint 2019 chapter 2, 3 chapter 3 chapter 4 chapter 5 chapter 7	kas Publishing
Books fo	r References:	
 Rich Bang C. B 2010 N. A Ltd., 	ard Boker and Earl Baysen, Nano technology, I st Edition, Wiley Dreamtech galuru, 2005. inns, Introduction to Nanoscience and Nanotechnology, Vol. 14, John W lian, An Introduction to Nanoscience and Nanotechnology, First Edition, W New Delhi, 2015.	India (p) Ltd., 'iley and sons, 'iley India Pvt.
Web Re	sources:	
1. <u>https://</u>	nptel.ac.in/courses/104/106/10410612	
2. <u>https://</u>	storage.googleapis.com/uniquecourses/course.html	
3. <u>https://</u>	epgp.inflibnet.ac.in/	
Course	Dutcomes	K Level
At the e	nd of the program, the student will be able to	W2
t	imeline	K3
CO2:]	dentify different synthesis techniques and learn about the applications of anomaterials	K3
CO3: 1	Develop knowledge about analyzing tools of nanomaterials	K3
CO4:	Analyze various applications of nanomaterials in nanotechnology	K4
CO5:	Jse the importance of learnt application of nanomaterials extensively in nanoelectronics	K5
CO & P	O Mapping:	

CO & PO Mapping:

11	0					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	3 0	nu 2 °	2	2	2
CO 2	2	2	2	2	2	2
CO 3	2	1	2	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	3	2	1	2	2
Weightage	10	10	10	9	10	10

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
Ι	Fundamentals of nanotechnology and timeline Nanotechnology timeline: Pre 18 th century, 19 th century and 20 th century, 21 st century.	6	
	Core concepts of nanotechnology: nanotech generation, nanoscale, nanoscience, material science, new forms of carbon, nanocomposites, polymer nanocomposites, nanomaterials, properties of nanomaterials,	6	Talk, PPT
	one dimensional and two dimensional nanomaterials, nanomaterials in three dimension.	6	
II	Synthesis and Application Two types of construction, spintronics, molecular nanotechnology, nano structures material by self assembly, nanophotonics	6	Chalk,
	electronics and optoelectronics, plastic electronics molecular electronics, biomedical science, nanodevice can do in medical field,	6	Talk& Assignment
	magnetoresistance	6	
III	Measurement tools Tools and fabrication, tools and techniques microscopy, metrology, carbon nanotube fabrication	6	Chalk,
	purification of CNTs, Dispersion , scanning probe microscopy, atomic force microscopy	6	Talk& class test
	scanning tunneling microscope, challenges for STM, how the challenges are solved, uses and capabilities of STM, near field scanning optical microscopy, electrical surface modification	6	
IV	Applications of Nanotechnology Potential applications, types of applications, Nanotechnology addresses the challenges, new energy producers I and II, new applications	6	Chalk &
	Nanotechnology for energy, portable power and solar, Nanotechnology for hydrogen energy	6	Talk, PPT
	medicine: prevention, implants, artificial skin, nanocapsules, monitoring and treatment, Security, other applications	6	
V	Applications of Nanotechnology in nanoelectronicsPlastic Electronics, processes for nano Electronics, nanocircuitry, nanoelectronic devices, nano electronic applications,	6	Chalk, Talk&
	Ambient intelligence, cleaner, safer and more comfortable transport, organic semiconductor materials for opto and microelectronic devices	6	Seminar

Academic Council Meeting Held on 29.04.2021

Page 266

nanoswitches based on crystalline conductive polymer nano needles – complementary metal oxide semiconductor – 45 nanometer - system	6	
on a chip.		

Course Designed by: Dr. D. Ruby Josephine & Dr. P.P. Kannan

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print								
Articulation Mapping – K Levels with Course Outcomes (COs)								
Inte	Cos	K Level	Sectio	n A	Section B		Section C	Section D
rnal			MC	MCQs Short Answers		Either or	Open	
			No. of.	K -	No. of.	К-	Choice	Choice
			Questions	Level	Questions	Level		
CI	CO1	K2	2	K1&K2	10	K1	2 (K2&K2)	1(K2)
AI	CO2	K3	2/1	K1&K2	2	K2	2 (K3&K3)	2(K2&K3)
CI	CO3	K2 🚫	2	K1&K2	1	K2	2 (K2&K2)	1(K2)
AII	CO4	K4	2	K1&K2	2	K2	2 (K3&K3)	2(K3&K4)
Question		No. of	4		3	191	4	3
Pattern		Questions to be				6		
CIA I & II		asked				12		
		No <mark>. of</mark>	4	YAL O	3	р.	2	2
		Questions to be						
		answered				200		
		Marks for each			2		5	10
		question		141		6		
		Total M <mark>arks for</mark>	4		6	8	10	20
		each section		127		1 A		

Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A	Section B	Section C (Fither /	Section D	Total Marks	% of (Marks	Consolidate	
	Level	Choice	Answer	Or	Choice)	IVIAI KS	without	01 /0	
		Questions)	Questions)	Choice)	65		choice)		
	K1	2	2_00	B mu in	- 172	4	6.67	67	
CIA I	K2	2	4	10	20	36	60		
	K3	-	-	10	10	20	33.33	33	
	K4	-	-	-	-	-	-	-	
	Marks	4	6	20	30	60	100	100	
CIA II	K1	2	2	-	-	4	6.67	50	
	K2	2	4	10	10	26	43.33		
	K3	-	-	10	10	20	33.33	33	
	K4	-	-	-	10	10	16.67	17	
	Marks	4	6	20	30	60	100	100	
Volume II – Science Syllabus / 2021 -2022

Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes								
S.No	COs	K - Level	MO	$\frac{(COs)}{Qs}$	Short Answers		Section C	Section D
			No. of	K –	No. of	K –	(Either /	(Open
			Questions	Level	Question	Level	or Choice)	Choice)
1	CO1	Up to K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K4&K4)	1(K4)
5	CO5	Up to K 5	2	K1&K2	1	K2	2 (K3&K3)	1(K5)
No. of Questions to be			10		5		10	5
Asked				silb d	E CON			
No.of Questions to be			10 5		5		5	3
answered			1.632		· · · ·			
Marks for each question			<u>о1/ Г</u>	(\mathbf{X})	1)/2	2	5	10
Total Marks for each			10 / 3	(1)	10	2	25	30
	sectio	on 🔶				-mar		
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K	Section A	Section B	Section C	Section D	Total	% of	Consolidated
Level	(Multiple	(Short 🧲	(Either/ or	(Open	Marks	(Marks	%
	Choice	Answer 🚄	Choice)	Choice)		without	
	Questions)	Questions)				choice)	
K1	5	0 4 🦾	- 42	1 💻	9	7.5	16.67
K2	5	6			11	9.16	10.07
K3	-	2	40	30	70	58.3	83.23
K4	-	3	10	10	20 5	16.6	
K5	-	-	444	10	10	8.33	
Marks	10	10	50	50	120		100
NB: Higher level of performance of the students is to be assessed by attempting higher level							
of K levels.							

-

Volume II – Science Syllabus / 2021 -2022

Summative Examinations - Question Paper – Format						
Section A (Multiple Choice Questions)						
Answer All Questions (10x1=10 marks)						
Q.No	CO	K	Questions			
		Level				
1	CO1	K1	1. Identity the size of – silver and gold nanoparticles exhibiting			
			unusual optical effects			
			a) 80 nm b) 70 nm c) 30 nm d) 25 nm			
2	CO1	K2	Locate property of metal nanoparticles produces colour			
			variations			
		***	a) size b) shape c) colour d) surface			
3	CO2	KI	Identify that the ferromagnetic and non ferror magnetic layers in			
			GMR are of —thickness			
			a) macroscale b) microscale c) nanoscale d) bulk scale			
4	CO2	K2	Magnetic nuclei are also referred to as			
			a) magnetic spin b) colloidal spin c) electron spin d) electron affinity			
5	CO3	K1	AFM is identified as			
			a) atomic force microscopy b) added force microscopy c) acquired			
		18	force microscopy d) additional force microscopy			
6	CO3	K2	NSOM is located as			
			a) near field scanning optical microscopy b) net field scanning optical			
			microscopy c) narrow field scanning optical microscopy d) noted			
			field scanning optical microscopy			
7	CO4	K1	A self assembling nanoscale polymer carries across the blood			
		പ്.	brain carrier			
		12				
		3	a) anti cancer drug b) virus c) bacteria d) all the above			
8	CO4	K2	LED is identified as			
0	001	112	a) Light Emitting diode b) low emissive diode c) lateral emissive			
		1	diode d) longitudinal emission diode			
9	CO5	K1	Nanocircuits are electrical circuits are on the scale identified as			
			a) nano b) micro c) pico c) femto			
10	CO5	K2	OTFT is identified as 5 60			
			a) organic thin film transistors b) ordinary thin film transistor c) only			
			thin film transistor d) open thin film transistor			
	I	1	Section B (Short Answers)			
Answer All Questions (5x2=10 marks)						
Q.No	CO	K	Questions			
		Level				
11	CO1	K1	Define in short about C60			
12	CO2	K1	Draw the schematic of multilayered magnetoresistive structure			
13	CO3	K2	Describe electrical surface modification			
14	CO4	K2	Describe about fuel cell short sentence			

Academic Council Meeting Held on 29.04.2021

Volume II – Science Syllabus / 2021 -2022

15	CO5	K2	Describe CMOS?				
Section C (Either/Or Type)							
	Answer All Questions $(5 \times 5 = 25 \text{ marks})$						
Q.No	CO	K	Questions				
		Level					
16) a	CO 1	K3	Prepare a detailed note on Single electron tunneling transistor				
16) b	CO1	K3	Collectively write about Quantum dots				
17) a	CO2	K3	Prepare an elaborate note on nanophotonics in detail				
17) b	CO2	K3	Develop a detailed description on Giant magnetoresistance				
18) a	CO3	K3	Built details pertaining to tools and techniques that are used to measure and make nanostructures				
18) b	CO3	K3	Prepare a detailed description about laser method				
19) a	CO4	K4	Comment on artificial skin				
19) b	CO4	K4	Comment on solar energy harvesting in nanotechnology in elaborate				
20) a	CO5	K3	Identify and provide a detailed note on nanoelectronic devices				
20) b	CO5	K3	Prepare a detailed note on nanoswitches				
NB:	NB: Higher level of performance of the students is to be assessed by attempting higher						
		6	level of K levels				
Section D (Open Choice)							
		A	nswer Any Three questions (3x10=30 marks)				
Q. No	CO	K Level	Questions				
21	CO1	K3	Describe about the impact of Nanotechnology in human lives in 21 st				
			century comprising any 5 significant achievements				
22	CO2	K3	Develop details about scanning tunneling microscope and the challenges in STM				
23	CO3	K3	K3 Collectively write about top down and bottom up approaches				
24	CO4	K4	Comment on the importance of the prevention and implant				
	00 <i>5</i>		techniques in medical nanotechnology				
25	CO5	K5	Provide the importance of phase change memory, metal insulator				
		1	metal technology, flexible substrate, photonic crystal and functional				
		1	substrate packing technology				