M.Sc., PHYSICS

Program Code: PPH

2021-2022 onwards

MANNAR THIRUMALAI NAICKER COLLEGE

(AUTONOMOUS) Re-accredited with "A" Grade by NAAC PASUMALAI, MADURAI – 625 004

Regulations Eligibility condition for admission

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3 years degree course (under 10 + 2 + 3 pattern) (B.Sc., Physics) recognized by the university as equivalent there to.

Duration

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

Attendance

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

Evaluation procedure:

A mark Statement with CGPA = $\sum(MarksXcredits)$ $\sum(Credits)$ Where the summations are over all paper appeared up to the current semester. Examinations: 3 hours duration. Total marks 100 for all papers

External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

- 1. Core Subjects
- 2. Electives
- 3. Non Major Electives (NME)

Pattern of the questions paper for the Continuous Internal Assessment Note: Duration – 1 hour 30 minutes

The components for continuous internal assessment are:	
Part –A	
Four multiple choice questions (answer all)	4 x01= 04 Marks
Part –B	
Three short answers questions (answer all)	3 x02= 06 Marks
Part –C	
Two questions ('either or 'type)	2 x 05=10 Marks
Part –D	
Two questions out of three	2 x 10 = 20 Marks
Total	40 Marks

The scheme of Examinations:

The components for continuous internal assessment are:

(40 Marks of two continuous internal assessments will be converted to 15 marks)

Total	25 Marks
Assignment	5 marks
Seminar /Group discussion	5 marks
Two tests and their average	15 marks

Pattern of the question paper for the Summative Examinations: **Note: Duration- 3 hours** Part –A Ten multiple choice questions 10 x01 = 10 Marks No Unit shall be omitted: not more than two questions from each unit.) Part –B Short answer questions (one question from each unit) 5 x02 = 10 Marks Part –C Five Paragraph questions ('either or 'type) 5 x 05 = 25 Marks (One question from each Unit) Part –D =30 Marks Three Essay questions out of five 3 x 10 (One question from each Unit) _____ Total 75 Marks _____

Minimum Marks for a Pass

50% of the aggregate (Internal +Summative Examinations).

No separate pass minimum for the Internal Examinations.

34 marks out of 75 is the pass minimum for the Summative Examinations.

VISION

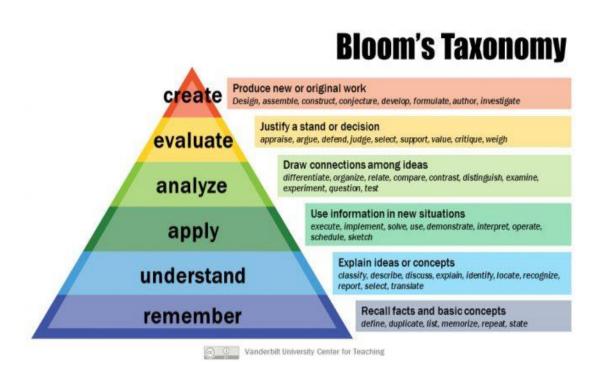
The Department of P.G. Physics undertakes the responsibility to preserve and enhance an atmosphere in which scholarly activities in the young minds of the students and thereby improving the total personality.

MISSION

- To produce employable graduates in many areas such as research, teaching, industry etc.
- To inculcate social responsibility.
- To nurture environmental awareness.
- To develop communal harmony & national integration.

The 12 Graduate Attributes:

- 1. (KB) A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
- 2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions
- 3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.
- 4. (Des.) Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
- 5. (Tools) Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
- 6. (Team) Individual and teamwork: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
- 7. (Comm.) Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.
- 8. (Prof.) Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.


- 9. (Impacts) Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.
- 10. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.
- 11. (Econ.) Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
- 12. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

WA	Graduate Attributes	Caption as
1	Knowledge Base	KB
2, 3	Problem Analysis & Investigation	PA and Inv.
7, 4	Communication Skills & Design	Comm. & Des.
6	Individual and Team Work	Team
8, 10	Professionalism, Ethics and equity	Prof. & Ethics
12	Lifelong learning	LL

PROGR	AM EDUCATIONAL OBJECTIVES (PEOs)
PEO1:	Gain broad knowledge on various fields in Physics such as Solid state Physics,
	Optics, Electronics, Quantum Mechanics etc.,
PEO2 :	Develop the interest to take up competitive exams such as GATE, SET and NET and
	also opt for higher education to achieve their dream career.
PEO3:	Communicate effectively by writing reports, speaking fluently, listening to give
	effective response and comprehending the documentations.
PEO4:	Acquire a wide range of skills such as reasoning, problem solving and soft skills to get
	placement in Educational institutions, Research & Development and Industrial sectors.
PEO5 :	Solve societal problems with innovative and creative ideas.
PEO6 :	Upgrade to join as a researcher to work independently by the experience acquired
	during the project period.

PO NO	PROGRAMME OUTCOMES (POs)	
At the end	of the programme, the students will be able to	
PO – 1	Demonstrate the knowledge and understanding of Science concepts and its relevant fields.	Disciplinary Knowledge
PO – 2	Identify, formulate, analyse complex problems and reach valid conclusions using the methodologies of Science.	Problem Solving
PO – 3	Employ critical and analytical thinking in understanding the concepts and apply them in various problems appearing in different branches of Science.	Analytical Reasoning & Critical Thinking
PO - 4	Communicate the known concepts effectively within the profession and with any forum	Communication Skills
PO - 5	Function successfully as a member/leader in any team and to apply ethics, accountability and equity in their life.	Team Work and Moral/Ethical Awareness
PO - 6	Use ICT tools in various learning situations, related information sources, suitable software to analyze data and furthermore participating in learning activities throughout life to meet the demands of work place through knowledge /up-skilling / re-skilling	Digital Literacy & Life-long Learning

PROG	RAM SPECIFIC OUTCOME (PSOs)
PSO1:	Understand, demonstrate and solve the major findings in all branches of Physics
PSO2:	Employ critical thinking and scientific ideas to design, carry out the work and analyze the problems in real time
PSO3:	Communicate effectively and develop skills such as effective oral presentations, writing of reports of practical works and documentation work of research projects
PSO4:	Work effectively in a team to use modern techniques, recent equipments and software's in Physics in the fields of Electronics, Optics, Condensed Matter Physics and Quantum Mechanics
PSO5:	Inculcate the scientific temperament and green route for sustainable development and moral values in their profession with active participation
PSO6:	Extend contemporary research innovations based on societal needs regarding new renewable energy harvesting methods

MANNAR THIRUMALAI NAICKER COLLEGE (Autonomous), Madurai DEPARTMENT OF PG PHYSICS M.Sc., PHYSICS Curriculum

(For the student admitted during the academic year 2021-2022 onwards)

	I SEMESTER								
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total		
1	21PPHC11	Mathematical Physics-I	6	4	25	75	100		
2	21PPHC12	Classical Mechanics	6	4	25	75	100		
3	21PPHC13	Analog Electronics and Communications	6	4	25	75	100		
4	21PPHC14	Electrodynamics	6	4	25	75	100		
5	21PPHCP1	General Physics Practical	3	-	-	-	-		
6	21PPHCP2	Electronics Practical	3	-	-	-	-		
		TOTAL	30	16	100	300	400		
		II SEMESTER							
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total		
1	21PPHC21	Mathematical Physics-II	6	4	25	75	100		
2	21PPHC22	Quantum Mechanics-I	6	4	25	75	100		
3	21PPHC23	Digital Electronics	6	4	25	75	100		
4	21PPHCP1	General Physics Practical	3	4	40	60	100		
5	21PPHCP2	Electronics Practical	3	4	40	60	100		
6	21PPHN21	Nanotechnology	6	6	25	75	100		
		TOTAL	30	26	180	420	600		

		III SEMESTER					
S. No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC31	Solid State Physics-I	6	4	25	75	100
2	21PPHC32	Quantum Mechanics-II	6	4	25	75	100
3	21PPHCP3	Practical-III- Electronics-II	6	4	40	60	100
4		Elective-I					
	21PPHE31	Energy Physics					
	1 7		6	6	25	75	100
	21PPHE33	Physics of Human body					
5		Elective-II					
	21PPHE34	Microprocessor and					
	21PPHE34	Microcontroller					
	21PPHE35	Analytical Instrumentation	6 6		25	75	100
	21PPHE36	Crystal Growth Methods &					
	21PPHE30	Characterization					
		TOTAL	30	24	140	360	500
		IV SEMESTER					
S.No.	Subject Code	Title of the Subject	Hrs	Credit	Int.	Ext.	Total
1	21PPHC41	Solid State Physics-II	6	4	25	75	100
2	21PPHC42	Nuclear and Particle Physics	6	4	25	75	100
3	21PPHPR1	Project	6	4	40	60	100
4		Elective-III					
	21PPHE41	Astrophysics					
	21PPHE42	Communication Electronics	6	6	25	75	100
	21PPHE43	Advanced Optics			_		
5		Elective-IV					
	21PPHE44	Atomic and Molecular Spectroscopy					
	21PPHE45	Bio-medical Instrumentation	6	6	25	75	100
		Computer Oriented Numerical	0	0	25	/5	100
	21PPHE46	methods					
	21PPHE46		30	24	140	360	500

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	Ma	athematical Physics-I						
Course Code	21	PPHC11				L	Р	С
Category	ory Core					6	-	4
Nature of cour	se:	EMPLOYABILITY	SKILL ORIENTED	\checkmark	ENTREPR	RENEURSHIP		
Course Objecti	ives							
Eigen value• To remember• To compare• To perform analytic form• To determining integrals byUnit: IMaDefinition - var adjoint matrix - elementary mat inverse of a sy Solution of sim equations. Eigen theorem - power and symmetric for two Eigen vectorUnit: IIVector	s an er the e diff ms ne re <u>con</u> trix ious - Inv rices ymm ultan n va er of matr prs. ctors	d Eigen vectors e basics of vectors and ferent integrals and to re- ferentiation and integr esidues of various comp- tour integration types of matrices –algeverse of a matrix - eler s and its theorem - to hetric matrix. Consisten neous equations - types lues, Eigen vectors, Cay matrix - Eigen vectors ices with repeated and matrix	by to apply characteristic to solve their differentiation elate their relations betwe ation operations to brin elex functions and also can eleva of matrices - Adjoint nentary transformations compute the inverse of acy of linear system of s of linear equations - co yley Hamilton theorem: H and its properties – orthonon-repeated Eigen value	ions en tl g de an al of a - ele a m è equonsis Eige: ogor es –	hem own completed ble to evalue a square mate ementary transform atrix from out atons and tency of a sen n values - Constructions - matrix having	ex fur ate rea rix -p ansfor eleme their system ayley -non s ng onl	al def 18 l roper matic ntary solu of 1 Ham symm y one 15 l	finite Finite Hrs. ty of ons – the tion: inear ilton etric e and Hrs.
point- ratio formscalar product-a parallelograminterpretation –vector - vector pof vectors - forfunction - geomof a vector functUnit: IIIInterpretationUnit: IIIInterpretationdivergence theoUnit: IVComplex variation	mula vect n, n co- prod rmul hetric tion egra surfa surfa ving <u>orem</u> mpl ble - n -	 product of two vectors or product or cross product or cross product or cross product or cross product of a force-any planarity questions - would of four vectors. Differentiation - sea of differentiation - sea of differentiation - sea meaning of gradient, physical interpretation tion of vectors ace integral- volume in Stokes theorem - Gau - Helmholtz theorem. ex variables functions and limit or sea of s	rs- scalar or dot product luct- vector product expre gular velocity - scalar rector product of three v fferentiation of vectors: V scalar and vector point f normal - normal and dir of divergence – curl and ntegral- Green's theorem uss's theorem of diverg	- us essector trip vector funct funct ection lits j m – ence	eful results- d as a deterr ole product or - scalar or function tions - grad onal derivation physical me Stokes the e - deduction	work ninant - ge produ - diffe ient c ive - d aning. orem ons fro fferen alytic	done - Ar eomet ct of erenti of a s iverg 21 I -An om C 18 I tiabil -Cauc	as a ea of trical four ation calar calar gence Hrs. other auss Hrs. ity – chy's

Academic Council Meeting Held On 29.04.2021

	a for a circle. Series: Taylor's and Laurent's series: Convergence of a series o	f complex
	power series-region of convergence-radius of convergence of a power series-	
	ion of a function – Taylor's theorem – Laurent's theorem.	
Unit:		18 Hrs.
Zero c	f analytic function-singular point- residue at a pole-residue at infinity-method	of finding
residue	es- residue by definition - finding residues of various functions - residue	theorem -
evalua	tion of real definite integrals by contour integration – Integration round unit circle	of the type
– Eval	uation of polynomials – Rectangular contour – Indented semi-circular contour.	
	Total Lecture Hours	90
Book	for study:	
	K. Dass & Dr. Rama Verma, Mathematical Physics, VIII Edition, S. Chand and	Company
lin	nited, Ram Nagar, New Delhi – 55, 2018.	
UNIT	I - Chapters 38, 40 (40.1 - 40.3), 41 (41. 1 – 41. 13)	
	II - Chapters 1, 2	
	III - Chapter 3	
	IV - Chapters 22 (22.1-22.11), 24 (24.1-24.6, 24.11), 25(25.1-25.8)	
UNIT	V - Chapter 26	
Books	for References:	
1. G.	B. Arfken, H. J. Weber and Harris, Mathematical methods for Physicists, IV	V Edition,
Ac	ademic press, India, 2005	
Ac 2. Ad	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis	hers
Ac 2. Ac 3. B.	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private	hers
Ac 2. Ac 3. B. De	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018.	hers
Ac 2. Ac 3. B. De Web F	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources:	hers
Ac 2. Ad 3. B. De Web F <u>https:</u>	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus	hers
Ac 2. Ad 3. B. De Web F <u>https:</u>	ademic press, India, 2005 Vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private Ihi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/	hers
Ac 2. Ad 3. B. De Web F https:// https://	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100	hers Ltd., New
Ac 2. Ac 3. B. De Web F <u>https://https://https://</u>	ademic press, India, 2005 Vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private Ihi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes	hers
Ac 2. Ac 3. B. De Web F <u>https://https://</u> https://	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes pmpletion of this course, the student will be able to	hers Ltd., New
Ac 2. Ac 3. B. De Web F <u>https:/</u> <u>https:/</u> Cours	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes mpletion of this course, the student will be able to Determine the rank of a matrix and also apply characteristic equation to find	hers Ltd., New
Ac 2. Ad 3. B. De Web F https:// https:// Cours On Co CO1:	ademic press, India, 2005 Vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private Ihi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes mpletion of this course, the student will be able to Determine the rank of a matrix and also apply characteristic equation to find Eigen values and Eigen vectors	hers Ltd., New K Level K3
Ac 2. Ad 3. B. De Web F https:/// https:// https:// Cours On Co CO1: CO2:	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes mpletion of this course, the student will be able to Determine the rank of a matrix and also apply characteristic equation to find Eigen values and Eigen vectors Solve the differential operations in vectors	hers Ltd., New K Level K3 K3
Ac 2. Ad 3. B. De Web F https:/// https:// https:// Cours On Co CO1: CO2: CO3:	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes mpletion of this course, the student will be able to Determine the rank of a matrix and also apply characteristic equation to find Eigen values and Eigen vectors Solve the differential operations in vectors Understand and compare different integrals such as line, surface and volume exclusively	hers Ltd., New K Level K3 K3 K4
Ac 2. Ad 3. B. De Web F https:// https:// https:// Cours On Co CO1: CO2:	ademic press, India, 2005 vanced Engineering Mathematics, Erwin Kreyszig, IX Edition, 2014, Wiley publis D. Gupta, Mathematical Physics, IV Edition, Vikas Publishing House Private lhi-55, Reprint 2018. Resources: //www.coursera.org/courses?query=vector%20calculus //nptel.ac.in/courses/111/105/111105122/ //nptel.ac.in/courses/111/106/111106100 e Outcomes mpletion of this course, the student will be able to Determine the rank of a matrix and also apply characteristic equation to find Eigen values and Eigen vectors Solve the differential operations in vectors Understand and compare different integrals such as line, surface and volume	hers Ltd., New K Level K3 K3

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO 1	2	2	2	3	2	3
CO 2	2	2	2	2	2	2
CO 3	2	3	3	1	2	2
CO 4	2	2	2	2	2	1
CO 5	1	2	1	2	1	2
Weightage	9	11	10	10	9	10

3 –Advanced Application; 2 – Intermediate Development; 1 – Introductory Level

LESSON PLAN

UNIT	Course Name	Hrs	Pedagogy
	Matrix Definition, various types of matrices, algebra of matrices, Adjoint of a square matrix, property of adjoint matrix, Inverse of a matrix, elementary transformations, elementary transformations, elementary matrices and its theorem, to compute the inverse of a matrix from elementary, the inverse of a symmetric matrix.	6	
Ι	Rank of matrix: Rank of a matrix, Normal form. Consistency of linear system of equations and their solution: Solution of simultaneous equations, types of linear equations, consistency of a system of linear equations.	6	Chalk & Talk, PPT
	Eigen values, Eigen vectors, Cayley Hamilton theorem: Eigen values, Cayley Hamilton theorem, power of matrix, Eigen vectors and its Properties, orthogonal vectors, non-symmetric and symmetric matrices with repeated and non, repeated Eigen values, matrix having only one and two Eigen vectors	6	
П	Vectors Vectors, Addition of vectors, rectangular resolution of a vectors, unit vectors, position vector of a point, ratio formula, product of two vectors, scalar or dot product, useful results, work done as a scalar product, vector product or cross product, vector product expressed as a determinant, Area of a parallelogram, moment of a force, angular velocity, scalar triple product, geometrical interpretation, coplanarity questions, vector product of three vector, scalar product of four vector, vector product of four vectors.	4	Chalk, Talk& Assignment
	Differentiation of vectors: Vector function, differentiation of vectors, formulae of differentiation, scalar and vector point functions, gradient of a scalar function, geometrical meaning of gradient, normal, normal and directional derivative.	5	rissignment
	Divergence of a vector function, physical interpretation of divergence, curl and its physical meaning	6	
111	Line integral, surface integral, volume integral, Green's theorem, area of a plane region by Green's theorem	7	Chalk,
III	Stokes theorem, another method of proving Stokes theorem	7	Talk&
	Gauss's theorem of divergence, deductions from gauss divergence	7	

	theorem, Helmholtz theorem.		Exercise
	Complex variable, functions and limit of a complex variable, continuity, differentiability, analytic function, necessary and sufficient condition for complex function to be analytic, Cauchy's integral theorem	6	
IV	Extension of Cauchy's theorem to multiple connected region, Cauchy integral formula, Cauchy integral formula for the derivative of an analytic function, Poisson integral formula for a circle	6	Chalk & Talk, PPT
	Series: Taylor's and Laurent's series: Convergence of a series of complex terms, power series, region of convergence, radius of convergence of a power series, method of expansion of a function, Taylor's theorem, Laurent's theorem.	6	
	Zero of analytic function, singular point– residue at a pole, residue at infinity, method of finding residues, residue by definition, finding residues of various functions, residue theorem	7	Chalk,
V	Evaluation of real definite integrals by contour integration, Integration Round unit circle of the type	5	Talk& Seminar
	Evaluation of polynomials, Rectangular contour, Indented Semi- circular contour.	6	

Course Designed by: Dr. D. Ruby Josephine

Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE)								
	Formative Examination - Blue Print								
	Articulation Mapping – K Levels with Course Outcomes (COs)								
				Section		Section		Section C	Section
Internal	CO)c	K	MCQ	Qs 🛛	Short Ans	wers	Either or	D
muman	U	5	Level	No. of.	К-	No. of.	К-	Choice	Open
				Questions	Level	Questions	Level	Choice	Choice
CI	CC)1	K2	2	K1&K2	1	K1	2(K2&K2)	1 (K2)
AI	CC)2	K3	2	K1&K2	2	K2	2(K3&K3)	1 (K3)
CI	CC)3	K2	2	K1&K2	1	K2	2(K2&K2)	1 (K2)
AII	CC)4	K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)
		No. of							
			uestions	4		3		4	2
			to be			3		4	2
			asked						
]	No. of						
		Q	uestions	4		3		2	1
Question	n		to be	4		3		2	1
Pattern		an	swered						
CIA I &	II	Μ	arks for						
			each	1		2		5	10
		q	uestion						
			Total						
		M	arks for	4		C		10	10
			each	4		6		10	10
		S	ection						

		Distri	bution of M	arks witl	n K Leve	CIA I	& CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Mark s	% of (Marks withou t choice)	Consolidat e of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	00
	K3	-	-	10	10	20	40	40
CI	K4	-	-	-	-	-	-	-
AI	Mark s	4	6	20	20	50	100	100
	K1	2	_	-	-	2	4	60
	K2	2	6	10	10	28	56	60
CI	K3	-	-	10	-	10	20	20
	K4	-	-	-	10	10	20	20
АП	Mark s	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course									
	Outcomes (COs)									
C No		V	MCC)s	Short An	swers	Section C	Section D		
S.No	COs	K - Level	No. of	K –	No. of	K –	(Either /	(Open		
•		Level	Questions	Level	Question	Level	or Choice)	Choice)		
1	CO1	Up to K 3	2	K1,K2	1	K1	2 (K3&K3)	1(K3)		
2	CO2	Upto K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)		
3	CO3	Up to K 5	2	K1&K2	1	K2	2 (K5&K5)	1(K3)		
4	CO4	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)		
5	CO5	Up to K 5	2	K1&K2	1	K2	2 (K3&K3)	1(K5)		
No.	of Questi Aske	ons to be d	10		5		10	5		
No.o	of Questie answer	ons to be red	10		5		5	3		
Mark	Marks for each question		1		2		5	10		
Tot	Total Marks for each section		10		10		25	30		
	(Figures	in parenthe	sis denotes, q	uestions s	hould be as	ked wit	h the given K	level)		

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component. -. . N.C. . -----~

		D	istribution of	Marks with	K Level		
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
V1	5	4			0	75	

K Level	(Multiple Choice Questions)	(Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	(Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	17
K2	5	6		-	11	9.16	1/
K3	-	-	40	40	80	66.67	
K4	-	-	-	-	-	-	83
K5	-	-	10	10	20	16.6	
Marks	10	10	50	50	120	100	100
NB: Hig	gher level of p	erformance o	of the student	s is to be ass	essed by a	attempting	higher level
of K lev	els.				-		

		ultiple C Juestions	hoice Questions) (10x1=10 marks)
Q. No	СО	K Level	Questions
1	CO1	K1	Select a idempotent matrix a) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	CO1	K2	Show AB, if A= $\begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & 1 \\ -3 & 1 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ a) $\begin{bmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 6 & 8 \end{bmatrix}$ $\begin{pmatrix} 4 & 4 & -2 \\ 1 & 1 & 10 \\ -1 & 5 & -4 \end{bmatrix}$ (0 0 1) $\begin{pmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 0 & 8 \end{bmatrix}$ (1 0 1) $\begin{pmatrix} -1 & 0 & 1 \\ 4 & 5 & 1 \\ 3 & 6 & 8 \end{bmatrix}$
3	CO2	K1	Identify the directional derivative of the function $\Phi = x^2yz + 4xz^2$ at (1, -2, 1) in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$
4	CO2	K2	Express grad Φ at the point (1, -2, -1) Where $\Phi = 3xz^2y - y^3z^2$ a) $-16\hat{i} + 9\hat{j} + 3\hat{k}$ b) $-16\hat{i} + 4\hat{j} + 4\hat{k}$ c) $-16\hat{i} + \hat{j} + 4\hat{k}$ d) $-16\hat{i} + 9\hat{j} + 4\hat{k}$
5	CO3	K1	Which is defined as the integral of the components of F along the normal to the surfacea) Surface integral of scalar function b) surface integral of a vector function c) even function d) odd function
6	CO3	K2	Indicate the volume integral a) $\iiint \vec{F} dv$ b) $\int \vec{F} \cdot dv$ c) $\iint \vec{F} \cdot dv$ d) none of these
7	CO4	K1	Identify the other names of analytic function a) holomorphic b) regular c) monogenic d) all the above
8	CO4	К2	Express the polar form of complex variable a) $z=r(\cos \theta - i \sin \theta)$ b) $z=r(\cos \theta + \sin \theta)$ c) $z=r(\cos \theta + 2i \sin \theta)d)z=r(\cos \theta + i \sin \theta)$
9	CO5	K1	Locate the definition for singular point a) a point at which a function f(z) is not analytic b) a point at which a function f(z) is negative c) a point at which a function f(z) is positive d) none of these
10	CO5	K2	When m=1, the pole is said to be a a) Small pole b) simple pole c) elongated pole d) closed pole
		ort Ansv Duestions	vers)
Q.No	CO	K Level	Questions

Summative Examinations - Question Paper – Format

11	CO1	K1	Define a singular matrix
12	CO2	K1	Define vector point function
13	CO3	K2	Describe in short on stroke's theorem
14	CO4	K2	Write in short on single valued and multi valued function
15	CO5	K2	Explain in short about isolated singular point
		ther/Or '	
	r All Q	uestions	(5 x 5 = 25 marks)
Q. No	CO	K Level	Questions
16) a	1	К3	Determine AB and BA and show that AB=BA or not, if A= $\begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ and B= $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix}$
16) b	1	K3	Determine the values of α , β , γ when $\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal
17) a	2	K3	Find the constants a, b, c so that $\vec{F} = (x+2y+az) \hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\vec{k}$ is irrotational and hence find function φ such that $\vec{F} = \delta\varphi$
17) b	2	K3	Show that $\vec{A} = (6xy + z^3)\hat{\iota} + (3x^2 - z)\hat{j} + (3xz^2 - y)\vec{k}$ is
			irrotational and find Φ such that $A = \vec{\Delta} \phi$
18) a	3	K5	Using stoke s theorem or otherwise evaluate $\int (2x - y)dx -$
10) u	5	i contra	$yz^2 dy - y^2 dz$ where c is the circle $x^2+y^2=1$ corresponding to the surface of sphere of unit radius
18) b	3	K5	Evaluate $\iint \vec{F}$. \hat{n} ds where $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and s is the surface of the cube bounded by x=0, x=1, y=0, y=1, z=0 and z=1
19) a	4	К3	 Find the value ∫₀¹⁺ⁱ(x - y + ix²)dz a) Along the straight line from z=0 to z= 1+i b) Along the real axis from z=0 to z=1 and then along a line parallel to the imaginary axis from z=1 to z=1+i
19) b	4	K3	Find the value of the integral $\int (x + y) dx + x^2 y dy$ (a) Along $y=x^2$ having (0,0), (3,9)end points (b) Along $y=3x$ between the same points Do the values depend upon path
20) a	5	К3	Determine the poles of the following function and residue at each pole $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\int_c \frac{z^2 dz}{(z-1)^2(z+2)}$ where $c: z = 3$
20) b	5	K3	Find the value of $\oint z e^{\frac{1}{z}}$ around the unit circle
NB: Hi level of			erformance of the students is to be assessed by attempting higher
		pen Choi	ce)
		Three qu	estions (3x10=30 marks)
Q.	CO	K	Questions
ب		17	Questions

Academic Council Meeting Held On 29.04.2021

No		Level	
21	CO1	К3	Apply $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ unit and null matrix of order 3 respectively. Use this result to find A^{-1}
22	CO2	К3	If r is the distance of a point (x, y, z) from the origin, solve for curl $(k * \operatorname{grad} \frac{1}{r}) + \operatorname{grad} \left(k \cdot \operatorname{grad} \frac{1}{r}\right) = 0$, where k is the unit vector in the direction OZ
23	CO3	К3	Determine surface integral $\iint \vec{F}$. \hat{n} ds where $\vec{F} = (x^2+y^2+z^2)(\hat{i}+\hat{j}+\hat{k})$, S is the surface of the tetrahedron x=0, y=0, z=0, x+y+z=2 and n is the unit normal in the outward direction to the closed surface S
24	CO4	K3	Determine $\int_{1-i}^{2+i} (2x + iy + 1) dz$ along the two paths i) x=t+1, y=2t^2-1 ii) the straight line joining 1-i and 2 +i
25	CO5	К5	Evaluate $\int \frac{12z - 7}{(z - 1)^2(2z + 3)} dz$, where <i>C</i> is the circle i) $ z =2$ ii) $ z+i =\sqrt{3}$

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	CLASSICAL MECHANICS					
Course Code	21PPHC12			L	Р	С
Category	Core			6	-	4
Nature of Cours	e EMPLOYABILITY SKILL O	RIENTED	ENTREPR	ENE	URSI	HIP
Course Objectiv	es:					
• To understand	l the knowledge about Lagrangian forr	nulations.				
• To generalize	a solid foundation in the motion of	particles and in	ts extension to	o Ha	milto	nian
formulation		1				
	e Kepler's law in central force problen	1				
•	knowledge about oscillatory motion ar		scillatory moti	on		
_	concept of Canonical transformation	-	-		ange	and
Poisson brack	-	and to gain k	now ledge on	Lagi	ange	anu
	angian Dynamics				18	Hrs
	Constraints-Generalized Coordinates-	Principle of	Virtual work.	D'A		
	ge's Equations from D'Alembert's					
	tions-Lagrange's equations in presen					
	ian for a charged particle moving in an			.s UC	merai	izeu
	iltonian Dynamics	relectioningliet			16	Hrs
	nentum and cyclic coordinates-Conse	ervation theore	ms-Hamiltonia	n fi		
	of energy: Jacobi's integral-Hamilto					
Dynamics	of energy. Jacobi s integral Hamma	Sil S Equations	Examples in	1 114	mino	man
	body central force problem				18	Hrs
	o-body central force problem to the e	equivalent one-	body problem	-Cen		
	plane-equations of motion under c					
	printe equations of motion under e					
_	y of orbit under central force- artificia	-	-		und t	
	rigid body equations of motion and (20	Hrs
	im and Kinetic energy of motion about		rs-The inertia	tenso		
	a-The Eigen values of the inertia ter					
	y problems and the Euler equations of the					
	nulation of the problem-The Eigen					
	equencies of free vibration and norm	-	-		•	
	e-Forced vibrations and the effect of d					
	nical transformations				18	Hrs
	canonical transformation-Examples of	of canonical tra	nsformations-	The		
	mplistic approach to canonical tra					
	nts-Equation of motion, infinitesimal c					
	Poisson Bracket formulation- The ang					
	in mechanical systems-Liouville's the					,
			tal Lecture H	lours	s 90	
Books for study:						
*	va, Classical Mechanics, 2 nd Edition,	Himalaya Publ	ishing House	Ltd,	Mum	bai,

Reprint 2018.	
UNIT – I: Chapter 2, 2.1-2.10	
UNIT – II: Chapter 3, 3.1-3.7	
UNIT – III: Chapter 4, 4.1-4.9	
2. Herbert Goldstein, Charles P.Poole, John Safko, Classical Mechanics, 3	rd Edition, 21 st
impression, Pearson Education, Inc., Uttar Pradesh, 2018	
UNIT – IV: Chapter 5, 5.1-5.6, Chapter 6, 6.1-6.5	
UNIT – V: Chapter 9, 9.1-9.9	
Books for References:	
1. Gupta Kumar Sharma, Classical Mechanics, Pragati Prakashan, Meerut, 30th ed	dition 2004
2. S.N.Biswas, Classical Mechanics, Books and Allied Ltd, Kolkata, 3rd Edition	1998
Web Resources:	
https://nptel.ac.in/courses/115/106/115106123/	
https://nptel.ac.in/courses/115/103/115103113/	
Course Outcomes	K Level
On Completion of this course, the student will be able to	
CO1: Demonstrate the Lagrangian principles and D'alembert Principle	K1
CO2: Acquire the fundamental Principles of Hamiltonian principles in various	К3
classical mechanical problems.	K3
CO3: Connect the principles of central body problems into Kepler's law.	K2
CO4: Analyze the fundamentals of rigid body problem and oscillations.	K4
CO5: Apply Hamilton's characteristic function to solve problems in Lagrange's	and K3
Poisson's brackets	K)

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	2	2	2			
CO2	3	1	2	2	2	3			
CO3	2	2	1	1	2	2			
CO4	2	1	2	2	2	3			
CO5	2	3	1	3	1	1			
Weightage	12	9	8	10	9	11			

*3- Advanced Application	2- Intermediate Development
--------------------------	-----------------------------

1-Introductory Level

Units	Classical & Statistical Mechanics	Hrs	Pedagogy
	Basic Concepts-Constraints, Generalized Coordinates, Principle of Virtual work, D'Alembert's principle	6	<u> </u>
I Lagrangian Dynamics	Lagrange's Equations from D'Alembert's principle, Procedure for formation of Lagrange's Equations	6	Chalk & Talk, PPT
Lugrungian Dynamics	Lagrange's equations in presence of non-conservative forces, Generalized potential, Lagrangian for a charged particle moving in an electromagnetic field.	6	
П	Generalized momentum and cyclic coordinates, Conservation theorems	6	Chalk,
Hamiltonian Dynamics	Hamiltonian function H and conservation of energy: Jacobi's integral, Hamilton's Equations	5	Talk& Assignment
	Examples in Hamiltonian Dynamics	5	
	Reduction of Two-body central force problem to the equivalent one-body problem, Central force and motion in a plane	5	
III Two-body central force problem	equations of motion under central force and first integral, Differential equation for an orbit, inverse square law of force, Kepler's laws of Planetary motion and their deduction	6	Chalk, Talk& Exercise
	Stability of orbit under central force, artificial satellites, Virial theorem	7	
IV The rigid body	Angular momentum and Kinetic energy of motion about a point, Tensors, The inertia tensor and the moment of inertia, The Eigen values of the inertia tensor and the principal axis transformation	6	
equations of motion and Oscillations	s of motion solving rigid body problems and the Euler equations of motion, Torque, free motion of a rigid body		
	The Eigen value equation and the principal axis transformation, Frequencies of free vibration and normal coordinates, Free vibrations of a linear	5	

LESSON PLAN:

	triatomic molecule, Forced vibrations and the effect of dissipative forces. The equations of canonical transformation, Examples of canonical transformations, The harmonic oscillator, The simplistic approach to canonical transformations-	6	
V Canonical transformations	Poisson brackets and other canonical invariants, Equation of motion, infinitesimal canonical transformations, and conservation theorems in the Poisson Bracket formulation	5	Chalk, Talk& Seminar
	The angular momentum Poisson bracket relations, symmetry groups in mechanical systems, Liouville's theorem	6	

Course Designed by: Mrs. S. Nagadeepa & Dr. P.P. Kannan

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)											
					ion A CQs	Section Short Ans		Section C	Section		
Internal	Internal COs		K Level	No. of. Questio ns	K - Level	No. of. Questions	K - Level	Either or Choice	D Open Choice		
CI	CO) 1	K2	2	K1&K2	1	K1	2(K2&K2)	1(K2)		
AI	CO)2	K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)		
CI	CO)3	K2	2	K1&K2	1	K2	2(K2&K2)	1(K2)		
AII	CO)4	K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)		
		No. of Questions to be asked		4		3		4	2		
-	-		Question Pattern		No. of aestions to answered	4		3		2	1
CIA I &	II	Marks for each question1Total Marks for each section4		1		2		5	10		
				4		6		10	10		

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Mark s	% of (Marks withou t choice)	Consolidat e of %			
	K1	2	2	_	-	4	8	60			
	K2	2	4	10	10	26	52	00			
CI	K3	-	-	10	-	10	20	20			
AI	K4	-	-	-	10	10	20	20			
AI	Marks	4	6	20	20	50	100	100			
	K1	2	-	-	-	2	4	60			
CI	K2	2	6	10	10	28	56	00			
CI A	K3	-	-	10	_	10	20	20			
A II	K4	-	-	-	10	10	20	20			
11	Marks	4	6	20	20	50	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Academic Council Meeting Held On 29.04.2021

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course												
	Outcomes (COs)												
		K -	MC	CQs	Short A	Inswers	Section C	Section D					
S.No	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open					
		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)					
1	CO1	K2	2	K1&K2	1	K1	2 (K1&K1)	1 (K2)					
2	CO2	K3	2	K1&K2	1	K1	2 (K2&K2)	1 (K3)					
3	CO3	K3	2	K1&K2	1	K2	2 (K2&K2)	1 (K3)					
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)					
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)					
No. of	Questi	ons to	10	10		5		10	5				
b	e Aske	d	10		5		10	5					
No. of	Questi	ons to	10		5		5	3					
be	answei	red	10		5		5	5					
Mar	ks for e	each	1	1			5	10					
question		1		2		5	10						
Total Marks for		10		10		25	30						
each section		10		10		23	50						
	(Figure	es in pa	renthesis der	notes, questi	ons should b	oe asked wit	h the given K	level)					

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	10	-	19	15.83	50					
K2	5	6	20	10	41	34.17	50					
K3	-	-	20	20	40	33.34						
K4	-	-	-	10	10	8.33	50					
K5	-	_	-	-	10	8.33						
Marks	10	10	50	50	120	100	100					
NB: Hig	gher level of p	erformance o	of the students	s is to be asse	essed by a	attempting	higher level					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section	Section A (Multiple Choice Questions)							
		uestions	(10x1=10 marks)					
Q.No	CO	K Level	Questions					
1	CO1	K1	Each parcel in the Lagrangian formulation is tagged using 					
2	CO1	K2	 Scleronomous constraints have: a) Explicit time dependence. b) no explicit time dependence. c) both explicit time dependence and no explicit time dependence. d) neither explicit time dependence nor no explicit time dependence. e) a sclerous time dependence. 					
3	CO2	K1	Generalized coordinate is defined as coordinates to describe the system a) Maximum b) Minimum c) Finite d) Infinite					
4	CO2	K2	Hamilton's equations areorder equations a) first b) second c) third d) fourth					
5	CO3	K1	The electrostatic forces are very muchthan the gravitational forces in the interaction of atomic and subatomic particles. (a) Poor (b) Stronger (c) Equal (d) Lower					
6	CO3	К2	All the planet moves around the Sun in orbit.(a) circular(b) parabolic(c) hyperbolic(d) elliptical					
7	CO4	K1	On which of the following factor does the moment of inertia of an object not depend upon (a) Axis of rotation (b) Angular velocity (c) Distribution of mass d) Mass of an object					
8	CO4	K2	If simple harmonic variations of a pendulum die away after some time, Due to energy dissipation by viscous forces in the air, then oscillation is said to be a. undamped b. damped c. free d dependent					
9	CO5	K1	 In case of canonical transformation a) Hamilton's principle is satisfied in old as well as in new coordinates b) The form of the Hamilton's equations is preserved c) The form of Hamilton's equations cannot be preserved d) The form of Hamilton's equations may or may not be preserved 					
10	CO5	K2	For Lagrange brackets a) {pi,pj}=δij b) {pi,pj}=0 c) {qi,pj}=0 d) {qi,pj}=δijs					
	-	ort Answei uestions	rs) (5x2=10 marks)					

Summative Examinations - Question Paper – Format

Academic Council Meeting Held On 29.04.2021

Q.No	CO	K Level	Questions				
11	CO1	K1	Define D'Alembert principle.				
12	CO2	K1	What is meant by constrained motion?				
13	CO3	K2	Define Kepler's thrird law.				
14	CO4	K2	What is the condition for stable oscillation?				
15	CO5	K2	Define the term generating function				
		her/Or Ty	pe)				
Answei	r All Q	uestions	(5 x 5 = 25 marks)				
Q.No	CO	K Level	Questions				
16) a	CO1	K1	Write a short note on Lagrangian formulations.				
16) b	CO1	K1	Describe the particle in electromagnetic field in Lagrangian				
,			approach.				
17) a	CO2	K2	Write about the advantage of Hamiltonian approach				
17) b	CO2	K2	Give Hamilton's equation of motion for particle moving near the				
,			surface of Earth				
18) a	CO3	K2	Write a note on Kepler's law				
18) b	CO3	K2	Write a neat sketch on artificial satellite in classical mechanics.				
19) a	CO4	K3	Write about moment of inertia tensor.				
19) b	CO4	K3	Describe the effect of dissipative forces.				
20) a	CO5	K3	Demonstrate the advantage of canonical transformation and give				
,		_	some example for it				
20) b	CO5	K3	Give the relation between Lagrange and Poisson bracket				
	0	-	ormance of the students is to be assessed by attempting higher				
level of							
		en Choice					
			tions (3x10=30 marks)				
Q.No	CO	K Level	Questions				
21	CO1	K2	Describe the procedure for forming Lagrange's equations.				
22	CO3	K3	Elaborate an equation of motion for fictious force				
23	CO4	K3	Derive the central force equation in detailed manner.				
24	24 CO2 K4 Analyze the theory of Free vibrations of a linear triat						
25	COF	VE	molecule.				
25	CO5	K5	Compare the normal transformation and canonical transformation?				

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	Course Name Analog Electronics and Communications								
Course Code	urse Code 21PPHC13								
Category	Core				6	-	4		
Nature of Cours	e: EMPLOYABILITY	✓	SKILL ORIENTED	✓ ENTREPR	ENEU	JRSH	IIP		
COURSE OBJE	CTIVES:								
To summarize	e different type of transisto	ors ar	nd amplifiers and to be	explained ho	w it w	orks			
• To demonstra	ate the knowledge of oper	atior	nal amplifiers in both	linear and no	n-line	ear ai	nalog		
systems and t	heir applications						C		
• To relate the	oscillators which are constr	ructe	ed with operational am	plifiers					
To understane	d the various modulation and	nd de	emodulation technique	- S					
• To compare t	he type of modulations and	1 mal	ke use of them for con	nmunications					
Unit: I JFE	Fs and MOSFETs					19	9 Hrs		
Basic Ideas- Dra	in curves- Transconductan	ice ci	urves- Biasing in the	ohmic region,	Bias	ing i	n the		
active region, V	oltage-Divider bias, Curr	ent-s	source bias. Transcor	nductance- JF	ΈT a	mpli	fiers-		
Depletion mode I	MOSFET: Amplifiers-Enha	ancer	ment mode MOSFET-	Ohmic region	ıs.				
.	rational amplifiers and lir						7 Hrs		
	- CMRR- Slew rate- Inve		U 1 U		0 0				
	rting amplifier- Op-amp				ltage	follo	ower,		
	er-Differential amplifiers			fiers.					
	linear OPAMP circuit an						7 Hrs		
-	e form conversion- Wave			-					
	tiator. Type of Oscillators:		usoidal, Wien bridge,	RC type, pha	se shi	ft, C	olpitt		
	connection only) Oscillator	rs.							
	litude Modulation						9 Hrs		
-	cy translation- Double sic								
	r- Single side band modu	ilatio	on-Angle modulation	Tone modula	ted F	M si	gnal-		
Arbitrary modula	0								
	ulators and Communicat						8 Hrs		
	l-Armstrong's direct meth								
	- SSB-AM, SSB-FM- Ste	-		ng. Optical co	ommu	nıcat	10n -		
Mobile communi	cation - Satellite communic	catio					2		
			Ί	otal Lecture	Hour	s 90	J		
Books for study:									

1. Albert Malvino and David J Bates, Electronic Principles, VII Edition, McGraw Hill Education(India) Pvt. Ltd, New Delhi-16, Seventeenth Reprint, 2015. Unit I - Chapter 13, Sec.13.1-13.7, Chapter 14, Sec.14.1 - 14.5 Unit II – Chapter 18, Sec. 18.1 - 18.6, Chapter 20, Sec. 20.4 - 20.5 Unit III – Chapter 22, Sec.22.5-22.10, Chapter 23, Sec.23.1 - 23.5 2. Herbert Taub, Donald L Schilling and Goutam Saha, Principles of Communication Systems, III Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi-8, 2008. Unit IV – Chapter 3, Sec.3.1-3.4, Chapter 4, Sec.4.1-4.3 Unit V – Chapter 4, Sec.4.4-4.6, Chapter 16, Sec. 16.3-16.6 **Books for References:** 1. B.L. Theraja, Basic Electronics, Ist. Multicolour Edition, 2005, S.Chand & Company Pvt.Ltd, New Delhi-55, Reprint 2014. 2. V.K.Mehta and Rohit Mehta, Principles of Electronics, First Edition, 1980, S.Chand &Company Pvt.Ltd, New Delhi-55, Reprint 2013. 3. B.P.Lathi and ZhiDing, Modern Digitaland Analog Communication systems, International IVth Edition, 2010, Oxford University Press, New York, Reprint 2011 **Books for References:** https://www.mooc-list.com/tags/analogue-electronics https://www.classcentral.com/course/swavam-digital-electronic-circuits-12953 https://nptel.ac.in/courses/108/105/108105132/ **COURSE OUTCOMES** K Level On Completion of this course, the student will be able to Recognize the working of different semiconductor devices and describe their **CO1:** K2 functions Acquire the knowledge of operations of OP-AMP to perform the various **CO2:** K1 mathematical logics Use the significance of Op-amps and their importance in oscillator circuits K4 **CO3:** Appraise the use of amplitude and frequency modulation techniques **CO4:** K3 Construct devices used for various Communication systems efficiently K5 CO5:

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	3	2	2	1			
CO2	3	1	3	2	2	3			
CO3	1	2	1	2	2	2			
CO4	2	3	2	2	2	3			
CO5	3	2	2	2	3	1			
Weightage	11	11	11	10	11	10			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Units	21PPHC13- ANALOG ELECTRONICS AND COMMUNICTIONS	Hrs	Pedagogy
Unit 1	Basic Ideas- Drain curves- Transconductance curves- Biasing in the ohmic region, Biasing in the active region.	6	Chalk
Unit-1 JFETs and MOSFETs	Voltage-Divider bias, Current-source bias. Transconductance	6	&Talk, PPT
WOSTETS	JFET amplifiers-Depletion mode MOSFET: Amplifiers-Enhancement mode MOSFET- Ohmic regions.	7	111
Unit-2 Operational	Bias and offsets- CMRR- Slew rate- Inverting amplifier- Virtual ground- Voltage gain.	6	Chalk
amplifiers and linear	Band width- Non-inverting amplifier- Op-amp applications: Summing amplifier, Voltage follower.	5	&Talk, Assignment
applications	Linear IC amplifier- Differential amplifiers and Instrumentation amplifiers.	6	Assignment
Unit-3	Integrator- Wave form conversion- Wave form generation-Triangular generator.	5	Chalk
Non-linear OPAMP circuit	Active diode circuits- Differentiator. Type of Oscillators: Sinusoidal, Wien bridge	6	&Talk, Class test
and Oscillators	RC type, phase shift, Colpitt and Hartley(Ce- connectiononly)Oscillators.	6	Class test
Unit-4	Need for frequency translation- Double side band – Suppressed carrier modulation.	6	Chalk
Amplitude Modulation	Double side band with carrier- Single side band modulation	6	&Talk, PPT
Wiodulation	Angle modulation Tone modulated FM signal- Arbitrary modulated FM signal	7	FF I
Unit-5	Variation method-Armstrong's direct method- Frequency multiplication.	6	Chalk
Modulators and Communications	Armstrong FM system- FM demodulator- SSB-AM, SSB-FM- Stereophonic FM broadcasting.	6	&Talk, Seminar
Communications	Optical communication - Mobile communication - Satellite communication- Radar system.	6	

LESSON PLAN

Course Designed by: Dr. M. Alagar & Dr.D.Ruby Josephine

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
	A	\rti	culation			with Course		es (COs)	
				Section	Α	Section	B	Section C	Section
Internal	CO)c	K	MCQ	S	Short Ans	swers	Either or	D
mernar	CU	5	Level	No. of.	K –	No. of.	K -	Choice	Open
				Questions	Level	Questions	Level		Choice
CI	CO		K2	2	K1	1	K1	2(K2&K2)	1(K2)
AI	CO	2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
CI	CO)3	K2	2	K1	1	K2	2 (K2&K2)	1(K2)
AII	CO)4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked		4		3		4	2
Question Pattern		Qu	No. of lestions to be swered	4		3		2	1
CIA I &	ea que: Tc Marl ea		arks for each lestion	1		2		5	10
			Total arks for each ection	4		6		10	10

Distribution of Marks with K Level CIA I & CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Mark s	% of (Marks withou t choice)	Consolidat e of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	00
CI	K3	-	-	10	-	10	20	20
AI	K4	-	-	-	10	10	20	20
AI	Marks	4	6	20	20	50	100	100
	K1	2	-	_	_	2	4	60
CI	K2	2	6	10	10	28	56	00
	K3	-	_	10	_	10	20	20
A II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
		К-	MC	CQs	Short A	Inswers	Section C	Section D			
S.No	COs	Leve	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
		l	Questions	K – Level	Question	K – Level	Choice)	Choice)			
1	CO1	K1	2	K1&K2	1	K1	2 (K1&K1)	1 (K2)			
2	CO2	K2	2	K1&K2	1	K1	2 (K2&K2)	1 (K3)			
3	CO3	K3	2	K1&K2	1	K2	2 (K2&K2)	1 (K3)			
4	CO4	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ons to	10		5		10	5			
b	e Aske	d	10		5		10	5			
	f Questi		10		5		5	3			
be	answei	red	10		5		5	5			
Mar	Marks for each		1		2		5	10			
(question		1		2		5	10			
	Total Marks for		10		10		25	30			
ea	each section		10		10		23	50			
	(Figure	es in pa	renthesis der	notes, questi	ons should l	oe asked wit	h the given K	level)			

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Г

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	10	-	19	15.83	50		
K2	5	6	20	10	41	34.17	50		
K3	-	-	20	20	40	33.34			
K4	-	-	-	10	10	8.33	50		
K5	-	-	-	-	10	8.33			
Marks	10	10	50	50	120	100	100		
	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

			ice Questions)
		uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	The modulation index lies between 0 and 1 1200
			a) 0-100 b) 0-5c) 0-16 d)0-90
			The total power in a amplitude modulated wave to the
2	CO1	K2	unmodulated carrier power is related by $p_{1} = \frac{1}{2} 1$
			a) Pt/Pc=1+m2/2 b) Pt/Pc=1-m2/2 c) Pt/Pc=1+m2 d) Pt/Pc=1+13m2/2
			A differential amplifier
3	CO2	K1	a) is a part of an Op-amp b) is a part of an Op-amp
5	02	IX1	c) has two outputs d) has two outputs
			With zero volts on both inputs, an OP-amp ideally should have an
			output
4	CO2	K2	a) equal to the positive supply voltage b) equal to the positive
			supply voltagec) equal to zero d) equal to the positive
			FET is a device
5	CO3	K1	a) unipolar b) bipolarc) tripolar d) all the above
			What is the output waveform of an integrator?
6	CO3	K2	a) sine wave b) square wave c) sawtooth wave d) triangle
-			wave
			diodes are recently employed as microwave mixers
7	CO4	K1	a) Schottky barrier b) Varacter diode
			c) Crystal diodes d) Light emitting diode
0	CO_{1}	V.	The first magnetron was discovered by
8	CO4	K2	a) E. W. Hull b) Faradayc) Gunn d) schottky
			Colpitt oscillator contains
			a) Two capacitors and one inductor b) Two capacitor and two
9	CO5	K1	inductors
			c) One capacitor and two inductors d) One capacitor and
			one inductor
10	CO5	K2	LC tuned oscillator produces
			a) Cos wave b) Square wave c) Triangular d) Sine wave
		ort Answei	/
	-	uestions	(5x2=10 marks)
Q.No	<u>CO</u>	K Level	Questions
11	CO1	K1 K1	What are the characteristics of an ideal Op-Amp?
12	CO2	K1 K2	Give the principle of a mono-stable multivibrator.
13	CO3	K2	Write a note on Armstrong oscillator.
14	CO4	K2	Define SSB
15 Section	CO5	K2 hor/Or Ty	List examples for communication in real time
		her/Or Ty uestions	$(5 \times 5 = 25 \text{ marks})$
Q.No	CO	K Level	Questions
16) a	C01	K Level K1	Write elaborately on the representation and power of a amplitude
10/ a	001	111	whice chaptering on the representation and power of a amplitude

Summative Examinations - Question Paper – Format

			modulated wave			
16) b	CO1	K1	Explain about the effect of noise on carrier noise triangle			
17) a	CO2	K2	Draw the equivalent circuit of an op-amp and explain the various parameters used in the equivalent circuit			
17) b	CO2	K2	Explain how addition and subtraction may be accomplished using op-amp			
18) a	CO3	K2	Discuss in detail on the characteristic parameters of JFET?			
18) b	CO3	K2	How high pass RC circuit be used as a differentiator?			
19) a	CO4	K3	Describe the detail behind isolators?			
19) b	CO4	K3	Explain about Schottky - Barrier diode and about backward diode in detail			
20) a	CO5	K3	RC phase shift oscillator using high pass filters			
20) b	CO5	K3	Draw the circuit of Hartley oscillator using FET			
NB: Hi	igher le	vel of perf	ormance of the students is to be assessed by attempting higher			
level of	K leve	ls				
Section	n D (Op	en Choice				
Answe	r Any T	Three ques				
Q.No	CO	K Level	Questions			
21	C01	K2	Describe the direct method involve in the generation of frequency modulation			
22	CO3	К3	Explain the Instrumentation amplifier. Draw a system whose gain is controlled by a variable resistance?			
23	CO4	K3	Draw the Schmitt trigger circuit and explain with wave forms			
24	CO2	K4	Elaborate on the detailed theory on Gunn effect with illustrations			
25	CO5	K5	Evaluate the circuit of Colpitts oscillator. How is the feedback requirements met in it?			

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ELECTRODYNAMICS							
Course Code	21PPHC14		L	Р	С			
Category	Core		6	-	4			
Nature of Cour	rse: EMPLOYABILITY SKILL ORIENTED 🖌 ENT	[REPR]	ENEU	JRSH	HIP			
Course objectiv	ves:							
To understar	nd the concepts on electrostatics and to use Gauss's law in var	rious ap	plica	tions				
	the theory of magnetostatics, Biot-Savort's law and magnetic	-	-					
	Maxwell's equation in differential and integral forms, propa				aves			
through diffe		uguion	UI L	IVI VV	aves			
U	the knowledge of the various modes of propagation of elec	tromag	netic	waw	as in			
waveguides	the knowledge of the various modes of propagation of elec	nomag	netie	wav	-5 III			
	ad analyze the concepts of interaction of electromagnetic wa	voe wit	h mo	oroac	onia			
matter	at analyze the concepts of interaction of electromagnetic wa	ves wit	п ша	crose	opic			
	ctrostatics and Electric Fields in Matter			19				
	tion and Laplace's equation – potential of a localized of	charge)n –			
	indary conditions. Work and energy in electrostatics: work d	-						
	charge distribution - energy of continuous charge distribution							
.	tion in one, two, and three dimensions - boundary condi-	-		-				
	ductors and second uniqueness theorem. Multipole expansion							
	ge distances - monopole and dipole terms. Polarization:							
	ent of polar molecules	Dicicei		ma	acca			
	gnetostatics and Magnetic Fields in Matter			19				
	w: Magnetic fields – magnetic forces – currents. Biot-Savart 1	law: Ste	eady of	curre	nts –			
	of steady current. Divergence and curl of B : Applications		•					
	magnetostatics and electrostatics. Magnetic vector potentia							
	oundary conditions – multipole expansion of the vector pote							
	ramagnets and ferromagnets - torques and forces on magnetic							
magnetic field o		1						
Unit: III Elec	ctrodynamics and Conservation Laws			18				
Maxwell's equa	ations: Ampere's law – magnetic charge – Maxwell's ed	quation	s in	matt	er –			
	tions. Charge and energy: Continuity equation - Poynting's t							
Newton's third	law in electrodynamics. Maxwell's stress tensor - Conservati	ion of r	nome	ntur	and			
angular moment	angular momentum.							
Unit: IV Elec	ctromagnetic Waves			17				
Electromagnetic	e waves in vacuum: Wave equation for \mathbf{E} and \mathbf{B} – monochro	omatic	plane	way	ves –			
energy and mon	nentum in electromagnetic waves. Electromagnetic waves in r	matter:	Propa	agatio	on in			
linear media - reflection and transmission at normal incidence - reflection and transmission at								
oblique incidence. Absorption and dispersion: Electromagnetic waves in conductors, reflection at a								
conducting surface, frequency dependence of permittivity.								
	ctric Potential and Relativistic Electrodynamics			17				
	Wave guides - waves in a rectangular wave guide - coaxial tr							
potential formul	lation - Scalar and vector potential Gauge transformation, C	Coulom	b's G	auge	and			

Academic Council Meeting Held On 29.04.2021

Lorentz Gauge. Relativistic electrodynamics: Magnetism as a relativistic phenomenon, field transform, field tensor, electrodynamics in tensor notation, relativistic potentials.

Total Lecture Hours 90

Books for Study:

D.J., Griffiths, Introduction to Electrodynamics, 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, Reprint 1999.

,	•	
UNIT I	:	Chapter 2: Sections 2.3.3 to 2.4
		Chapter 3: Sections 3.1 to 3.4
		Chapter 4: Sections 4.1
UNIT II	:	Chapter 5, Chapter 6: Sections 6.1
UNIT III	:	Chapter 7: Sections: 7.33 to 7.36
		Chapter 8: Section 8.1 and 8.2
UNIT IV	:	Chapter 9: Sections 9.2 to 9.4
UNIT V	:	Chapter 9: Section 9.5
		Chapter 10: Sections 10.1.1, 10.1.2 and 10.1.3
		Chapter 12: Section 12.3

Books for References:

- 1. Capri, A.Z., and Panat, P.V., Introduction to Electrodynamics, 3rd Edition, Reprint 2006, Narosa Publishing House, New Delhi.
- 2. Jackson, J.D., Classical Electrodynamics, 3rd Edition, Reprint 2007, Wiley India Pvt. Ltd. New Delhi, 2007.
- 3. Puri, S.P., Classical Electrodynamics, First Edition, Reprint 2011, Narosa Publishing House Pvt. Ltd., New Delhi.

Web Resources:

https://nptel.ac.in/courses/115/101/115101004/

https://www.coursera.org/learn/electrodynamics-electric-magnetic-fields

https://www.classcentral.com/course/swayam-electromagnetism-17586 https://www.my-mooc.com/en/mooc/electrodynamics-an-introduction/

<u>https://www.my-mooc.com/en/mooc/electrodynamics-an-introduction/</u>						
Course Outcomes						
CO1:	Solve electrostatic boundary value problems using Poisson's and Laplace equations	К3				
CO2:	Acquire the knowledge in boundary conditions of electrostatics and Magnetostatics	K1				
CO3:	Derive Maxwell's equation in differential and integral form	K4				
CO4:	Discuss the propagation of electromagnetic waves in different medium	K2				
CO5:	Use the concept of interactions in electromagnetic waves with macroscopic matter for society	K5				

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	2	2	2		
CO2	3	1	2	2	2	3		
CO3	2	2	1	1	2	2		
CO4	2	1	2	2	2	2		
CO5	1	3	1	3	1	1		
Weightage	11	9	8	10	9	10		

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Academic Council Meeting Held On 29.04.2021

LESSON PLAN

UNIT	Electrodynamics	Hrs	Pedagogy	
	Poisson's equation and Laplace's equation, potential of a localized charge distribution, electrostatic boundary conditions.	4		
I	Work and energy in electrostatics: work done to move charge, energy of point charge distribution, energy of continuous charge distribution.	5		
Electrostatics and Electric Fields in Matter	Laplace's equation: Laplace's equation in one, two, and three dimensions, boundary conditions and uniqueness theorem, conductors and second uniqueness theorem.	5	Chalk, Talk& Assignment	
	Multipole expansion: Approximate potentials at large distances, monopole and dipole terms. Polarization: Dielectrics, induced dipoles, alignment of polar molecules.	5		
	Lorentz force law: Magnetic fields, magnetic forces, currents. Biot-Savart law: Steady currents, magnetic field of steady current.	6		
II Magnetostatics and Magnetic Fields in Matter	Divergence and curl of B : Applications of Ampere's law, comparison of magnetostatics and electrostatics. Magnetic vector potential: Vector potential, magnetostatic boundary conditions, multipole expansion of the vector potential.	7	Chalk, Talk& Exercise	
	Magnetization: Diamagnets, paramagnets and ferromagnets, torques and forces on magnetic dipoles, effect of a magnetic field on atomic orbits.	6		
Ш	Maxwell's equations: Ampere's law, magnetic charge, Maxwell's equations in matter, boundary conditions.	6		
Electrodynamics and Conservation Laws	Charge and energy: Continuity equation, Poynting's theorem Momentum, Newton's third law in electrodynamics.	6	Chalk, Talk& PPT	
	Maxwell's stress tensor, Conservation of momentum and angular momentum.	6		
IV Electromagnetic	Electromagnetic waves in vacuum: Wave equation for E and B , monochromatic plane waves, energy and momentum in electromagnetic waves.	6	Chalk, Talk,	
Waves	Electromagnetic waves in matter: Propagation in linear media, reflection and transmission at normal incidence, reflection and transmission at oblique incidence.	6	PPT & Seminar	

	Absorption and dispersion: Electromagnetic waves in conductors, reflection at a conducting surface, frequency dependence of permittivity.	5	
	Guided waves: Wave guides, waves in a rectangular wave guide, coaxial transmission line.	6	
V Electric Potential and Relativistic	The potential formulation, Scalar and vector potential Gauge transformation, Columb's Gauge and Lorentz Gauge.	6	Chalk, Talk, PPT
Electrodynamics	Relativistic electrodynamics: Magnetism as a relativistic Phenomenon, field transform, field tensor, electrodynamics in tensor notation, relativistic potentials.	5	&Assignment

Course Designed by: Dr. P.P. Kannan & Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print												
	Articulation Mapping – K Levels with Course Outcomes (COs)												
			Section	A	Section	B	Section C	Section					
Internal	COs	K	MCQ	S	Short Answers		Either or	D					
mumar	CO	' Level	No. of.	K –	No. of.	К-	Choice	Open					
			Questions	Level	Questions	Level		Choice					
CI	CO 1	K2	2	K1	1	K1	2(K2&K2)	1(K2)					
AI	CO2	2 K4	2	K2	2	K2	2 (K3&K3)	1(K4)					
CI	CO3	3 K2	2	K1	1	K2	2 (K2&K2)	1(K2)					
AII	AII CO4		2	K2	2	K2	2 (K3&K3)	1(K4)					
	(No. of Questions to be asked	4		3		4	2					
Question Pattern	n	No. of Questions to be answered	4		3		2	1					
CIA I &		Marks for each question	1		2		5	10					
	I	Total Marks for each section	4		6		10	10					

		Distrib	oution of Ma	arks with	K Level	CIA I &	& CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Mark s	% of (Marks withou t choice)	Consolidat e of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	00
CI	K3	-	-	10	-	10	20	20
	K4	-	-	-	10	10	20	20
AI	Marks	4	6	20	20	50	100	100
	K1	2	-	-	-	2	4	60
CI	K2	2	6	10	10	28	56	60
CI	K3	-	-	10	-	10	20	20
A II	K4	-	-	-	10	10	20	20
- 11	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

S	Summa	tive Exa	amination – I		rticulation mes (COs)	Mapping – 1	K Level with (Course
		K -	MC		· /	nswers	Section C	Section D
S.No	COs	Leve l	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	K2	2	K1 & K2	1	K1	2 (K1&K1)	1 (K2)
2	CO2	K3	2	K1 & K2	1	K1	2 (K2&K2)	1 (K3)
3	CO3	K3	2	K1 & K2	1	K2	2 (K2&K2)	1 (K3)
4	CO4	K4	2	K1 & K2	1	K2	2 (K3&K3)	1 (K4)
5	CO5	K5	2	K1 & K2	1	K2	2 (K3&K3)	1 (K5)
	No. of Questions to be Asked		10		5		10	5
	f Questi answei		10		5		5	3
	rks for e question		1		2		5	10
	al Mark ch secti		10		10		25	30
	(Figure	es in pa	renthesis der	notes, questi	ons should l	be asked wit	h the given K	level)

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

		Dis	tribution of	Marks with	n K Leve	1	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	10	-	19	15.86	50
K2	5	6	20	10	41	34.17	50
K3	-	-	20	20	40	33.34	33
K4	-	-	-	20	10	8.33	8
K5	-	-	-	-	10	8.33	5
Marks	10	10	50	50	120	100	100
NB: Hig of K lev	gher level of p els.	erformance o	f the students	s is to be asse	essed by a	attempting	higher level

Section	A (Mu	iltiple Cho	ice Questions)
Answe	r All Q	uestions	(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	From the below equations, which one is correct Poisson's equation? a) $\nabla^2 V=0$ b) $\nabla^2 V=\rho/\epsilon 0$ c) $\nabla^2 V=-\rho/\epsilon 0$ d) $\nabla V=0$
2	CO1	K2	The solutions of spherical co ordinates are Legendre polynomials in the variable of a) $\sin \theta b$) $\tan \theta c$) $\cos \theta d$) $\cot \theta$
3	CO2	K1	Steady currents produce a magnetic filed in a constant time are called as a) Electrostatics b) Magnetostatics c) Continuity equationb) Magnetostatics d) Uniqueness theorem
4	CO2	К2	Biot-Savart law plays a role analogous to law in electrostatics a) Gauss b) Coloumb's c) Maxwell d) Ampere
5	CO3	K1	The component of D is perpendicular to the interfaces between a) Continuousb) Discontinuous c) Infinity d) All the above
6	CO3	K2	The Maxwell's equation ∇ x E could be derived from a) Faraday lawb) Coloumb's lawc) Maxwell law d) Ampere's law
7	CO4	K1	The value of Reflection+Transmission=for theelectromagnetic wave at normal incidencea) Constantb) Infinityd) Unityd) Zero
8	CO4	K2	The divergence of H will be a) 1 b) Infinityc) -1 d) Zero
9	CO5	K1	The dominant mode in a rectangular wave guide is a) TE9 b) TE8c) TE10 d) TE6
10	CO5	K2	If the propagation constant of an electromagnetic wave $v=\alpha+j\beta$ then α is called a) Real propagation constant b) Phase constant c) Attenuation constant d) None of the above
Section	B (Sho	ort Answei	
		uestions	(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	List out the Poisson's equations in electrostatics
12	CO2	K1	Define the term magnetization
13	CO3	K2	Describe about Ampere's law
14	CO4	K2	Discuss about absorption and dispersion
15	CO5	K2	Explain the concept of guided waves
		her/Or Ty	
	-	uestions	(5 x 5 = 25 marks)
Q.No	CO	K Level	Questions
16) a	CO1	K1	Show the potential of a uniformly charged spherical shell of radius R
16) b	CO1	K1	Define the boundary conditions and uniqueness theorem

Summative Examinations - Question Paper – Format

17) b	CO2	170	
/		K2	Explain the term currents in magnetostatics
18) a	CO2	K2	Describe the effect of a magnetic field on atomic orbits
	CO3	K2	Explain Maxwell's equations in matter
18) b	CO3	K2	Write Maxwell's equations in differential form
19) a	CO4	K3	Build the energy and momentum in electromagnetic waves
19) b	CO4	K3	Compute the phenomena of electromagnetic waves in conductors
20) a	CO5	K3	Manipulate TE waves in a rectangular wave guide
20) b	CO5	K3	Identify the theory of relativistic phenomenon in magnetism
NB: Hig	gher le	vel of perf	ormance of the students is to be assessed by attempting higher
level of H	K leve	ls	
Section 1	D (Op	en Choice	
Answer .	Any T	Three ques	tions (3x10=30 marks)
Q.No	CO	K Level	Questions
21	CO1	K)	Elaborate the electric potentials for Laplace's equations in one,
21 CO1 K2		K2	two and three dimensions
22	CO2	V2	Use the straight line currents in magnetostatics and divergence &
22	CO3	K3	Use the straight line currents in magnetostatics and divergence & curl of B
	CO3 CO4	K3 K3	
23			curl of B
NB: Hig level of F	gher le K leve	vel of perf ls	ormance of the students is to be assessed by attempting highe

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course N	ame	GENERAL PHYSIC	S PRACTICAL					
Course C	ode	21PPHCP1]		P	С
Category		Core				-	3	-
Nature of	the Course	EMPLOYABILITY	SKILL ORIENTED	\checkmark	ENTREPREN	VE.	URS	HIP
Course O	bjectives:							
	-	xperimental and compu-	tational tools thereby dev	velo	ping analytica	l sk	cills.	
• To ac	quire the app	propriate data accurately	and keep systematic rec	cord	of laboratory	act	ivitie	es.
			bratory data and compute		-			
-		gs using the physical sc						
	-	0 0 1 0	y in practical experiment	al o	bservations			
		EXPERIMENTS:						
1.	Error analy	ysis of experimental data	a					
	•	index of a liquid hollow						
		tion of Cauchy's consta						
4.	Determinat	tion of wavelength of th	e prominent lines by gra	ting	-Oblique incid	len	ce	
5.		power of a prism						
6.			is and Poisson's ratio of	a Pe	erspex			
	•	rming Elliptical fringes						
		d diffraction experimen						
8.			of coupling between the j	pair	of coils			
	-	erson's Bridge					_	
			ce of a pair of coils by fo	rmi	ng Maxwell's	Bri	dge	
		dge and Owen's bridge						
	•	tta Method I& II using (0					
		nination Method using (0					
		aphson's method using (
		one third rule using C+ al rule using C++ Progra						
	COUTCOM		anning				K Le	vol
		s course, the student will	l be able to					
			retical concepts and inve	estic	vate the			
CO1	1	& effects of optics			, - •		ŀ	Χ3
0.0.5	1 1	1	shoot the errors in vario	us ii	nstruments and		-	
CO2		accurate results.					ŀ	K1
CO3			y doing Young's modulı	is ez	xperiment.		ł	ζ4
CO4			ctrical components and t					<u>K2</u>
	Develop the							

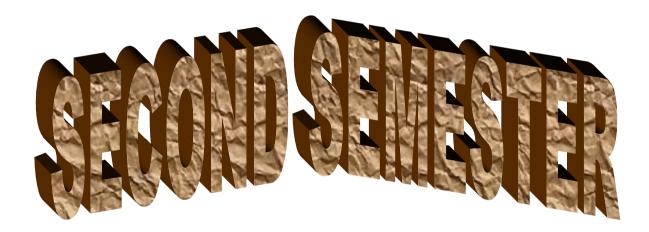
Course Designed by: Mrs. S. Nagadeepa & Dr.M.Alagar

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	2	2	2		
CO2	3	1	2	2	2	3		
CO3	2	2	1	1	2	2		
CO4	2	1	2	2	2	2		
CO5	1	3	1	3	1	1		

3-Advanced Application; 2-Intermediate Development; 1-Introductory Level

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)


Course Name	ELECTRONICS PRAC	CTICAL				
Course Code	21PPHCP2			L	Р	С
Category	Core			-	3	-
Nature of cour	se: EMPLOYABILITY	✓ SKILL ORIENTED	✓ ENTREI	PREN	EURS	SHIP
Course Object	tives:		I I			
0		or devices and their applica	tions.			
-	and the concepts of OPAM					
	scillator and amplifier circu					
•	1	uments and measuring devi	ces.			
-	6	e with electronic instrument				
	E EXPERIMENTS					
1. FET amplifie	er					
2. UJT characte	eristics					
3. Single Stage	Amplifier - Frequency resp	oonse and bandwidth deterr	nination			
4. IC Regulated	l Power Supply [Single (5V	<i>V</i>) and Dual (12-0-12V)]				
5. Phase shift o	scillator					
6. Wien bridge	oscillator					
7. Saw tooth W						
8. Emitter follo						
	ation oscillator					
	ing circuits – Clipping and					
		and Band pass filters - usin	ng OP AMP			
	ltivibrators – using OP AN					
	ultivibrators – using IC 555					
-	and Demultiplexer circuit					
	tics of LED and Photo dioc	le				
COURSE OU					KL	evel
	ne programme, the student		<u> </u>		-	
		detailed form with the elect				<u>K3</u>
		cillators with their wave for			-	<u>K2</u>
		ct various multivibrators ar	nd their uses.			<u>K3</u>
	the circuit performances					<u> </u>
CO5: Use the	e importance of application	s of electronics in real life s	ituations.		K	K 5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	1	2	2	2			
CO2	3	2	3	2	2	2			
CO3	2	1	1	2	2	1			
CO4	2	2	2	2	2	2			
CO5	2	3	2	3	1	3			
Weightage	11	9	9	11	9	10			

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. M. Alagar

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	MA	THEMATICAL PHY	'SICS-II					
Course Code	21P	PHC21				L	Р	С
Category	Cor	e				6	-	4
Nature of cours	se:	EMPLOYABILITY	SKILLORIENTED	✓	ENTREPR	ENEU	JRSH	IP
Course Objecti	ves:		· · ·					
• To recall and	d sol	ve various types of diffe	erential equations					
			Fourier series and also to	de	termine its ti	ansfo	rms	
		the concepts of different						
			ndre and Laguerre polyn	om	ials			
		unctions using Bessel a						
		tial equations of first					19 H	
			geometrical meaning of a					
			es separable - Homoge					
			- linear differential equa					
			equation. Linear different					
			ns - linear differential e					
			ce of solution - Non- ns - linear independence					
			to find complementary					
for any different	-	-	i to find complementary	Iui	letion and pe	inticui	ai iin	egrai
	nsfo	1					20 H	rs
			rier integral theorem-Fou	ırie	er sine and co	osine		
			rms - Fourier sine and co					
			l's identity for Fourier th					
			for sine transform - Fou					
relationship betw	ween	Fourier and Laplace	transforms - solution of	f b	oundary valu	ie pro	oblem	is by
using integral tra	ansfo	rm.						
Unit: III Vec	tor s	pace and tensors					15 H	[rs
			ector space - sub space -				-	
-		-	ar dependence and independence					
	-		sformation – linear transf	for	mation – pro	pertie	s of l	inear
		rices of linear transform						
			- dummy suffix- transfe					
			kroneckar delta – subs			•		
invariant of a sec		-	ent law – symmetric and	u a	intisymmetri		01 -8	Calal
		functions I					18 H	rs
			ial $p_n(x)$ - Legendre's fu	nct	tion of secor	id kin		
			ue's formula - Legendre				-	
			hogonality of Legendre					
	-		onality of Legendre polyr				-	-
Laplace's first d	lefini		second definite integral-		urier Legen			ion –

Laguarra's function for different values of n generating function of Laguarra nel	momial
Laguerre's function for different values of n - generating function of Laguerre poly recurrence relation - orthogonal property	/nonnai -
	10 II
	18 Hrs
Bessel's function: Bessel's equation - solution of Bessel's equation- Bessel's function j_n	
function of the second kind of order n - recurrence formulae - equations reducible to	
equation - orthogonality of Bessel function - a generating function for $j_n(x)$ - trige	
expansion involving Bessel function - Bessel integral -Fourier-Bessel expansion - Ber	
functions. Hermite function: Hermite's equation - generating function of Hermite polymetric	nomials -
orthogonal property - recurrence formula for $h_n(x)$ of Hermite equation.	
Total Lecture Hours	90
Books for Study:	
1. H. K. Dass & Rama Verma, Mathematical Physics, VIII Edition, S. Chand and	Company
limited, Ram Nagar, New Delhi – 55, Reprint 2019	
UNIT I (Chapter 12 (12.1 -12.13), 13)	
UNIT II (Chapter 45(45.1-45.15)	
UNIT IV (Chapter 28, 31)	
UNIT V(Chapter 29, 30)	
2. Vinod K. Sharma, Matrix methods and vector spaces in Physics, 2009, PHI Learning pr	rivate
limited, New Delhi -15	
UNIT III (Chapter 3(3.1- 3. 7) 4 (4.1-4.4, 4.7), 8 (8.1- 8.11),	
Books for References:	
1. G. B. Arfken, H. J.Weber and Harris, Mathematical methods for Physicists, IV	edition
Academic press, 2005,	cuttion,
2. Advanced Engineering Mathematics, Erwin Kreyszig, IX Edition, Wiley publishers, 24	014
3. B. D. Gupta, Mathematical Physics, IV edition, Vikas Publishing House private I	
Delhi-55, Reprint 2018.	Lu., INCW
Web Resources:	
1. https://www.grc.nasa.gov/www/k12/Numbers/Math/documents/Tensors_TM2002211716.	ndf
 https://doi.org/10.1121/1.4776198 	<u>pur</u>
3. https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html	
	K Level
On Completion of this course, the student will be able to	
CO1: Define differential equations of first and second order respectively	K3
Express various complex functions into simplified Fourier series form and as	
CO2: Lapress various complex functions into simplified Fourier series form and as transforms	K3
CO3: Distinguish tensors into different order and types	K3
CO4: Analyze special function in terms of Legendre and Laguerre polynomials	K4
CO5:Evaluate various special functions by using Hermite and Bessel functions	K5
COL _ 2 ratado various special functions by using free finite and Desser functions	110

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	2	2
CO 2	2	2	3	2	2	2
CO 3	1	2	1	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	2	1	1	2	2
Weightage	10	10	10	9	9	10

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy			
	Order, degree, formation, solution and the geometrical meaning of a differential equation, solving methods of differential equation: variables separable, Homogenous differential equations, equations reducible to homogenous form, linear differential equations, equations reducible to linear and exact form, exact differential equation.	6				
I	Linear differential equations of second order: Linear and Non- linear differential equations, linear differential equations of second order with constant coefficients, dimension of space of solution, Non-homogenous, Homogenous, superposition or linearity principle equations, linear independence and dependence, Wronskian, Existence of linearly independence	7	Chalk & Talk, PPT			
	Method to find complementary function and particular integral for any differential equation.	6				
	Fourier Transform: Integral transforms, Fourier integral theorem, Fourier sine and cosine integrals, Fourier's complex integral, convolution	7				
П	Fourier transforms, Fourier sine and cosine transforms, properties of Fourier transforms	6	Chalk, Talk&			
	Perseval's identity for Fourier transforms, Parseval's identity for cosine transform, Perseval's identity for sine transform, Fourier transform of derivatives, relationship between Fourier and Laplace transforms, solution of boundary value problems by using integral transform	7	Assignment			
	Introduction, definition of real vector space, sub space, construction of vector space, linear dependence and independence, linear dependence and independence, basis and dimension	4	Chalk,			
III	fundamental subspaces of a matrix, transformation, linear transformation, properties of linear transformation, matrices of linear transformation. Tensors of rank zero, one and two, dummy suffix, transformations	4	Talk& Exercise			

	Cartesian tensors – relation between the direction cosines and kroneckar delta – substitution property of kroneckar delta – algebra of Cartesian tensor – quotient law – symmetric and antisymmetric tensor –scalar invariant of a second rank tensor.	7	
	Legendre's equation, Legendre's polynomial $p_n(x)$, Legendre's function of second kind, general solution of Legendre's equation, Rodrigue's formula, Legendre's polynomial, a generating function of Legendre's polynomial	6	
IV	Orthogonality of Legendre's polynomial, a generating function of Legendre's polynomial, orthogonality of Legendre polynomials, recurrence formulae, Laplace's first definite integral , Laplace second definite integral, Fourier Legendre expansion, Strum – Liouville equation	6	Chalk & Talk, PPT
	Orthogonality, orthogonality of Eigen function, Laguerre's function, Laguerre's function for different values of n, generating function of Laguerre polynomial, recurrence relation, orthogonal property	6	
	Bessel's function: Bessel's equation , solution of Bessel's equation, Bessel's function j $_{n(x)}$, Bessel function of the second kind of order n, recurrence formulae, equations reducible to Bessel's equation	6	Chalk,
V	Orthogonality of Bessel function, a generating function for $j_n(x)$, trignomentric expansion involving Bessel function, Bessel integral, Fourier Bessel expansion, Ber and Bei functions.	6	Talk& Seminar
	Hermite function: Hermite's equation , generating function of Hermite polynomials , orthogonal property , recurrence formula for $h_n(x)$ of Hermite equation	6	

Course Designed by: Dr. D. Ruby Josephine & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Manuface - K Levels with Course Outcomes (COs)												
	Articulation Mapping – K Levels with Course Outcomes (COs) Section A Section B Secti												
								Section C	Sectio n D				
Intern	Co	15	K Level	MC	Qs	Short Ans	swers K -	Either or	Open				
al			IX LEVEL	No. of. Questions	K - Level	No. of. Questions	K - Leve	Choice	Choic				
				-		-	1		e				
CI	CC)1	К3	2	K1&K2	1	K1	2(K3&K3)	1 (K3)				
AI	CO2		K3	2	K1&K2	2	K2	2(K3&K3)	1 (K3)				
CI	CO3		K3	2	K1&K2	1	K2	2(K3&K3)	1 (K3)				
AII	CO4		K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)				
		No. of Questions to be asked No. of Questions to be answered		4		3		4	2				
Questio Patter				4		3		2	1				
CIA I &	ea		Marks for ch question	1		2		5	10				
			otal Marks for each section	4		6		10	10				

		Distr	ibution of M	arks wit	th K Level	CIAI	& CIA II	
	K Level	Section A (Multipl e Choice Question s)	Section B (Short Answer Questions)	Sectio n C (Eithe r / Or Choic e)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidat e of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CI	K3	-	-	20	20	40	80	
AI	K4	-	-	-	-	-	-	-
AI	Marks	4	6	20	20	50	100	100
	K1	2	_	-	-	2	4	20
	K2	2	6	-	-	8	16	20
CI	K3	-	_	20	10	30	60	60
ΑII	K4	-	_	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
		V	MC		Short An	swers	Section C	Section D				
S.No	COs	K - Level	No. of	K –	No. of	K –	(Either /	(Open				
		Level	Questions	Level	Question	Level	or Choice)	Choice)				
1	CO1	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)				
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)				
3	CO3	Up to K3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
4	CO4	Up to K4	2	K1&K2	1	K2	2 (K3&K3)	1(K3)				
5	CO5	Up to K5	2	K1&K2	1	K2	2 (K5&K5)	1(K5)				
No. o	of Quest Aske	ions to be d	10		5		10	5				
No. o	of Quest answe	ions to be red	10		5		5	3				
Mark	Marks for each question		1		2		5	10				
Total Marks for each section		10		10		25	30					
	(Figures	s in parenth	esis denotes,	questions s	should be as	ked with	n the given K	level)				

	Distribution of Marks with K Level												
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %						
K1	5	4	-	-	9	7.5	16.66						
K2	5	6	-	-	11	9.16	10.00						
K3	-	-	40	40	80	66.67	67						
K4	-	-	_	_	-		-						
K5	-	-	10	10	20	16.6	17						
Marks	10	10	50	50	120	100	100						
NB: Hig	gher level of p	erformance o	of the students	s is to be asse	essed by a	attempting	higher level						

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section	A (Mu	ltiple Cho	vice Questions)
		uestions	(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	 Identify from the following, order of a differential equation can be obtained from a) Highest order of the derivative involved b) Lowest order of derivative involved c) Constants d) All the above
2	CO1	K2	Show an example for linear differential equation from the following a) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2 + x + 1$ b) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = e^x$ c) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = \sin x$ d) $\frac{d^2y}{dx} + 5\frac{dy}{dx} + y^3 = f(t)$
3	CO2	K1	Identify the fourier cosine integral a) $f(x) = \frac{2}{\pi} \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$ b) $f(x) = \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$ c) $f(x) = \frac{2}{\pi} \int_0^\infty 8\sin ux du \int_0^\infty f(t) \sin ut dt$ d) $f(x) = 6 \int_0^\infty \sin ux du \int_0^\infty f(t) \sin ut dt$
4	CO2	K2	 Locate the function of integral transforms a) Solve partial differential equations with boundary condition b) Solve partial integral equations with boundary condition c) Solve non boundary problems d) All the above
5	CO3	K1	Identify is the element of a vector space a) tensor b) scalar c) vector d) all the above
6	CO3	K2	Linear operator are also known to be a) Linear transformation b) non linear transformation c) symmetric transformation d) all the above
7	CO4	K1	Legendre equation can be expressed as a) $(1-x^2) d^2y/dx^2-2x dy/dx+n(n+1)y=0$ b) $(1-x) d^2y/dx^2-2x dy/dx+2n(n+1)y=0$ c) $(1-2x) d^2y/dx^2-2x dy/dx+4n(n+1)y=0$ d) $(1-x) d^2y/dx^2-2x dy/dx+8n(n+1)y=0$
8	CO4	K2	The general solution of Legendre equation can be expressed as a) y=APn(x) +BQn(x) b) 2y=APn(x) +BQn(x) c) y=APn(x) d) y=BQn(x)

Summative Examinations - Question Paper – Format

21	1	K3	Find the complete solution of
Q.No	CO	K Level	Questions
		Three ques	
		en Choice	
level of			
			ormance of the students is to be assessed by attempting higher
20) b	CO5	K5	Show that (a) $J_{n+3}+J_{n+5}=2/x$ (n+4) Jn+4
$\frac{20}{20}$ a	CO5	K5	Prove that $J_{-n}(x) = (-1)^n J_n(x)$, Where n is a positive integer
			Polynomials Prove that $I_{-}(x) = (1)^{n} In(x)$. Where n is a positive integer
19) b	CO4	К3	Express the polynomial $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre
19) a	CO4	К3	Express the polynomial $f(x) = 4x^2-2x^2-3x+8$ in terms of Legendre Polynomials
18) b	CO3	K3	Find a proof for the following, if w_{ij} is a tensor, then its transpose also is a tensor
18) a	CO3	K3	Let u, v, w be linearly independent vectors. Find whether or not the following sets of vectors are linearly independent
17) b	CO2	K3	Find the Fourier transform of $\frac{1}{x}$
17) a	CO2	К3	Find the Fourier transform of e^{-ax^2} , where a>0
16) b	CO1	K3	Find the value of λ for the differential equation $(xy^2 + \lambda x^2y dx + (x+y) x^2 dy = 0$ is exact, solve the equation for this value
16) a	CO1	K3	Solve $y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy=0$
Q.No	CO	K Level	Questions
Answe	r All Qu	uestions	(5 x 5 = 25 marks)
		her/Or Ty	
15	CO4	K2	Describe in short about Desser function
13	CO3	K2 K2	Describe in short about Bessel function
12	CO2 CO3	K1 K2	Express Laplace transform Define first order tensor
<u>11</u> 12	CO1 CO2	K1 K1	Define Homogenous equation
Q. No	$\frac{CO}{CO1}$	K Level	Questions
		uestions	(5x2=10 marks)
	-	ort Answei	
			d) $3X \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$
			c) $X \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2) = 0$
10	CO5	K2	a) $X^{2\frac{d^2y}{dx^2}} + x\frac{dy}{dx} + (x^2 - n^2) = 0$ b) $X_{2\frac{d^2y}{dx^2}} + x\frac{dy}{dx} + (x^2 - n^2) = 0$
			Bessel differential equation can be expressed as $\frac{d^2y}{d^2y} = \frac{d^2y}{d^2y} = \frac{d^2y}{d^2$
			d) $\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2ny = 0$
9	CO5	K1	c) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 3$
			a) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0$ b) $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 6$
			Hermite polynomial can be expressed as $d^{2}y = 2x \frac{d^{2}y}{d^{2}} + 2xx = 0$

			$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$
22	2	К3	Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find fourier sine transform of $\frac{x}{1+x^2}$
23	3	K3	Discuss about the transformations in two dimensions
24	4	К3	Express the function $f(x) = \begin{cases} 0, -1 < x < 0 \\ x & 0 < x < 1 \end{cases}$ in Fourier Legendre expansion
25	5	K5	Prove that $\int x Jo(x) dx = x 2\{j2 + j1(x)\} + c$

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	QUANTUM MECHA	NICS – I					
Course Code	21PPHC22				L	Р	С
Category	Core				6	-	4
Nature of cours	EMPLOYABILITY	SKILL ORIENTED	\checkmark	ENTREPR	ENE	URSI	HIP
Course Objecti	ves:		1				
• To develop	familiarity with the phys	sical concepts and facility	with	the mathem	natica	1 met	hods
of quantum	nechanics.						
• To enable th	e students; learn the basi	c postulates of quantum me	echai	nics.			
• To cultivate	the skills at formulating	and solving physics proble	ms				
• To have acq	uired experience in using	both types of methods on	quar	tum mechar	nical p	oroble	ems.
• To apply the	approximation methods	for various quantum mech	anica	al problems.			
		OF QUANTUM MECH				17 H	[rs.
Linear Vector S	pace – Linear operator –	Eigen functions and Eigen	n val	ues – Hermi	tian (Opera	tor –
		Simultaneous Measurabil					
		n – Equations of Motion				entat	ions,
U		on representations-moment		epresentatio	n.		
		GEN VALUE PROBLEM				19 H	
	• •	n: Square-Well Potential		-	-		
	1	ential Barrier-Alpha emiss					
0		oscillator: Operator me			-		
		cle moving in a spherically					
		rotator – Hydrogen aton	n —T	The Free pa	rticle	—]	Three
	are- Well potential – The				<u> </u>		_
	· · · · · · · · · · · · · · · · · · ·	RANSFORMATIONS AN				18 H	
U	1	ion of wave function-Ma		1		-	
		ger equation in matrix for					
		or: Matrix method-Symmet	•				
•		n-translation in time: con			0.		on in
		m-space inversion: pairty c					r
		HODS FOR BOUND STA				17 H	rs.
•	1 '	ion Theory in Non-Degene					
1	6	ect in Hydrogen atom - Var			-		
		tes-Ground state of Heliur				amet	er Z
\mathbf{I} nit \mathbf{v}	B APPROXIMATION EORY	& TIME DEPENDENT	PER	TURBATI	ON	19 H	lrs.
Classical limit	approximate solutions.	-asymptotic nature of	the	solutions-T	ime-I	Deper	ndent
perturbation the	ory: First order perturbati	ion –Harmonic Perturbatio	n- Tı	ansition pro	babili	ty-se	cond
order perturbati	on-Fermi's golden rule -	 Adiabatic approximation 	n - c	hoice of pha			
with perturbatio	n theory-discontinuous cl	hange in H-Sudden approx	imat	ion.			
		Т	'otal	Lecture Ho	urs	90	
Books for Stud							
1. G.Aruldhas,	Quantum Mechanics, PH	HI Learning Private Limite	d, Se	cond Edition	n, 201	3	

UNIT – I

Chapter 3 (Section3.1 to 3.10)

UNIT – II

Chapter 4 (Section 4.1 to 4.4 & 4.7 to 4.9) Chapter 5 (Section 5.1 to 5.8)

UNIT-III

Chapter 6 (Section 6.1 to 6.8) Chapter 7(Section 7.1 to 7.6)

2. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, MacGraw-Hill Kogakusha, Tokyo, 2015.

Unit-IV

Chapter 8(Section 31 & 32)

Unit-V

Chapter 8(Section 34 & 35)

Books for Reference:

- 1. P. M. Mathews and K. Venkatesan, 1976, A Text book of Quantum Mechanics, Tata McGraw-Hill, New Delhi.
- 2. V. Devanathan, 2005, Quantum Mechanics, Narosa Publishing House, New Delhi.
- 3. J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1993
- 4. Kakani, Quantum Mechanics, Third Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2012.
- 5. B.K. Agarwal and Hari Prakash: Quantum Mechanics-Prentice-Hall of India, New Delhi, 2004.
- 6. Ghatak A., Introduction to Quantum Mechanics, MacMillan India Ltd., Madras, 2002

Web Resources:

- 1. <u>http://bookboon.com/Introduction to Quantum Mechanics, Intermediate Quantum Mechanics, Chemistry: Quantum Mechanics and Spectroscopy I, Chemistry: Quantum Mechanics and Spectroscopy II</u>
- 2. https://swayam.gov.in/courses/3485-quantum-chemistry
- 3. http://freevideolectures.com/Course/2876/Fundamentals-of-Physics-III/191.

Course	e Outcomes	K Level
The st	udent will be able to	
CO1:	Have a clear understanding of the foundation of Quantum Mechanics	K1
CO2:	Express the Schrodinger equation to exactly solvable problems.	K2
CO3:	Determine the effects of symmetries in quantum mechanics	K3
CO4:	Classify the properties of operators in quantum mechanics	K4
CO5:	Deduct the various perturbation methods to solve the quantum mechanical problems.	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	1	1	2	1	2		
CO2	2	2	3	2	2	2		
CO3	1	3	2	2	2	1		
CO4	2	2	2	1	2	2		
CO5	1	3	2	3	3	1		
Weightage	9	9	10	10	10	8		

3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	Quantum Mechanics-I	Hrs	Pedagogy
	GENERALFORMALISMOFQUANTUMMECHANICS:Linear Vector Space, Linear operator, Eigenfunctions and Eigen values, Hermitian Operator, Postulates ofQuantum Mechanics	5	
Unit-1	Simultaneous Measurability of Observables , General Uncertainty Relation ,Dirac's Notation	6	Chalk & Talk, Test
	Equations of Motion: Schrodinger representations, Heisenberg representations and Interaction representations, momentum representation.	6	
	EXACTLY SOLUBLE EIGEN VALUE PROBLEM: One Dimensional Eigen value problem: Square Well Potential with rigid walls- Square Well Potential with finite walls	7	
Unit-2	Square Potential Barrier,Alpha emission,Linear Harmonic oscillator: Schrodinger method,Linear Harmonic oscillator: Operator method,The free particle ,Three dimensional Eigen value problems: Particle moving in a spherically symmetric potential	6	Chalk & Talk, PPT
	Systems of two Interacting particles ,Rigid rotator ,Hydrogen atom,The Free particle, Three dimensional Square,Well potential ,The Deuteron	6	
Unit-3	REPRESENTATIONS, TRANSFORMATIONS AND	6	Chalk &

	SYMMETRIES: Heisenberg Method,Matrix representation of wave function,Matrix representation of operator,properties of matrix elements, equation in matrix form		Talk, seminar
	Eigen value problem,Unitary transformations,linear harmonic oscillator: Matrix method,Symmetry transformation,Translation in space: conservation of linear momentum	6	
	translation in time: conservation of energy,Rotation in space: conservation of angular momentum, space inversion: parity conservation,time reversal	6	
	APPROXIMATION METHODS FOR BOUND STATES: Stationary (Time Independent) Perturbation Theory in Non- Degenerate Case	7	
Unit-4	First-order perturbation,Degenerate Case,Stark Effect in Hydrogen atom ,Variation Method ,expectation value of energy	5	Chalk & Talk, Assignment
	application to excited states,Ground state of Helium,variation of the parameter Z.	5	
	Classical limit, approximate solutions, asymptotic nature of the solutions, Time–Dependent perturbation theory: First order perturbation	6	Chalk &
Unit-5	Harmonic Perturbation, Transition probability, second order perturbation, Fermi's golden rule, Adiabatic approximation	6	Talk , Exercise, test
	choice of phases, connection with perturbation theory, discontinuous change in H-Sudden approximation	7	

Course Designed by: Mrs. S. Nagadeepa & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print											
	Articulation Mapping – K Levels with Course Outcomes (COs)											
				Sectio	n A	Section	B	Section C	Section			
Internal	CO)c	Κ	MCO	Qs	Short Ans	swers	Either or	D			
memai	U	5	Level	No. of.	К -	No. of.	К -	Choice	Open			
				Questions	Level	Questions	Level	Choice	Choice			
CI	CC)1	K2	2	K1&K2	1	K1	2(K2&K2)	1 (K2)			
AI	CC)2	K3	2	K1&K2	2	K2	2(K3&K3)	1 (K3)			
CI	CC)3	K2	2	K1&K2	1	K2	2(K2&K2)	1 (K2)			
AII	CC)4	K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)			
	Q		No. of testions to be asked	4		3		4	2			
Question Pattern		No. of Questions to be answered Marks for each question		4		3		2	1			
CIA I &	Π			1		2		5	10			
		Ma	Total arks for each ection	4		6		10	10			

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questio ns)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolid ate of %			
	K1	2	2	-	-	4	8	60			
	K2	2	4	10	10	26	52	00			
CIA	K3	-	-	10	10	20	40	40			
	K4	-	-	-	-	-	-	-			
1	Marks	4	6	20	20	50	100	100			
	K1	2	_	-	_	2	4	60			
	K2	2	6	10	10	28	56	00			
CIA	K3	-	-	10	_	10	20	20			
II	K4	-	-	-	10	10	20	20			
	Marks	4	6	20	20	50	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
			MOQs		Short An	swers	Section C			
S.No	COs	K - Level	No. of Question s	K – Level	No. of Question	K – Level	Section C (Either / or Choice)	Section D (Open Choice)		
1	CO 1	Up to K 2	2	K1&K2	1	K1	2(K1&K1)	1(K2)		
2	CO 2	K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)		
3	CO 3	Up to K 4	2	K1&K2	1	K2	2 (K3&K3)	1(K4)		
4	CO 4	Up to K 5	2	K1&K2	1	K2	2 (K4&K4)	1(K5)		
5	CO 5	Up to K 3	2	K1&K2	1	K2	2 (K2&K2)	1(K3)		
No.	of Quest Aske	ions to be ed	10		5		10	5		
No.of Questions to be answered		10		5		5	3			
Mar	Marks for each question		1		2		5	10		
Total Marks for each section			10		10		25	30		
	(Figures	in parenthesi	s denotes, q	uestions s	hould be as	ked with	the given K l	evel)		

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	6	10	-	19	15.83	42				
K2	5	4	10	10	31	25.83	42				
K3	-	-	20	30	50	41.67	42				
K4	-	-	10	-	10	8.3	8				
K5	-	-	-	10	10	8.3	8				
Marks	10	10	50	50	120	100	100				
C	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.										

		-	ce Questions)
	r All Qu		(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	The state vector changes with time but the operator remains constant which is called Picture a) Heisenberg b) Schrodinger c) Interaction d) dual
2	CO1	K2	The Eigen values of Hermitian operators area) realb) imaginaryc) constantd) varying
3	CO2	K1	In λ=A+BE Where A& B are constants. This is calledlaw a) Bragg law b) Newton's law c) Geiger-Nuttal law d) Bloch law
4	CO2	K2	is the smallest nucleus in which a proton and a neutron are held together by the nuclear potential a) Deuteron b) Proton c) neutron d) electron
5	CO3	K1	In discrete symmetry transformation, the reflection through the origin calleda) parity inversion c) space inversionb) space operation c) parity operator
6	CO3	K2	The time reversal invariance of the Schrodinger equation results only if the commutator [T,H]= a) 0 b) ih c) 1 c) h
7	CO4	K1	The helium atom consists of two electrons and a nucleus with a (a) One proton & one neutron (b) two protons & one neutron (c) Two protons & two neutrons (d) one proton & two neutrons
8	CO4	K2	The solution of the angular part of the equation called the (a) Linear harmonics (b) an harmonics (c) Spherical harmonics (d) circular harmonics
9	CO5	K1	A relation between β and V_o is called (a) WKB method (b) variation method (c) Range depth relation (d) Rayleigh – Ritz method
10	CO5	K2	The point at which E = V(x) is called the(a) Classical turning point(b) quantum turning point(c) Barrier penetration point(d) all the above
		rt Answers	5)
	r All Qu		(5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	Write any two postulates of Quantum Mechanics
12	CO2	K1	What is meant by hydrogenic orbitals?
13	CO3	K2	Define the symmetry transformation
14	CO4	K2	Explain non-degenerate case in quantum mechanics?
15	CO5	K2	What is meant by harmonic perturbation?

Summative Examinations - Question Paper – Format

Section	C (Eith	er/Or Typ	e)
Answe	r All Qu	estions	(5 x 5 = 25 marks)
Q.No	CO	K Level	Questions
16) a	CO1	K1	What are the properties of Orthogonal functions in the formalism
10) a	COI	K1	of quantum mechanics?
16) b	CO1	K1	Describe the theorems involving in the Hermitian operator.
17) a	CO2	K3	Determine the Eigen value of Bloch waves in periodic potential
17) b	CO2	K3	Estimate the energy value of Rigid rotator.
18) a	CO3	K3	Calculate the space inversion with parity conservation
18) b	CO3	K3	Determine the energy with translation in time.
19) a	CO4	K4	Illustrate the first order stark effect in Hydrogen.
19) b	CO4	K4	Analyze the variation method to find the energy Eigen values.
20) a	CO5	K2	Describe the time independent perturbation theory.
20) b	CO5	K2	Summarize the adiabatic approximation.
NB: Hi	gher lev	el of perfo	rmance of the students is to be assessed by attempting higher
level of	K levels	8	
Section	D (Ope	en Choice)	
Answe	r Any T	hree questi	ions (3x10=30 marks)
Q.No	CO	K Level	Questions
21	CO1	K2	Classify the different types of equation of motion and explain any
21	COI	N2	two of them.
22	CO2	K3	Calculate the energy Eigen values and energy functions for
			Hydrogen atom.
23	CO3	K4	Analyze the linear harmonic oscillator by matrix method.
24	CO4	K5	Evaluate the ground state energy values of Helium.
25	CO5	K3	Compute the energy levels using WKB approximation.

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	DIGITAL ELECTRONICS			
Course Code	21PPHC23	L	Р	С
Category	Core	6	-	4
Nature of course	e: EMPLOYABILITY 🖌 SKILL ORIENTED 🖌 ENTREPR	ENEU	JRSI	HIP
Course Objecti	ves:			
• To familiarize	the combinational logic circuits and Karnaugh map simplifications.			
• To formulate d	ata processing circuits and programmable logics.			
• To understand	the basic principles of arithmetic and timing circuits.			
	ight about fundamental concepts, techniques and applications of Di	gital	elect	ronic
Flip-flops.		0		
	e constructions of registers and counters for our regular use.			
	nbinational Logic Circuits		191	Hrs
	and theorems: Basic laws-OR and AND operations-De Morgan	's and		
	sive-OR and Exclusive-NOR operations-Consensus and Shanan's t			•
	hod: Sum-of-products equation. Truth table to Karnaugh map: Three			
	Entered variable maps. Pairs, Quads and Octets- Karnaugh			
	ups, Rolling the map and Eliminating redundant groups. Don't c	-		
	ns method: Converting a truth table to an equations-Logic circ			
between SOP a	nd POS. Product-of-sums simplification: Sum-of-products and C	Comp	leme	ntary
	NOR circuit-Duality. Five variable Karnaugh maps- Minimization	-		-
	Quine-McClusky method.			
Unit: II Dat	a processing circuits		17]	Hrs
Data processing	circuits: Multiplexers - de-muliplexers - 1-of-16 decoder - B	CD to	o deo	cimal
decoders - seve	en segment decoders - encoders - exclusive-OR gates - parity	gener	ators	and
checkers – ma	agnitude comparator – read-only memory – programmable	array	log	ic –
programmable lo	ogic arrays – troubleshooting with a logic probe.			
	thmetic Circuits, Clocks and Timing circuits		17 1	Hrs
	Binary subtraction-Unsigned binary numbers-Sign magnitude numb			
complement arit	hmetic-Arithmetic building blocks: Half-adder, Full-adder, Controlle	ed Inv	verter	·-
Adder-Subtracte	r. Clocks: Clock wave forms-TTL clocks-Schmitt trigger. Multivibra	ator: 5	555ti	mer,
astable and mon				
	- flop, D/A conversion and A/D conversion		191	
	asic idea, NOR-gate latch, NAND-gate latch. Gated flip-flops: Cle			
	D flip-flops. Edge-triggered RS flip-flops: Positive-edge-triggered			
	iggered RS flip-flops. Edge-triggered D flip-flops. Edge-triggered		-	-
•	iggered JK flip-flops, negative-edge-triggered JK flip-flops. Fli			-
	ter-slave flip-flops. Variable resistor networks: Binary equivalent w	-		
•	ladder. D/A converters: Multiple signals, D/A converter testing and	avai	lable	D/A
	accuracy and resolution. A/D converter: Simultaneous conversion.			
)	isters and Counters		18]	
	ers: Serial in-serial out, serial in-parallel out, parallel in-serial o	-		
parallel out. As	synchronous Counters: Ripple Counters. Decoding gates-Synchro	nous	cour	nters.

Total Lecture Hours

90

Counter modulus-Mod-3 and mod-6 counters. Decade counters: Mod-5mod-10 counters.

Books for Study:

- 1. Leach, D.P., Malvino, A.P. and Saha, G., Digital Principles and Applications, VIII Edition, Tata McGraw Hill Education Pvt. Ltd, New Delhi, 2015.
 - Unit I Chapter 3, Sec.3.1-3.11
 - Unit II Chapter 4, Sec.4.1 -4.13
 - Unit III Chapter 6, Sec.6.1-6.8 Chapter 7, Sec.7.1-7.5
 - Unit IV Chapter 8, Sec.8.1-8.8
 - Chapter 12, Sec.12.1-12.5
 - Unit V Chapter 9, Sec. 9.1-9.5
 - Chapter 10, Sec.10.1-10.5

Books for References:

- **1.** Salivahanan, S. and Arivazhagan, S.,Digital Circuits and Design, Fourth Edition, Vikas Publishing House Pvt. Ltd., New Delhi-14, 2012.
- **2.** Jacob Millman, Christos C. Halkias and Chetan Parith,Integrated Electronics, TaTa McGraw Hill Education Pvt. Ltd., New Delhi-8, 2008.
- **3.** Jacob Millman and Herbert Taub, Pulse,Digital and Switching Wave forms, 28th Reprint,TaTa McGraw Hill Education Pvt. Ltd., New Delhi-8, 2005.

COUR	SE OUTCOME	K Level
CO1:	Apply Boolean algebra and the Karnaugh map as tools in designing and to simplifying digital logic circuits.	K3
CO2:	Know the fundamental concepts and techniques used in data storage elements.	K2
CO3:	Construct arithmetic circuits and Digital Clocks in an accurate manner.	K5
CO4:	Demonstrate the basic logic gates used in the formation of memory devices.	K2
CO5:	Understand the behavior of a register with additional control signals and counters implementations.	K2

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	1	2	2	2				
CO2	3	3	3	2	2	2				
CO3	2	2	1	2	2	1				
CO4	2	2	2	2	2	2				
CO5	1	3	2	3	2	3				
Weightage	10	11	9	11	10	10				

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Units	21PPHC23- Digital Electronics	Hrs.	Mode			
	Boolean laws and theorems: Basic laws, OR and AND operations, De Morgan's and Duality theorems,Exclusive-OR and Exclusive-NOR operations-Consensus and Shanan's theorems	5				
Unit-1 Combinational Logic Circuits	Sum-of-products method: Sum-of-products equation. Truth table to Karnaugh map: Three variable, four variable and Entered variable maps. Pairs, Quads and Octets- Karnaugh simplifications: overlapping groups, Rolling the map and Eliminating redundant groups.	5	Chalk &Talk, PPT			
	Don't care conditions. Product –of-sums method: Converting a truth table to an equations-Logic circuit- Conversion between SOP and POS.	4				
	Product-of-sums simplification: Sum-of-products and Complementary circuits- NOR-NOR circuit-Duality. Five variable Karnaugh maps- Minimization of multiple output function-Quine-McClusky method.	5				
Unit-2	Data processing circuits: Multiplexers – de- muliplexers - 1-of-16 decoder – BCD to decimal decoders – seven segment decoders.	5	Chalk			
Data processing	encoders – exclusive-OR gates – parity generators and checkers – magnitude comparator.	6	&Talk,			
circuits	Read-only memory – programmable array logic – programmable logic arrays – troubleshooting with a logic probe.	6	PPT			
Unit-3	Binary addition-Binary subtraction-Unsigned binary numbers-Sign magnitude numbers-2's complement arithmetic.	complement 5				
Arithmetic Circuits, Clocks and Timing circuits	Arithmetic building blocks: Half-adder, Full-adder, Controlled Inverter-Adder-Subtracter. Clocks: Clock wave forms-TTL clocks.	6	Chalk &Talk, Assignment			
encults	Schmitt trigger. Multivibrator: 555timer – astable and monostable.	6				
Unit-4 Elip - flop	RS flip-flop: Basic idea, NOR-gate latch, NAND-gate latch. Gated flip-flops: Clocked RS flip-flops, clocked D flip-flops. Edge-triggered RS flip-flops: Positive- edge-triggered RS flip-flops, negative-edge-triggered RS flip-flops. Edge-triggered D flip-flops.	5	Chalk			
Flip - flop, D/A conversion	Edge-triggered JK flip-flops: Positive-edge-triggered JK flip-flops, negative-edge-triggered JK flip-flops. Flip-flops timing circuits. JK master-slave flip-flops.	5	&Talk, PPT, Class			
and A/D conversion	Variable resistor networks: Binary equivalent weight, resistive divider. Binary ladder.	4	Test			
	D/A converters: Multiple signals, D/A converter testing and available D/A converters. D/A accuracy and resolution. A/D converter: Simultaneous conversion.	ccuracy and 5				
Unit-5	Types of registers: Serial in-serial out, serial in-parallel	6	Chalk			

LESSON PLAN

Registers and	out, parallel in-serial out, parallel in-parallel out.		&Talk,
Counters	Asynchronous Counters: Ripple Counters. Decoding gates-Synchronous counters.	6	РРТ
	Counter modulus-Mod-3 and mod-6 counters. Decade counters: Mod-5mod-10 counters.	6	

Course Designed by: Dr. M. Alagar & Dr. D. Ruby Josephine

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print												
	Articulation Mapping – K Levels with Course Outcomes (COs)												
					on A	Sectio			Section				
Intern					CQs	Short Ai		Section C	D				
al	CO	S	K Level	No. of.		No. of.	К-	Either or	Open				
				Question	K - Level	Questio	Leve	Choice	Choice				
				S		ns	<u>l</u>						
CI	CO		K2	2	K1&K2	1	K1	2(K2&K2)	1 (K2)				
AI	CO	2	K3	2	K1&K2	2	K2	2(K3&K3)	1 (K3)				
CI	CO	3	K2	2	K1&K2	1	K2	2(K2&K2)	1 (K2)				
AII	CO	4	K4	2	K1&K2	2	K2	2(K3&K3)	1 (K4)				
		No. of Questions to		4		3		4	2				
			be asked No. of										
Questi		Questions to be answered		4		3		2	1				
Patter CIA I &]	Marks for each	1		2		5	10				
			question otal Marks for each	4		6		10	10				
			section										

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Question s)	Section C (Either / Or Choice)	Sectio n D (Open Choic e)	Total Marks	% of (Marks without choice)	Consolid ate of %				
	K1	2	2	-	-	4	8	60				
	K2	2	4	10	10	26	52	00				
CI	K3	-	-	10	10	20	40	40				
	K4	-	-	-	-	-	-	-				
AI	Marks	4	6	20	20	50	100	100				
	K1	2	-	-	-	2	4	60				
CT	K2	2	6	10	10	28	56	60				
	K3	-	-	10	-	10	20	20				
A II	K4	-	-	-	10	10	20	20				
11	Marks	4	6	20	20	50	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)											
S.No	COs	K - Level	MO No. of Question	Qs K –	Short Ans No. of	swers K – Leve	Section C (Either /	Section D (Open				
			s	Level	Question	l	or Choice)	Choice)				
1	CO 1	Up to K 2	2	K1&K2	1	K1	2(K1&K1)	1(K2)				
2	CO 2	Up to K3	2	K1&K2	1	K1	2(K3&K3)	1(K3)				
3	CO 3	Up to K 4	2	K1&K2	1	K2	2(K3&K3)	1(K4)				
4	CO 4	Up to K 5	2	K1&K2	1	K2	2(K4&K4)	1(K5)				
5	CO 5	Up to K 3	2	K1&K2	1	K2	2(K2&K2)	1(K3)				
No.	of Quest Aske	ions to be ed	10		5		10	5				
No	No.of Questions to be answered		10		5		5	3				
Mar	Marks for each question		1		2		5	10				
Total Marks for each section			10		10		25	30				
	(Figures	in parenthesi	is denotes, q	uestions s	hould be as	ked with	n the given K	level)				

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	6	10	-	19	15.83	42					
K2	5	4	10	10	31	25.83	42					
K3	-	-	20	30	50	41.67	42					
K4	-	-	10	-	10	8.3	8					
K5	-	-	-	10	10	8.3	8					
Marks	10	10	50	50	120	100	100					
	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.											

Summative Examinations - Question Paper – Format

	Section A (Multiple Choice Questions) Answer All Questions (10x1=10 marks)								
			(10x1=10 marks)						
Q.No	CO	K Level	Questions						
			Any two minterms in adjacent squares that are together						
1	CO1	K1	will cause a removal of the different variable.						
1	COI		a) NOTed b) ANDed						
			c) ORed d) NORed						
			Eight adjacent squares represent a term of literal.						
2	CO1	K2	a) one b) two						
			c) three d) four						
			A combinational circuit that performs the addition of two bits is						
3	CO2	K1	called a						
5	002		a) half-adder b) full-adder						
			c) half-subtractor d) full-subtractor						
			The bubbled Or gate is equivalent to thegate.						
4	CO2	K2	a) AND b) OR						
			c) NAND d) NOR						
			A BCD adder is a circuit that adds two BCD digits in parallel and						
5	CO3	K1	produces a sum digit also in						
			a) MSI b) BCD						
			c) LSI d) Decimal						
			The is a combinational circuit with AND gates connected as						
-	GOO		a decoder and a number of OR gates equal to the number output in						
6	CO3	K2	the unit						
			a) RAM b) CPU						
			c) ROM d) EAROM						
-	004	17.1	A Flip-flop has inputs						
7	CO4	K1	a) 4 b) 2						
			c) 5 d) 1						
			The memory elements used in clocked sequential circuits are						
8	CO4	K2	called						
			a) counter b) register						
			c) relay d) flip flop						

9	CO5	K1	A group of flip flops sensitive to pulse duration is called a a) dynamics b) memory entangle c) latch d) array					
10	CO5	K2	A group of flip flops sensitive to pulse transition is called as a) shifting b) register c) transfer d) memory					
	-	ort Answei						
Q.No	CO	uestions K Level	(5x2=10 marks) Questions					
11	C01	K Level K1	Define two variable map in the simplification of boolean functions					
12	CO2	K1	Draw the three graphic symbol of invertor gate					
13	CO3	K2	Describe half Adder with exclusive OR gate					
14	CO4	K2	Why is NAND gate called as a universal gate					
15	CO5	K2	What are BCD numbers, why is it called so?					
Section	C (Eit	her/Or Ty	pe)					
Answei	r All Q	uestions	(5 x 5 = 25 marks)					
Q.No	CO	K Level	Questions					
16) a	1	K3	Obtain the simplified expression in sum of products for the given					
10 <i>)</i> a	1	K5	Boolean function: a'b'+bc+a'bc'					
16) b	1	K3	Narrate the NAND implementation procedure in the digital					
10) 0	1	11.5	circuits.					
17) a	2	K4	Give the construction details of full-adder and also present the					
	_		map and logic circuits for it.					
17) b	2	K4	How is the multilevel NOR circuits used as universal gate?					
,			Explain with an example.					
18) a	3	K3	Show the designing procedure of a BCD-to-excess-3 code converter in brief.					
18) b	3	K3	Discuss about the details of decoder in detail.					
18) b 19) a	4	K3 K3	Provide a detailed note on flip flop excitation table.					
19) b	4	K3	Write about state equation in elaborate.					
20) a	5	K5	Discuss a complete note on Shift registers.					
20) b	5	K5	Give a detailed account on BCD counter.					
			ormance of the students is to be assessed by attempting higher					
level of	-	-						
		en Choice						
	_	Three ques						
Q.No	ĊŎ	K Level	Questions					
21	CO1	V 2	Discuss the product of sums simplifications with the following					
21	CO1	K3	function: $F(A,B,C,D) = \Pi(0,1,2,5,8,9,10)$					
22	CO2	K3	Explain the exclusive OR function and equivalence function for					
	02	KJ	the map with four variable.					
23	CO3	K5	Narrate the function of magnitude comparator with 4 bit					
	205	11.7	formations.					
24	CO4	K3	Provide a detailed note on JK flip flop with logic diagram,					
		-	graphical symbol, characteristic table and equation.					
25	CO5	K3	Discuss about the working of Binary counter and binary up down					
			counter.					

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Cours	se Name	GENERAL PHYS	ICS PRACTICAL							
Cours	se Code	21PPHCP1			L	P	C			
Categ	ory	Core			-	- 3				
Natur Cours	e of the e	EMPLOYABILITY	SKILL ORIENTED	✓	ENTREPREN	EPRENEURSHIP				
Cours	se Objectiv	ves:								
• To	o learn vari	ous experimental and	computational tools there	by de	eveloping analyti	cal sk	ills.			
• To	o acquire th	ne appropriate data acc	urately and keep systemation	tic re	cord of laborato	ry				
ac	tivities.					•				
• To	o prepare g	raphical presentations	of laboratory data and con	nput	ational results.					
• To	o interpret	findings using the phys	sical scientific tools	_						
	-		repancy in practical exper	imer	ntal observations					
		LVE EXPERIMENT								
	1. Error	analysis of experimen	ital data							
		ctive index of a liquid								
	3. Deter	rmination of Cauchy's	constant							
	4. Deter	rmination of wavelengt	th of the prominent lines b	oy gr	ating-Oblique in	ciden	ce			
	5. Reso	lving power of a prism	l							
	6. Deter	rmination of Young's 1	modulus and Poisson's rat	io of	fa					
		bex scale by forming E								
		based diffraction expe								
			icient of coupling between	n the	pair of					
		using Anderson's Brid	0							
			ductance of a pair of coils	by f	orming Maxwell	's Bri	dge			
		's bridge and Owen's								
			using C++Programming							
			using C++Programming							
			using C++Programming							
	-		ing C++ Programming							
COLU	*	ezoidal rule using C++	Programming			T 7 T				
	RSE OUT					KI	<i>l</i> evel			
Un Co	· •	of this course, the stude		*	4 - 41					
CO1	-	-	heoretical concepts and in	vest	igate the	I	Χ3			
		s & effects of optics	11 1 4 1 1	•	• , .	KJ				
CO2 Cultivate technical skills to troubleshoot the errors in various instruments						1	X1			
		mine accurate results.	11 1 77 9 1	1	• ,					
<u>CO3</u>			al by doing Young's modu				<u>K4</u>			
<u>CO4</u>	-		electrical components and ming for Numerical metho		<u> </u>		K2 K5			
CO5	Develop			م ما ام م	and the large second		/ 5			

Course Designed by: Mrs. S. Nagadeepa & Dr.M.Alagar

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
course outcomes (co s)	PO1	PO2	PO3	PO4	PO5	PO6			
C01	3	2	2	2	2	2			
CO2	3	1	2	2	2	3			
CO3	2	2	1	1	2	2			
CO4	2	1	2	2	2	2			
CO5	1	3	1	3	1	1			

3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ELECTRONICS PRACTI	ICAL					
Course Code	21РРНСР2			L	Р	С	
Category	Core			-	3	4	
Nature of cours	e: EMPLOYABILITY	SKILL ORIENTED		REN	EURS	HIP	
Course Object			1 1				
y	knowledge of semiconductor	devices and their applicat	ions.				
-	and the concepts of OPAMPS	11					
	cillator and amplifier circuits.						
•	the skills in handling instrum		es.				
-	the students for the real life w	6					
	E EXPERIMENTS		•				
1. FET amplifie							
	2. UJT characteristics						
3. Single Stage	Amplifier - Frequency respon	nse and bandwidth determ	ination				
	Power Supply [Single (5V) a						
5. Phase shift o							
6. Wien bridge	oscillator						
7. Saw tooth W	ave generator						
8. Emitter follo	wer						
9. UJT – Relax							
	ng circuits – Clipping and Cla						
	filter circuits - Low, High and	d Band pass filters – usin	g OP AMP				
	ltivibrators – using OP AMP						
	ltivibrators – using IC 555						
-	and Demultiplexer circuits.						
	ics of LED and Photo diode						
COURSE OU		11 11			KĹ	evel	
	e programme, the student will		• • •				
	strate UJT behavior in the det					3	
	rize different structural oscilla					2	
	p the knowledge to construct		d their uses.			3	
	e the circuit performances wit					<u>(4</u>	
CO5: Use the	importance of applications of	t electronics in real life si	tuations.		K	5	

CO & PO Mapping:

Course Outcomes (CO's)		Progr	Programme Outcomes (PO's)						
course outcomes (co s)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	1	2	2	2			
CO2	3	2	3	2	2	2			
CO3	2	1	1	2	2	1			
CO4	2	2	2	2	2	2			
CO5	2	3	2	3	1	3			
Weightage	11	9	9	11	9	10			

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. M. Alagar

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	NANOTECHNOLOGY						
Course Code	21PPHN21				L	Р	С
Category	NME				6	-	6
Nature of cours	e: EMPLOYABILITY	✓	SKILL ORIENTED	ENTREPR	ENE	URSI	HIP
Course Objecti	ves:						
• To describe	the detailed aspects of nanor	mater	rials of various dimensio	n			
• To explain c	ifferent techniques and appl	icatio	on of nanomaterials				
-							
	the extended application of		•				
	nd the influence of application						
	damentals of nanotechnol				1	8 Hrs	
Nanotechnology timeline: Pre 18 th century -19 th century and 20 th century- 21 st century.							
_	Core concepts of nanotechnology: nanotech generation- nanoscale – nanoscience - material science - new forms of carbon – nanocomposites - polymer nanocomposites - nanomaterials, properties of						
nanomaterials - one dimensional and two dimensional nanomaterials - nanomaterials in three							
dimension.						nee	
	thesis and Application 18 Hrs.						
Two types of construction – spintronics, molecular nanotechnology - nano structure							
	assembly - nanophotonics						
	onics - biomedical science -						
	– photometry - giant magne			ii iicid, iidiio	pores	. 011	ange
	asurement tools				1	8 hrs.	
	d fabrication - tools and	tech	niques microscopy, me	etrology, car			
	urification of CNTs – Disp						
	canning tunneling microsco						
	nd capabilities of STM – ne						
modification	1			19			
Unit: IV Ap	lications of Nanotechnolog	gy			1	8 hrs.	
	ations- types of application		Nanotechnology address	ses the chal	lenge	s – 1	new
	s I and II – new application				-		
	chnology for hydrogen ene						
nanocapsules, m	onitoring and treatment. Sec	curity	v – other applications				
Unit: V Ap	olications of Nanotechnolog	gy in	nanoelectronics		1	8 hrs.	
Plastic E	ectronics - processes for nar	no Ele	ectronics, - nanocircuitry	y -nanoelectr	onic	devic	es -
nano electronic	applications - Ambient in	ntelli	gence – cleaner - safe	er and more	e cor	nfort	able
transport - orga	nic semiconductor materials	for	opto and microelectron	ic devices -	nano	swite	ches
•	line conductive polymer nam	o nee	edles – complementary 1	metal oxide s	emic	ondu	ctor
- 45 nanometer	- system on a chip.						
			Total L	ecture Hour	s 9	0	
Books for Stud							
	Rathi, Nanotechnology, tec			century, Vik	as Pi	ıblisł	ning
House Pvt. Ltd,	Ghaziabad –201010, Reprin	t 201	9				

Academic Council Meeting Held On 29.04.2021

Unit 1	- chapter 2, 3	
	- chapter 3	
	- chapter 4	
	- chapter 5	
	– chapter 7	
	for References:	
Ba	chard Boker and Earl Baysen, Nano technology, I st Edition, Wiley Dreamtech ngaluru, 2005. Binns, Introduction to Nanoscience and Nanotechnology, Vol. 14, John Wiley 10	-
	Alian, An Introduction to Nanoscience and Nanotechnology, First Edition, W d., New Delhi, 2015.	iley India Pvt.
Web F	Resources:	
1. <u>http</u>	s://nptel.ac.in/courses/104/106/10410612	
2. <u>http</u>	s://storage.googleapis.com/uniquecourses/course.html	
3. <u>http</u>	s://epgp.inflibnet.ac.in/	
Cours	e Outcomes	K Level
At the	end of the program, the student will be able to	
CO1:	Develop a detailed knowledge about the origin of nanomaterials and its timeline	К3
CO2:	Identify different synthesis techniques and learn about the applications of nanomaterials	К3
CO3:	Develop knowledge about analyzing tools of nanomaterials	K3
CO4:	Analyze various applications of nanomaterials in nanotechnology	K4
CO5:	Use the importance of learnt application of nanomaterials extensively in nanoelectronics	K5

CO & PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	3	2	2	2	2
CO 2	2	2	2	2	2	2
CO 3	2	1	2	2	2	2
CO 4	2	2	2	2	2	2
CO 5	2	3	2	1	2	2
Weightage	10	10	10	9	10	10

*3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	Course Name	Hrs	Pedagogy
	Fundamentals of nanotechnology and timeline		
	Nanotechnology timeline: Pre 18 th century, 19 th century and 20 th century, 21 st century.	6	
Ι	Core concepts of nanotechnology: nanotech generation, nanoscale, nanoscience, material science, new forms of carbon, nanocomposites, polymer nanocomposites, nanomaterials, properties of nanomaterials,	6	Chalk & Talk, PPT
	one dimensional and two dimensional nanomaterials, nanomaterials in three dimension.	6	
	Synthesis and Application		
	Two types of construction, spintronics, molecular nanotechnology, nano structures material by self assembly, nanophotonics	6	Chalk,
II	electronics and optoelectronics, plastic electronics molecular		Talk&
	electronics, biomedical science, nanodevice can do in medical field,	6	Assignment
	nanopores, charge coupled devices, photometry, giant		
	magnetoresistance	6	
	Measurement tools		
	Tools and fabrication, tools and techniques microscopy, metrology,		
	carbon nanotube fabrication	6	Chalk,
III	purification of CNTs, Dispersion, scanning probe microscopy, atomic		Talk&
111	force microscopy	6	class test
	scanning tunneling microscope, challenges for STM, how the		
	challenges are solved, uses and capabilities of STM, near field	6	
	scanning optical microscopy, electrical surface modification	Ŭ	
	Applications of Nanotechnology		
	Potential applications, types of applications, Nanotechnology addresses	6	
IV	the challenges, new energy producers I and II, new applicationsNanotechnologyforenergy,portablepowerandsolar,		Chalk &
1 V	Nanotechnology for hydrogen energy	6	Talk, PPT
	medicine: prevention, implants, artificial skin, nanocapsules,		-
	monitoring and treatment, Security, other applications	6	
	Applications of Nanotechnology in nanoelectronics		
	Plastic Electronics, processes for nano Electronics, nanocircuitry,		
	nanoelectronic devices, nano electronic applications,	6	Chalk,
V	Ambient intelligence, cleaner, safer and more comfortable transport,	6	Talk&
¥	organic semiconductor materials for opto and microelectronic devices		Seminar
	nanoswitches based on crystalline conductive polymer nano needles –		
	complementary metal oxide semiconductor – 45 nanometer - system	6	
	on a chip.	-	

Course Designed by: Dr. D. Ruby Josephine & Dr. P.P. Kannan

	Learning Outcome Based Education & Assessment (LOBE)							
	Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)							
			Sectio	n A	Section	n B	Section C	Section D
Inte	Cos	K Level	MC	-	Short Answers		Either or	Open
rnal	0.00		No. of.	K - Level	No. of.	K - Level	Choice	Choice
CI	C01	K2	Questions 2	K1&K2	Questions	K1	2 (K2&K2)	1(K2)
AI	CO1 CO2	K2 K3	2	K1&K2 K1&K2	2	K1 K2	2 (K2&K2) 2 (K3&K3)	2(K2&K3)
CI	CO2	K2	2	K1&K2	1	K2	2 (K3&K3) 2 (K2&K2)	1(K2)
AII	CO4	K4	2	K1&K2	2	K2	2 (K3&K3)	2(K3&K4)
		No. of Questions to be asked	4		3		4	3
Question Pattern CIA I & II		No. of Questions to be answered	4		3		2	2
	1 & 11	Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	20

	Distribution of Marks with K Level CIA I & CIA II							
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	6.67	67
	K2	2	4	10	20	36	60	
CIA	K3	-	-	10	10	20	33.33	33
	K4	-	-	-	-	-	-	-
L	Marks	4	6	20	30	60	100	100
	K1	2	2	-	-	4	6.67	50
	K2	2	4	10	10	26	43.33	
CIA	K3	_	_	10	10	20	33.33	33
II	K4	-	-	-	10	10	16.67	17
	Marks	4	6	20	30	60	100	100

Sum	native Ex	kamination –	Blue Print A	Articulatio	on Mapping	– K Lev	el with Cours	e Outcomes
(CO				(COs	<u>s)</u>			
			MO	Qs	Short An	swers	Section C	Section D
S.No	COs	K - Level	No. of	К –	No. of	К –	(Either /	(Open
			Questions	Level	Question	Level	or Choice)	Choice)
1	CO1	Up to K 3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
2	CO2	Up to K3	2	K1&K2	1	K1	2 (K3&K3)	1(K3)
3	CO3	Up to K 3	2	K1&K2	1	K2	2 (K3&K3)	1(K3)
4	CO4	Up to K 4	2	K1&K2	1	K2	2 (K4&K4)	1(K4)
5	CO5	Up to K 5	2	K1&K2	1	K2	2 (K3&K3)	1(K5)
No. of Questions to be Asked		10		5		10	5	
No.of Questions to be answered		10		5		5	3	
Marl	Marks for each question		1		2		5	10
To	tal Marks sectio		10		10		25	30
	(Figures	s in parenthe	sis denotes, o	questions	should be as	ked with	n the given K	level)

	Distribution of Marks with K Level						
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	16.67
K2	5	6	-	-	11	9.16	10.07
K3	-	-	40	30	70	58.3	
K4	-	-	10	10	20	16.6	83.23
K5	-	_	_	10	10	8.33	
Marks	10	10	50	50	120		100
NB: Hig	gher level of p	erformance o	of the students	s is to be asso	essed by a	attempting	higher level

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section	A (Mult	iple Cho	ice Questions)
Answei	r All Que		(10x1=10 marks)
Q.No	CO	K Level	Questions
1	CO1	K1	 Identity the size of – silver and gold nanoparticles exhibiting unusual optical effects a) 80 nm b) 70 nm c) 30 nm d) 25 nm
2	CO1	K2	Locate property of metal nanoparticles produces colour variations a) size b) shape c) colour d) surface
3	CO2	K1	Identify that the ferromagnetic and non ferro magnetic layers in GMR are of —thickness a) macroscale b) microscale c) nanoscale d) bulk scale
4	CO2	К2	Magnetic nuclei are also referred to as a) magnetic spin b) colloidal spin c) electron spin d) electron affinity
5	CO3	K1	AFM is identified as a) atomic force microscopy b) added force microscopy c) acquired force microscopy d) additional force microscopy
6	CO3	K2	NSOM is located as a) near field scanning optical microscopy b) net field scanning optical microscopy c) narrow field scanning optical microscopy d) noted field scanning optical microscopy
7	CO4	K1	A self assembling nanoscale polymer carries across the blood brain carrier a) anti cancer drug b) virus c) bacteria d) all the above
8	CO4	K2	LED is identified as a) Light Emitting diode b) low emissive diode c) lateral emissive diode d) longitudinal emission diode
9	CO5	K1	Nanocircuits are electrical circuits are on the scale identified as a) nano b) micro c) pico c) femto
10	CO5	K2	OTFT is identified as a) organic thin film transistors b) ordinary thin film transistor c) only thin film transistor d) open thin film transistor
	B (Short All Que		rs) (5x2=10 marks)
Q.No	CO	K Level	Questions
11	CO1	K1	Define in short about C60
12	CO2	K1	Draw the schematic of multilayered magnetoresistive structure
13	CO3	K2	Describe electrical surface modification
14	CO4	K2	Describe about fuel cell short sentence
15	CO5	K2	Describe CMOS?
	C (Eithe		
Answei	r All Que		(5 x 5 = 25 marks)
Q.No	CO	K Level	Questions

Summative Examinations - Question Paper – Format

Academic Council Meeting Held On 29.04.2021

	~~ .				
16) a	CO 1	K3	Prepare a detailed note on Single electron tunneling transistor		
16) b	CO1	K3	Collectively write about Quantum dots		
17) a	CO2	K3	Prepare an elaborate note on nanophotonics in detail		
17) b	CO2	K3	Develop a detailed description on Giant magnetoresistance		
18) a	CO3	K3	Built details pertaining to tools and techniques that are used to measure and make nanostructures		
10) h	CO3	K3			
18) b			Prepare a detailed description about laser method		
19) a	CO4	K4	Comment on artificial skin		
19) b	CO4	K4	Comment on solar energy harvesting in nanotechnology in elaborate		
20) a	CO5	K3	Identify and provide a detailed note on nanoelectronic devices		
20) b	CO5	K3	Prepare a detailed note on nanoswitches		
NB: Higher level of performance of the students is to be assessed by attempting higher					
	K levels	-			
Section	D (Oper	Choice)		
	r Any Th				
Q. No	СО	K Level	Questions		
21	CO1	K3	Describe about the impact of Nanotechnology in human lives in 21 st century comprising any 5 significant achievements		
22	CO2	K3	Develop details about scanning tunneling microscope and the challenges in STM		
23	CO3	K3	Collectively write about top down and bottom up approaches		
24	CO4	K4	Comment on the importance of the prevention and implant techniques in medical nanotechnology		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	SOLID STATE PHYS	SICS – I					
Course Code	21PPHC31				L	Р	С
Category	Core				6	-	4
Nature of course:	EMPLOYABILITY	SKILL ORIENTED	~	ENTR	EPREN	EURS	HIP
COURSE OBJE	CTIVES:						
	lifferent types of crystal	structures in terms of t	he ci	rystal la	attice an	d the	basis
of constituent							
	crystal binding and elast						
• To get the kn	owledge of vibrations of	molecules and Fermi g	as.				
• To elaborate	energy band and thermal	properties of solids.					
To understan	d the classification of sol	lids based on their band	gap	energie	es.		
• To know abo	ut the use of band gap in	semiconductors.					
Unit: I Crys	stal Structure, Wave Di	iffraction and Recipro	cal L	Lattice	-	18 Hrs	
Crystal Structure	: Periodic arrays of aton	ns - Lattice translation	vecto	ors - Ba	asis and	the cr	ystal
structure - Primit	tive lattice cell - Fundar	mental types of lattices	- Tv	wo and	three d	imens	ional
lattice types - In	dex system for crystal p	blanes - Simple crystal	struc	ctures -	Sodiun	n Chlo	oride,
Cesium Chloride	, Hexagonal Close-Pack	ed (hcp), Diamond and	cubi	ic Zinc	Sulfide	struct	ures.
Wave diffraction	and the Reciprocal Latti	ce: Diffraction of waves	s by o	crystals	s - The H	Bragg	law -
Scattered wave an	mplitude - Fourier analys	sis - Reciprocal lattice v	recto	rs - Dif	fraction	condi	tions
- Laue equations	s - Brillouin zones - Re	eciprocal lattice to sc,	bcc	and fcd	a lattices	s - Fo	urier
analysis of the ba	sis - Structure factor of <i>l</i>	bcc and fcc lattices - Ato	omic	form fa	actor.		
Unit: II Crys	stal Binding and Elastic	e Constants				19 H	Hrs.
Crystals of iner	rt gases - Van der V	Waals-London interaction	ion	- Rep	ulsive i	interac	tion-
Equilibrium latti	ce constants - Cohesive	energy - Ionic crystal	s - E	Electros	static or	Made	elung
energy - Evaluati	ion of the Madelung con	stant - Covalent crystal	s - N	letals -	Hydrog	gen bo	nds -
Analysis of elast	tic strains - Dilation - S	stress components - Ela	astic	compli	iance ar	nd stift	fness
constants - Elasti	c energy density - Elasti	c stiffness constants of	cubi	c crysta	als - Bu	lk moo	dulus
and compressibil	ity - Elastic waves in cul	bic crystals – Waves in	the [[100] d	irection	- Wav	es in
the [110] direction							
	stal Vibrations and The					16 Hr	
Crystal Vibration	s: Vibrations of crystals	with monatomic basis	- Fir	rst Brill	ouin zo	ne - G	broup
velocity - Deriva	ation of force constants	from experiment - Tw	o ato	oms pe	r primit	ive ba	nsis -
	elastic waves - Phonon n						
	on heat capacity - Dens						
	- Debye model for den						
	- Anharmonic crystal inte		ansio	on - Th	ermal co	onduct	tivity
	vity of phonon gas - Umk						
	e Electron Fermi Gas a					18 H	
	rmi Gas: Energy levels in			-			
	n - Free electron gas in t		-	•			-
-	at capacity of metals - E	-				-	
electrical resistiv	ity of metals - Motion in	n magnetic fields - Hall	Effe	ect - Th	ermal co	onduct	tivity

Academic Council Meeting Held On 17.05.2022

of metals - Ratio of thermal to electrical conductivity. Energy Bands: Nearly free electron model - Origin of the energy gap - Magnitude of the energy gap - Bloch Functions - Kronig-Penney Model - Wave equation of electron in a periodic potential - Restatement of the Bloch theorem - Crystal momentum of an electron - Solution of the central equation.

Unit: VSemiconductor Crystals and Fermi Surfaces19 Hrs.Semiconductor Crystals: Band gap - Equations of motion - Physical derivation of $\hbar \mathbf{k} = F$ -Holes - Effective mass - Physical interpretation of the effective mass - Intrinsic carrierconcentration - Intrinsic mobility - Impurity conductivity - Donor states - Acceptor states -Thermal ionization of donors and acceptors. Fermi Surface and Metals: Reduced zone scheme- Periodic zone scheme - Construction of Fermi surfaces - Nearly free electrons - Electronorbits, Hole orbits and Open orbits - Calculation of energy bands - Tight Binding Method forenergy bands - Wigner-Seitz Method - Cohesive energy - Experimental methods in Fermisurface studies - Quantization of orbits in a magnetic field - De Haas-van Alphen effect -Extremal orbits - Fermi surface of copper.Extremal orbits - Fermi surface of copper.

Books for Study:

Total Lecture Hours 90

C. Kittel, Introduction to Solid State Physics, 8th Edition, Wiley India Pvt. Ltd., New Delhi - 110 002. (2005) Reprint 2019.

Unit - I: Chapters 1 and 2

Unit - II: Chapter 3

Unit - III: Chapters 4 and 5

Unit - IV: Chapters 6 and 7

Unit - V: Chapters 8 and 9

Books for References:

1. S.L. Kakani and C. Hemarajani, Solid State Physics, Sultan Chand & Sons Educational Publishers, New Delhi - 2, Fourth Edition, 2005.

2. Neil W. Aschroft and N. David. Mermin, Solid State Physics, Cengage Learning Publishers, New Delhi, Fourteenth Indian reprint, 2014.

- 3. M.A. Wahab, Solid State Physics, Narosa Publishing House, Chennai, Third Edition, 2015, Sixth Reprint 2017.
- 4. M. Ali Omar, Elementary Solid State Physics Principles and Applications, Addison Wesley, New Delhi, 2000.
- 5. A.O.E. Animalu, Intermediate Quantum Theory of the Crystalline Solid, Prentice Hall, New Delhi, 1977.

6. S.O. Pillai, Solid State Physics, New Age International Publishers, New Delhi, 1997.

•		
Web R	esources:	
https://	www.mooc-list.com/course/solid-state-devices-1-edx	
https://	nptel.ac.in/courses/115/105/115105099/	
https://	www.classcentral.com/course/swayam-solid-state-physics-14298	
COUR	SE OUTCOME	K Level
On Con	npletion of this course, the student will be able to	
C01	Illustrate the theory of lattice vibrations (phonons) and use that to	K4
COI	determine thermal properties of solids.	N 4
CO2	Classify the different physical mechanisms involved in crystal binding	K4
CO3	Identify the vibrations of crystals and free electron gas	K3
COA	Distinguish the physical properties of solids in terms of its band-structure	IZ A
CO4	with the understanding of thermal properties of solids.	K4
COE	Justify the concepts of band gap in semiconductors and Fermi surface	V5
CO5	construction.	K5

CO & PO Mapping:

Course Outcomes (CO's)		Progr	amme O	utcomes	(PO's)	
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	2
CO2	3	2	3	2	2	2
CO3	2	3	2	2	3	3
CO4	2	3	3	3	2	3
CO5	1	2	2	3	3	2

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	SOLID STATE PHYSICS-I	Hrs.	Mode
	Periodic arrays of atoms, lattice translation vectors, Basis and crystal structure, primitive lattice cell, Fundamental types of lattices: Two and three dimensional lattice types.	5	
Unit - I Crystal structure, wave	Index system for crystal planes: Miller indices of crystal planes. Simple crystal structures: Sodium chloride, Cesium chloride, Hexagonal close packed structure.	4	Chalk &Talk,
diffraction and reciprocal lattice	Diamond structure, Cubic zinc sulphide structure. Wave diffraction and the reciprocal Lattice: Diffraction of waves by crystals, Bragg's law. Scattered wave amplitude: Fourier analysis, Reciprocal lattice vectors.	4	PPT, Seminar
	Diffraction conditions, Laue equations, Brillouin Zones, Reciprocal lattice to sc, bcc and fcc lattices, Fourier analysis of the basis, structure factors of bcc and fcc lattices, Atomic form factor.	5	
	Crystals of inert gases, Van der waals-London interaction, Repulsive interaction, Equilibrium lattice constants, Cohesive energy.	5	
Unit - II Crystal binding and	Ionic crystals: Electrostatic or Madelung energy, Evaluation of Madelung constant, Covalent crystals, metallic crystals, hydrogen bonds.	5	Chalk &Talk,
elastic constants	Analysis of elastic strains: Dilation, Stress components, Elastic compliance and stiffness constants: Elastic energy density.	4	PPT
	Elastic stiffness constants of cubic crystal, Bulk modulus and compressibility - Elastic waves in cubic crystals, waves in the [1 0 0] & [1 1 0] directions.	5	
Unit - III Crystal vibrations & Thermal Properties	Vibrations of crystals with monatomic basis, First Brillouin zone, Group velocity, Derivation of force constants from experiment, Two atoms per primitive basis. Quantization of elastic waves, Phonon momentum,	6	Chalk &Talk, Assignment

Academic Council Meeting Held On 17.05.2022

	Inelastic scattering by phonons. Thermal Properties: Phonon heat capacity, Density of states in one dimension, Density of states in three dimensions.	5	
	Debye model for density of states, Debye T^3 law, Einstein model of the density of states, Anharmonic crystal interactions, Thermal expansion, Thermal conductivity, Thermal resistivity of phonon gas, Umklapp processes.	5	
	Free Electron Fermi Gas: Energy levels in one dimension, Effect of temperature on the Fermi-Dirac distribution, Free electron gas in three dimensions, Heat capacity of the electron gas, Experimental heat capacity of metals.	5	
Unit - IV Free electron Fermi gas and Energy Bands	Electrical conductivity and Ohm's law, Experimental electrical resistivity of metals, Motion in magnetic fields, Hall Effect, Thermal conductivity of metals, Ratio of thermal to electrical conductivity.	5	Chalk &Talk, Group discussion
	Energy Bands: Nearly free electron model, Origin of the energy gap, Magnitude of the energy gap, Bloch Functions, Kronig-Penney Model, Wave equation of electron in a periodic potential, Restatement of the Bloch theorem, Crystal momentum of an electron, Solution of the central equation.	8	uiscussion
	Semiconductor Crystals: Band gap, Equations of motion, Physical derivation of $\hbar \dot{k} = F$, Holes, Effective mass, Physical interpretation of the effective mass.	5	
Unit - V	Intrinsic carrier concentration, Intrinsic mobility, Impurity conductivity, Donor states, Acceptor states, Thermal ionization of donors and acceptors.	4	Seminar,
Semiconductor crystals and Fermi surfaces	Fermi Surface and Metals: Reduced zone scheme, Periodic zone scheme, Construction of Fermi surfaces, Nearly free electrons, Electron orbits, Hole orbits and Open orbits, Calculation of energy bands, Tight Binding Method for energy bands.	5	PPT, Chalk &Talk
	Wigner-Seitz Method, Cohesive energy, Experimental methods in Fermi surface studies, Quantization of orbits in a magnetic field, De Haas-van Alphen effect, Extremal orbits, Fermi surface of copper.	5	

Course Designed by: Dr. S. Ramaswamy & Mr. N. Venkatesh Bharathi

Learning Outcome Based Education & Assessment (LOBE)

Academic Council Meeting Held On 17.05.2022

	,	Fo Articulation M	ormative Exa apping – K l				nes (COs)	
T (Section MCQ	h A	Section Short An	n B	Section C	Section D
Intern al	Cos	K Level	No. of. Questions	K - Level	No. of. Question s	K - Leve l	Either or Choice	Open Choice
CI	CO1	K4	2	K1	1	K1	2 (K3&K3)	1(K4)
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
CI	CO3	K3	2	K1	1	K1	2 (K3&K3)	1(K3)
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked	4		3		4	2
Quest		No. of Questions to be answered	4		3		2	1
Patte CIA I		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

		Di	stribution of	Marks with	K Level CI	A I & Cl	AII	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	-	20	40	40
	K4	-	-	-	20	20	40	40
L	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	20
	K2	2	4	-	_	6	12	20
CIA	K3	-	-	20	10	30	60	60
II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summa	tive Exa	amination –	Blue Print A	rticulation	Mapping – I	K Level with (Course
				Outco	mes (COs)			
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open
140.		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)
No. of	f Questi	ons to	10		5		10	5
b	e Aske	d	10		5		10	5
No. of	f Questi	ons to	10		5		5	3
be	answei	red	10		5		5	5
Mar	ks for e	each	1		2		5	10
(questio	1	1				5	10
	al Mark		10		10		25	30
ea	ch secti	on	10		10		23	50
	(Figure	es in pa	renthesis dei	notes, questi	ons should b	oe asked wit	h the given K	level)

		Dis	tribution of	Marks with	n K Leve	l	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	8
K2	5	6	-	-	11	9.17	9
K3	-	-	50	10	60	50	50
K4	-	-	-	30	30	25	25
K5	-	-	_	10	10	8.33	8
Marks	10	10	50	50	120	100	100
NB: Hig	gher level of p	erformance o	f the students	s is to be asse	essed by a	attempting	higher level

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section A Answer A		le Choice Qu ions	uestions) (10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section B	(Short A	Answer Ques	tions)
Answer A			(5x2=10 marks)
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		or Choice Q	
Answer A			(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
	,	el of perfo	rmance of the students is to be assessed by attempting higher level
of K lev			
Section D	(Open C	noice)	
		e questions	(3x10=30 marks)
Q. No	CO CO1	K Level	Questions
21		K4	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
25	CO5	K5	

Summative Examinations - Question Paper - Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	QUANTUM MECHANI	ICS – II				
Course Code	21PPHC32			L	Р	C
Category	Core			6	-	4
Nature of Cours	e EMPLOYABILITY	SKILL ORIENTED	✓ ENTREPRI	ENEU	RSHII	2
Course Objecti	ves:					
• To describe	the concepts of Spin and ar	ngular momentum in Qua	ntum mechanics			
• To apply the	e ideas on Born approximat	ion transformation and co	oncepts of scatte	ring tl	neory.	
• To analyze	he principles of quantum m	nechanics in semi classica	al theory.			
	and the difference betwee	n relativistic and non-i	elativistic equa	tions	and	their
solutions.						
	he Dirac matrices and gai	ned knowledge about sp	oin and magneti	e mov	vemer	it of
electron.					4 < 11	
	NGULAR MOMENTUM				16 H	
	omentum Operators – Angu					
	tions of L^2 and L_z – Gene					
-	ntum Matrices – Spin Angu	ilar momentum – Spin	vectors for Spin	-(1/2) Syst	em
	ngular momenta. ATTERING THEORY				19 H	
		mailtande Dentiel Wes	Coattoring	- h	-	
0	s Section – Scattering A 1 Wave Analysis – Sig	1		•		
	re-Well Potential – Briet-					
	tegral Equation – The Bor					
	lity of Born Approximation	11	•••			
	ENTICAL PARTICLES A	•			19 H	
	RUCTURE				-,	
	ticles: Physical meaning	of identity – Symmetry	tric and anti-sy	mme	tric v	vave
_	nstruction from un-symmet		-			
	on principle – connection v					
connection bet	ween spin and statistics - s	spin matrices and Eigen f	functions - The	Heliu	m ato	om –
Approximation	on in atomic structure: Ce	entral field approximation	n – periodic syst	em of	felem	ents
	ni statistical fields – Evalua		artree's self-con	sisten	t field	.S•
	MI CLASSICAL THEOR				18 H	
	d Induced Emission: Max					
-	ory – Transition probability	1	-			
-	ransitions – Forbidden trans	-				
	orm – Radiated Energy – I					se –
	n classical to quantum theor		ormula – Line bi	eadth		
	LATIVISTIC WAVE EQ		• , ,• 1		18 H	
	relativistic Equations: Fre					
	gy levels in a coulomb field					
	and β -free particle solut	-			-	
	c equation for a central f					
spin-orbit energ	y – separation of the equation	on – The hydrogen atom			igy ie	VC15

	tive energy states.	
	Total Lecture Hours	90
	for study:	
	Aruldhas, Quantum Mechanics, 2 nd Edition, PHI Learning Private Limited, New	Delhi-01
(20	013).	
	- I: Chapter 8	
	- II: Chapter 14	
2. L.	I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, MacGrav	w-Hill
Ko	ogakusha, Tokyo, (2015).	
	II: Chapter 10 (Section 40 & 41) and Chapter 12 (Section 47)	
Unit-I	V: Chapter 11 (Section 44 & Section 45)	
Unit-V	7: Chapter 13 (Sections 51,52 & 53)	
Books	for References:	
1. P.	M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, Tata Mc	Graw-Hill
Ne	w Delhi, 1976	
2. V.	Devanathan, Quantum Mechanics, Narosa Publishing House, New Delhi, 2005.	
3. Gu	pta, Kumar & Sharma, Quantum Mechanics, 23 rd edition,2004.	
1 50		
	thya Prakash, Swathi Saluja, Quantum Mechanics, Kedar nath ram nath, Meerut,20	
5. Ch	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012	2.
5. Ch		2.
5. Ch 6. G.	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012	2.
5. Ch 6. G. Pri	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PH	2.
5. Ch 6. G. Pri Web H	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI avate Limited, New Delhi-01, (2011)	2.
 5. Ch 6. G. Pri Web H https://doi.org/10.1000 	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI vate Limited, New Delhi-01, (2011) Resources	2.
 5. Ch 6. G. Pri Web I https://https:// 	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI tvate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry	2.
 5. Ch 6. G. Pri Web F https://https///htttps//https///htttps///https///https///https///https//https//	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI avate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107	2. I Learning
 5. Ch 6. G. Pri Web I https://https://https://https:// https://li> https://li> 	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4	2.
5. Ch 6. G. Pri Web I https:/ https:/ https:/ Cours On Co	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes	2. I Learning K Level
 5. Ch 6. G. Pri Web I https://https://https://https:// https://li> https://li> 	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to	2. I Learnin
5. Ch 6. G. Pri Web F https:/ https:/ https:/ Cours On Co CO1:	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum mechanics.	2. I Learning K Level K2
5. Ch 6. G. Pri Web F https:/ https:/ https:/ Cours On Co CO1:	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum	2. I Learnin K Leve
5. Ch 6. G. Pri Web F https:/ https:/ https:/ Cours On Co CO1: CO2:	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum mechanics. Apply the ideas on Born approximation transformation and concepts of	2. I Learning K Level K2
5. Ch 6. G. Pri Web F https:/ https:/ https:/ Cours On Co CO1: CO2: CO3:	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum mechanics. Apply the ideas on Born approximation transformation and concepts of scattering theory. Construct the principles of quantum mechanics in semi classical theory.	2. I Learnin K Leve K2 K3 K3
5. Ch 6. G. Pri Web F https:/ https:/ Cours On Co	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum mechanics. Apply the ideas on Born approximation transformation and concepts of scattering theory.	2. I Learnin K Leve K2 K3
5. Ch 6. G. Pri Web F https:/ https:/ https:/ Cours On Co CO1: CO2: CO3:	atwal, Anand, Quantum Mechanics, Himalaya Publishing House, New Delhi, 2012 Aruldhas, Quantum Mechanics: 500 Problems With Solutions, 2 nd Edition, PHI ivate Limited, New Delhi-01, (2011) Resources //swayam.gov.in/courses/3485-quantum-chemistry //nptel.ac.in/courses/115101107 //youtu.be/iW-k3Hphbh4 e Outcomes mpletion of this course, the student will be able to Demonstrate the concepts of Spin and angular momentum in Quantum mechanics. Apply the ideas on Born approximation transformation and concepts of scattering theory. Construct the principles of quantum mechanics in semi classical theory. Analyze the difference between relativistic and non-relativistic equations and	2. I Learnin K Leve K2 K3 K3

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	2	2	2			
CO2	2	3	3	2	2	2			
CO3	3	2	2	2	1	2			
CO4	2	2	2	2	2	2			
CO5	2	2	3	3	3	2			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Units	Quantum Mechanics-II	Hrs	Pedagogy		
	The Angular Momentum Operators, Angular Momentum Commutation Relations	6			
Unit-1 ANGULAR MOMENTUM	Eigen values and Eigen functions of L^2 and L_z , General Angular Momentum, Eigenvalues of J^2 and J_z , Angular Momentum Matrices, Spin Angular momentum	5	Chalk & Talk		
	Spin Vectors for Spin-(1/2) System, Addition of Angular momenta.	5			
	Scattering Cross Section, Scattering Amplitude, Partial Waves, Scattering by a Central Potential: Partial Wave Analysis	7			
Unit-2 SCATTERING THEORY	Scattering by an Attractive Square Well Potential, Briet Wigner Formula, Scattering Length, Expression for Phase Shifts, Integral Equation	6	Chalk & Talk, PPT, Test		
	Born Approximation, Scattering by a Screened Coulomb Potential, Validity of Born Approximation, Laboratory and Centre of mass Coordinate systems.	6			
Unit-3 IDENTICAL	Identical particles: Symmetric and anti-symmetric wave functions, construction from unsymmetrized functions, Distinguishability of identical particles, The exclusion principle, connection with statistical mechanics	6			
PARTICLES AND APPROXIMATI ON IN ATOMIC STRUCTURE	Spin angular momentum: connection between spin and statistics, spin matrices and Eigen functions, The Helium atom Approximation in atomic structure: Central field approximation, periodic system of elements	7	Chalk & Talk, Seminar		
SIRCCICIC	Thomas-Fermi statistical fields, Evaluation of the potential, Hartree's self-consistent fields.	6			
Unit-4 SEMI	Maxwell's equations, Plane electromagnetic waves, Use of perturbation theory, Transition probability, Interpretation in terms of absorption and emission	7			
CLASSICAL THEORY OF RADIATION ABSORPTION	Electric dipole transitions, Forbidden transitions. Spontaneous Emission: Classical radiation field, Asymptotic form, Radiated Energy Dipole radiation	5	Chalk & Talk, Assignment		
ABSORITION AND INDUCED EMISSION	Angular momentum, Dipole case, Conversion from classical to quantum theory, Planck distribution formula, Line breadth.	6			
	Schrodinger's relativistic Equations: Free particle, Electromagnetic potentials, separation of the equation, energy levels in a coulomb field	6			
Unit-5 RELATIVISTIC WAVE	Dirac's Relativistic equation: Free particle equation, matrices of α and β -free particle solutions, charge and current densities, electromagnetic potentials, Dirac equation for a central field:	6	Chalk & Talk , Exercise		
EQUATIONS	Spin angular momentum, appropriate reduction, spin- orbit energy, separation of the equation, The hydrogen atom, classification of energy levels, negative energy states.	6			

LESSON PLAN

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print											
	Articulation Mapping – K Levels with Course Outcomes (COs)											
				Section	h A	Section	n B		Section			
				MCQ	S	Short An	swers	Section C	D			
Internal	С	os	K Level	No. of. Questions	K - Level	No. of. Question s	K - Level	Either or Choice	D Open Choice			
CI	C	01	K2	2	K1	1	K1	2 (K2&K2)	1(K2)			
AI	C	02	K3	2	K2	2	K2	2 (K3&K3)	1(K3)			
CI	C	03	K3	2	K1	1	K2	2 (K3&K3)	1(K3)			
AII	C	04	K4	2	K2	2	K2	2 (K4&K4)	1(K4)			
		Qu	No. of estions to be asked	4		3		4	2			
Question Pattern CIA I &	l	Questions to		4		3		2	1			
	Marks for ea question			1		2		5	10			
			tal Marks for ach section	4		6		10	10			

Course Designed by: Mrs. S. Nagadeepa & Mr. P. Dharmaraja

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2	2	-	-	4	8	60			
	K2	2	4	10	10	26	52	00			
CIA	K3	-	-	10	10	20	40	40			
	K4	-	-	-	-	-	-	-			
1	Marks	4	6	20	20	50	100	100			
	K1	2	-	-	-	4	8	20			
	K2	2	6	-	-	6	12	20			
CIA	K3	-	-	10	10	20	40	40			
II	K4	-	-	10	10	20	40	40			
	Marks	4	6	20	20	50	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D			
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
140.		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)			
1	CO1	K2	2	K1&K2	1	K1	2 (K2&K2)	1 (K2)			
2	CO2	K3	2	K1&K2	1	K1	2 (K2&K2)	1 (K3)			
3	CO3	K3	2	K1&K2	1	K2	2 (K2&K2)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ons to	10	10	10		5		10	5	
b	e Aske	d	10		5		10	5			
No. of	f Questi	ons to	10		5		5	3			
be	answei	ed	10		5		5	5			
Mar	rks for e	each	1		2		5	10			
(question		1				5	10			
Tota	Total Marks for		10		10		25	30			
ea	each section		10		10		23	50			
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)			

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	-	-	9	7.5	50					
K2	5	6	30	10	51	42.5	50					
K3	-	-	20	20	40	33.34	33					
K4	-	-	-	10	10	8.33	8					
K5	-	-	-	10	10	8.33	9					
Marks	10	10	50	50	120	100	100					
ND. III	han laval of n	anfammanaa	ftheatudant	is to be again	agad by	ttomating	high on loval					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

			ice Questions)
		uestions	(10x1=10 marks)
Q. No			l Questions
1	CO		
2	CO		
3	CO		
4	CO		
5	CO		
6	CO		
7	CO		
8	CO		
9	CO		
10 G 4			
			Questions)
		uestions	(5x2=10 marks)
Q. No		K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	<u>CO4</u>	K2	
15	CO5	K2	
			Dice Questions)
-		uestions	(5x5=25 marks)
Q. No		K Level	
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K2	
17) b	CO2	K2	
18) a	CO3	K2	
18) b	CO3	K2	
19) a	<u>CO4</u>	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b		K3	
NB: Hi of K lev	-	evel of perf	ormance of the students is to be assessed by attempting higher level
Section	D (Or	oen Choice	
	· •	Fhree ques	
Q. No		K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ADVANCED PHYSICS PRACTICAL			
Course Code	21PPHCP3	L	Р	(
Category	Core	-	3	-
Nature of Course:	EMPLOYABILITY✓SKILL ORIENTED✓ENTREPRENE	URSHI	Р	~
COURSE OBJI	ECTIVES:			
• To give hand	ls on training in the construction of simple electronics circuits.			
• To develop t	he skills in handling instruments and make measurements.			
-	arization on advanced physics experiments.			
• To make the	students to understand practically the characteristics of filters, con	inters,	regist	ter
and converte	rs. To acquire knowledge of semiconductor devices and their applic	ations.	-	
• To understa	nd the concepts of OPAMPS and their uses. To develop the sl	cills in	writ	in
programs usi	ing microprocessors and microcontrollers.			
ANY TWELVE	E EXPERIMENTS			
	oltage Regulator using IC 723			
	ulse Width Modulation Using IC 555 Timer			
	mplitude Modulation using Transistor			
	ctive Filters using OPAMPs			
	nalog Computation using OPAMPs			
	Bit Shift Register using JK Flip Flops			
	Bit D/A Converter			
	Bit Binary Counter			
	all Effect Experiment Quincke's Method – Susceptibility measurements			
	Four Probe Method – Band Energy gap			
	nterpretation of PXRD Photograph - indexing, calculating the lattic	re cons	tant :	an
	bye-Waller factor		curre o	um
	Fraunhofer Diffraction using Laser			
	efractive Index of liquids using Laser			
	Michelson's Interferometer			
16. N	Aicroprocessor 8085 (Assembly Language Program)			
17. N	Aicroprocessor 8085 (Interfacing I/O Operation)			
18. N	Aicrocontroller 8051 based experiments			
COURSE OUT	COMES	K 1	Level	l
On Completion	of this course, the students will be able to			
Understand the b	behavior of electronic components and perform analysis and	1	X1	
design of electro		1	X 1	
	ategies and select proper instruments to evaluate performance	1	Χ5	
	f electronic circuits.			
	ng and experimental procedures on different types of electronic	I	K 4	
	yze their operation in different operating conditions.			
	of semiconductor devices and their applications.		K2	
Build the skills in	n handling instruments and make measurements.	1	X3	

CO & PO Mapping:

	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	3	3	2		
CO2	2	3	3	2	2	2		
CO3	2	2	2	2	3	3		
CO4	2	2	2	2	2	2		
CO5	3	3	3	3	3	3		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course designed by: Dr. S. Ramaswamy & Mr. N. Venkatesh Bharathi

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	e Project							
Course Code	21PPHPR1					L	P	С
Category	Core					-	3	-
Nature of course:	EMPLOYABILITY	~	SKILL ORIENTED	✓	ENTREPREM	NEUI	RSHII	P 🗸
COURSE OBJECTIVES:								

- To develop strong student competencies in Physics and its applications in a technology-rich, interactive environment.
- To enable the skills in research, analysis and interpretation of new findings.
- To prepare the students to successfully complete the projects offered a wide range of experience to meet the industrial needs.
- To apply knowledge and skill in the design and development of instruments to cater to the needs of society.
- To become professionally trained in the area of electronics, optical communications, nonlinear circuits, materials characterization and lasers etc.
- Evaluation method for Project:

	Max.	Credit	
	Internal		
Project evaluation	40	40	
Viva Voce	-	20	4
Total	1		

- Internal examiners are the respective supervisors.
- Viva –voce examination to be evaluated by the external examiner.
- The report of the project must be in the prescribed form. It should be typed neatly in MS word with the equation editor or using Latex. The font size of the letter should be 12 with double space.
- The format of the project should have the following components.
 - First page should contain
 - Title of the project report
 - Name of the candidate
 - Register number
 - Name of the supervisor
 - Address of the institution
 - Month and year of submission
- > Contents
- Declaration by candidate
- Certificate by supervisor
- Acknowledgement
- Preface
- Chapter-1-Preliminaries

Academic Council Meeting Held On 17.05.2022

- Other chapters
- References
 - \checkmark The number of pages in the project may be 40 to 50
 - ✓ Each page should contain at least 18 lines
 - ✓ Three copies of the project report with binding should be submitted.

Three copies of the project report with binding should be submitted.						
COURSE OUTCOME						
On Cor	mpletion of this course, the students will be able to					
CO1:	Familiarize various theories behind the instrumentation involved in the Characterizations techniques.	K1				
CO2:	Get hands on experience on different instrumentation techniques to design a research problem and solve it using different research methods.					
CO3:	Organiza and pursue a scientific and industrial research project and work affectively as					
CO4:	Analyze the theoretical problems and solve them using the knowledge of basic Physics ideas.	K4				
CO5:	Have a comprehensive idea on research methods, methodology and ethics to communicate the research findings.	K5				

CO & PO Mapping:

	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	2	2	2			
CO2	2	3	2	2	2	2			
CO3	2	1	2	3	2	2			
CO4	2	2	2	3	3	3			
CO5	2	2	2	2	3	2			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. S. Ramaswamy & Mr. P. Dharmaraja

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	THERMODYNAMI	CS AND STATISTICA	AL N	IECHANICS	5		
Course Code	21PPHE31				L	Р	С
Category	Elective				6	-	6
Nature of course	EMPLOYABILITY	SKILL ORIENTED	✓	ENTREPRE	ENEU	RSHI	Р
COURSE OBJEC	CTIVES:						
• To understa	and the basic concepts of	f thermodynamics parar	netei	ſS.			
• To acquire	knowledge about the de	nsity of states and inter	nal e	nergy of the s	ystem	ns.	
• To study	the micro and macros	scopic properties of the	he n	nater through	the	statis	stical
probability	laws and distribution of	particles.		C			
• To know th	e classical and quantum	distribution laws and th	heir r	elations.			
	the knowledge of va				appli	catior	ns in
Physics.	U						
Unit: I Thern	nodynamics: Energy ar	nd the first law				18 I	Hrs.
The translational l	between microscopic ar	nd macroscopic behavi	or: 7	Thermodynam	nics –	Qua	ntum
effects: Electrical	charge – Wave nature	particles - Uncertainty	/ prii	nciple – Qua	ntum	states	and
phase space - Der	nsity of states. Internal	energy: Potential energy	gies -	- Solids, liqu	ids a	nd gas	ses –
Quantum effects: H	Rotations and vibrations	- Degrees of freedom -	- Equ	uipartition – 7	Therm	al En	ergy.
Interaction betwee	n systems: Heat transfe	er – the thermal intera	ctior	ns – Work –	the r	necha	nical
interaction - Partic	cle transfer – the diffusiv	ve interaction - The first	st lav	v of thermody	ynami	cs – I	Exact
	ntials - Dependent and in			-			
Unit: II States	and the second law					17 I	Hrs.
Equilibrium - The	fundamental postulate –	- The spacing of states -	- Der	nsity of states	and t	he int	ernal
energy. The second	d law of thermodynamic	cs – Definition and pro	perti	ies – Entropy	and	the se	cond
law: Interacting sy	stems – Microscopic e	xamples – Macroscopi	c exa	amples – The	e seco	ond la	w of
thermodynamics -	Entropy.						
Unit: III Statist	tical Mechanics: Classi	cal Statistics				17 I	Hrs.
Probabilities and r	nicroscopic behaviors: 7	The ensembles – Proba	bility	that a system	n is i	n a ce	ertain
state - Two appro	oaches - Application of	f quantum statistics – I	Heat	capacities -	Close	ely sp	aced
states - Equipartit	ion. Kinetic theory and	transport processes in	gase	s: Probability	/ distr	ibutic	ons –
Mean values - Par	ticle flux - Collision fr	requency and mean free	e pat	h – Transpor	t proc	esses.	The
1	Definitions – Calculat	ions of mean values -	- Ma	ny subsysten	ns and	d ider	ntical
particles – The par	tition function of a gas.					T	
Unit: IV Quant	tum statistics					19 I	Hrs.
-	antum statistics: The occ	-	-				
	ssical statistics – The						
	ne density of states – Di						
laws – Internal er	nergy and the chemical						
	at Shields – Entropy an	nd adiabatic processes -	– Th	ermal noise a	and th	ne Ny	quist
theorem.							_
theorem. Unit: V The th	nermal and electrical p			~		19 I	
theorem.Unit: VThe theThe thermal properties	nermal and electrical p erties of solids: Overvie ctrical properties of mat	ew – Lattice vibration				ns –	Heat

p-n junctions. Low temperatures and degenerate systems: Low temperatures – Deg	generate boson
systems – Stellar collapse.	
Total Lecture Ho	urs 90 Hrs.
Books for study:	ŀ
1. K. Stowe, An Introduction to Thermodynamics and Statistical Mechanics	, 2 nd Edition,
Cambridge University Press, UK, (2013).	
Unit – I: Chapter 1 (1.A and 1.B.1 to 1.B.5), Chapter 4 and Chapter 5	
Unit – II: Chapter 6, Chapter 7 and Chapter 8	
Unit – III: Chapter 15, Chapter 16 and Chapter 18	
Unit – IV: Chapter 19, Chapter 20 and Chapter 21	
Unit – V: Chapter 22, Chapter 23 and Chapter 24	
Books for References:	
1. P.B. Pal, An Introductory Course of Statistical Mechanics, Narosa Publishing	g House, New
Delhi, 2008.	
2. K. Singh, S.P. Singh, Elements of Statistical Mechanics, S. Chand & Compan	y, New Delhi,
2008.	
3. P. Ansermet, S.D. Brechet, Principles of Thermodynamics and Statistica	al Mechanics,
Cambridge University Press, UK, 2019.	
4. S.L. Gupta, V. Kumar, Statistical Mechanics, Pragati Prakasan, Meerut, 2006.	
5. B.K. Agarwal, M. Eisner, Statistical Mechanics, New Age International Pvt. Ltd.	· ·
6. F. Reif, Fundamentals of Statistical and Thermal Physics, Waveland Press, USA,	Reprint 2009.
Web Resources:	
https://onlinecourses.nptel.ac.in/noc21_ph09/preview	
https://onlinecourses.nptel.ac.in/noc19_ph10/preview	
https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mech	<u>nanics-of-</u>
particles-fall-2013/video-lectures/lecture-1-thermodynamics-part-1/	1
Course outcomes	K Level
CO1: Examine the different laws of thermodynamics to statistical mechanics.	K4
CO2: Discovering the thermodynamic concepts, which are related to materials	K4
properties, various areas of research and development.	117
CO3: Identify the relation between microscopic and macroscopic particles and their	K3
properties.	
CO4: Analyzing how to apply ensemble approach to solve classical and quantum	K4
thermodynamic systems.	137
CO5: Evaluate and check the knowledge from thermal properties of solids and	К5
electrical properties of materials.	IX.J

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	2	2	2			
CO2	3	1	2	3	3	3			
CO3	2	2	3	2	3	3			
CO4	3	3	2	2	2	2			
CO5	2	3	1	3	3	3			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	THERMODYNAMICS AND STATISTICAL MECHANICS	Hrs	Mode
I	The translational between microscopic and macroscopic behavior: Thermodynamics – Quantum effects: Electrical charge – Wave nature particles – Uncertainty principle – Quantum states and phase space – Density of states.	6	
Thermodynamics: Energy and the	Internal energy: Potential energies – Solids, liquids and gases – Quantum effects: Rotations and vibrations – Degrees of freedom – Equipartition – Thermal Energy.	6	Chalk, Talk &
first law	Interaction between systems: Heat transfer – the thermal interactions – Work – the mechanical interaction – Particle transfer – the diffusive interaction - The first law of thermodynamics – Exact and inexact differentials - Dependent and independent variables.	6	- PPT
	Equilibrium - The fundamental postulate – The spacing of states – Density of states and the internal energy.	5	
II States and the second law	The second law of thermodynamics – Definition and properties – Entropy and the second law: Interacting systems.	6	Chalk, Talk & Assignment
	Microscopic examples – Macroscopic examples – The second law of thermodynamics - Entropy.	6	
III Statistical	Probabilities and microscopic behaviors: The ensembles – Probability that a system is in a certain state – Two approaches – Application of quantum statistics – Heat capacities – Closely spaced states – Equipartition.	5	Chally
Mechanics: Classical	Kinetic theory and transport processes in gases: Probability distributions – Mean values – Particle flux – Collision frequency and mean free path – Transport processes.	6	Chalk, Talk & PPT
Statistics	The partition function: Definitions – Calculations of mean values – Many subsystems and identical particles – The partition function of a gas.	6	
	Introduction to quantum statistics: The occupation number – Comparison with classical statistics – The limits of classical statistics – The spectra of accessible states – The chemical potential.	6	Chalk,
IV Quantum statistics	Quantum gases: The density of states – Distribution and mean values – Internal energy and the gas laws – Internal energy and the chemical potential.	6	Talk & Exercise
	Blackbody radiation: Photons in an oven – Energy flux – Heat Shields – Entropy and adiabatic processes – Thermal noise and the Nyquist theorem.	7	
V	The thermal properties of solids: Overview – Lattice vibrations – Conduction electrons – Heat capacities.	7	
The thermal and electrical	The electrical properties of materials: Band structure – Conductors – Semiconductors – p-n junctions.	6	Chalk, Talk &
properties of materials	Low temperatures and degenerate systems: Low temperatures – Degenerate boson systems – Stellar collapse.	6	Seminar

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)												
				Section MCQ		Section Short An		Section C	Section				
Internal	CC)s	K Level	No. of. Questions	K - Level	No. of. Question	K - Level	Either or Choice	D Open Choice				
CI	CC)1	K3	2	K1	1	K1	2 (K3&K3)	1(K3)				
AI	CO2		K4	2	K2	2	K2	2 (K3&K3)	1(K4)				
CI	CC	D3 K4		2	K1	1	K2	2 (K3&K3)	1(K4)				
AII	CC	94	K4	2	K2	2	K2	2 (K3&K3)	1(K4)				
		Qu	No. of estions to be asked	4		3		4	2				
Questio Patteri		No. of Questions to be answered Marks for each question		4		3		2	1				
CIA I &	II			1		2		5	10				
		Т	otal Marks for each section	4		6		10	10				

Course designed by: Dr. P.P. Kannan & Dr. S. Ramaswamy

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2	2	-	-	4	8	20				
	K2	2	4	-	-	6	12	20				
CIA	K3	-	-	20	10	30	60	60				
	K4	-	-	-	10	10	20	20				
1	Marks	4	6	20	20	50	100	100				
	K1	2	-	-	-	2	4	20				
	K2	2	6	-	-	8	16	20				
CIA	K3	-	-	20	-	20	40	40				
II	K4	-	-	_	20	20	40	40				
	Marks	4	6	20	20	50	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

Academic Council Meeting Held On 17.05.2022

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course											
Outcomes (COs)												
S.		V	K -	V	MC	CQs	Short A	Inswers	Section C	Section D		
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open				
110.		Level	Questions	Questions K - Level		K – Level	Choice)	Choice)				
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)				
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)				
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)				
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)				
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)				
No. of	f Questi	ons to	10		5		10	5				
b	e Aske	d	10		5		10	5				
No. of	f Questi	ons to	10		5		5	3				
be	answei	ed	10		5		5	5				
Mar	rks for e	each	1		2		5	10				
(question		1				5	10				
Tota	Total Marks for		10		10		25	30				
ea	ch secti	on	10		10		23	50				
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)				

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	-	-	9	7.5	8					
K2	5	6	-	-	11	9.17	9					
K3	-	-	50	10	60	50	50					
K4	-	-	-	30	30	25	25					
K5	_	_	-	10	10	8.33	8					
Marks	10	10	50	50	120	100	100					
ND. II.	. l l l . f	C	fthe student		J b		1. * - 1 · 1 · 1					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section A (I Answer All	-		Questions) (10x1=10 marks)
Q. No		K Level	
1	CO1	K1	~
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section B (S	Short Ar	nswer Qu	lestions)
Answer All		-	(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Answer All	Questio	ns	Questions) (5x5=25 marks
Q. No	CO	K Level	
<u>16) a</u>	CO1	K3	
16) b	CO1	K3	
<u>17) a</u>	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
<u>19) b</u>	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
nigher level	of K lev	els	ance of the students is to be assessed by attempting
Section D ((Answer Any	-		s (3x10=30 marks)
Q. No	CO	K Level	
21	CO1	K4	~
22	CO2	K4	
23	CO3	K3	
	CO4	K4	
24	COT	171	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ENERGY PHYSICS					
Course Code	21PPHE32			L	Р	С
Category	Elective			6	-	6
Nature of course	EMPLOYABILITY SKILI	L ORIENTED	✓ ENTREPRE	ENEU	RSH	IP
COURSE OBJE	CTIVES:					
To unders	tand the various forms of convent	tional energy res	ources.			
• To study t	he basic characteristics of solar en	nergy and techno	ologies for their u	tilizat	ion.	
 To describ 	e the principles that underlies the	e ability of wind	energy to deliver	usabl	e ene	rgy.
• To analyz	e the fundamental concepts in bio	-fuels and Geo t	hermal energy sy	stems		
• To comp	are the different types of non-	conventional so	ources in the po	wer g	gener	ation
technique						
Unit: I Fund	amentals of energy and Energy	conservation			19 H	lrs.
	and social development – Oi		ification of energy	gy re	sourc	es –
Consumption tre	nd of primary energy resourc	es – Importanc	ce of non-conve	ntiona	al er	nergy
resources - Ene	rgy chain – Common forms o	of energy – Ad	vantages and di	sadva	ntage	es of
conventional ene	rgy sources - Salient features	of non-convention	onal energy sour	ces	– Er	nergy
densities (heatin	g values) of various fuels -	- Environmenta	l Aspects of e	nergy	. En	nergy
conservation: Im	portant Terms and Definitions -	– Important Asp	bects of Energy	Conse	rvati	on –
Global Efforts, A	chievements and Future Planning	g – Energy Cons	servation / Efficie	ncy so	cenar	rio in
India.						
Unit: II Sola	· energy				19 H	lrs.
The sun as a sou	rce of energy – The earth – Sun	n, earth radiation	spectrum – Extr	aterre	strial	l and
	ns – Spectral power distribution					
	solar radiation. Solar Collectors					
	ling System – Solar Industrial					
	tems – Solar cookers – Solar fu	rnace – Solar g	reenhouse – Sola	r drye	r - s	Solar
	r thermo mechanical system.					
	l energy				16 H	
_	Nature of winds – Wind turbin				-	
	nechanics - Wind energy conve					
	of wind speed and grid condition		gration) – Wind (energy	/ sto	rage-
	pects – Wind energy program in I	India.		r		
	ass and Geothermal Energy				19 H	
	process – Usable forms of bio					
	es – Biomass conversion techno	-	_	-		
-	ion – Biomass liquefaction – Bio		-			
	igin and Distribution of Geotherr		pes of Geotherma	I Reso		
	n energy and Emerging Techno			_	17 H	
••	gin and nature of tidal energy –		••			
	nental impacts. Wave energy:					
	- Environmental impacts. Oce		••• • •			-
Introduction – Fu	el Cell – Potential Applications -	- Classifications	of Fuel Cells – P	nosph	oric	Ac1d

Academic Council Meeting Held On 17.05.2022

Total Lecture Hours 90 Hrs.

Book for study:

- 1. B.H. Khan, Non Conventional Energy Resources, McGraw Hill Education Private limited, Third Edition, Chennai 16, 2017.
- Unit I Chapter 1 (Sections 1.1 to 1.12), Chapter 2 (Sections 2.1 to 2.5)
- Unit II Chapter 4 (4.1 and 4.8), Chapter 5 (5.1 5.12)
- Unit III Chapter 7 (7.1 7.6, 7.10 7.14)
- Unit IV Chapter 8 (8.1 8.9), Chapter 9 (9.1 9.4)
- Unit- V Chapter 10, Chapter 12 (12.1, 12.2.1-12.2.4)

Book for Reference:

- 1. G.D. Rai, Solar energy Utilization, Khanna Publishers, 5th Edition, New Delhi 02, 2005.
- 2. R.L. Jaffe, The Physics of Energy, 1st Edition, Cambridge University Press, USA, 2018.
- 3. D.H. Perkins, Introduction to High Energy Physics, Cambridge University Press, USA, 2000. **Web Resources:**

https://nptel.ac.in/courses/103/103/103103206/

https://onlinecourses.swayam2.ac.in/nou21_me03/preview

https://www.mooc-list.com/tags/energy

COURSE OUTCOMES K Level					
COURSE OUTCOMES					
CO1:	Classify the present energy scenario and the need for energy conservation.	K4			
CO2:	Separate the various energy resources in different environment.	K4			
CO3:	Outline division aspects and utilization of renewable energy sources for both domestics and industrial applications.	K3			
CO4:	Survey the concept of various forms of renewable and non-renewable energy resources.	K4			
CO5:	Predict the aspects of ocean energy in human needs.	K5			

CO & PO Mapping:

	Programme Outcomes (PO's)						
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	2	2	
CO2	3	1	2	3	3	3	
CO3	2	2	3	2	3	3	
CO4	3	3	2	2	2	2	
CO5	2	3	1	3	3	3	

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	ENERGY PHYSICS	Hrs	Mode		
т	Energy, economy and social development – Oil crisis – Classification of energy resources –Consumption trend of primary energy resources – Importance of non-conventional energy resources.	6			
Fundamentals of energy and Energy conservation	Energy chain – Common forms of energy – Advantages and disadvantages of conventional energy sources – Salient features of non-conventional energy sources – Energy densities (heating values) of various fuels – Environmental Aspects of energy.	7	Chalk, Talk & PPT		
	Energy conservation: Important Terms and Definitions – Important Aspects of Energy Conservation – Global Efforts, Achievements and Future Planning – Energy Conservation / Efficiency scenario in India.	6			
п	The sun as a source of energy – The earth – Sun, earth radiation spectrum – Extraterrestrial and terrestrial radiations – Spectral power distribution of solar radiation – Depletion of solar radiation – Measurement of solar radiation.	7	Chalk,		
n Solar energy	Solar Collectors – Solar Water Heater – Solar Passive Space Heating and Cooling System – Solar Industrial Heating System – Solar Refrigeration and Air Conditioning Systems –	6	Talk & Assignment		
	Solar cookers – Solar furnace – Solar greenhouse – Solar dryer – Solar distillation – Solar thermo mechanical system.	6			
	Origin of wind – Nature of winds – Wind turbine siting – Major applications of wind power – Basics of fluid mechanics.	6			
III Wind energy	Wind energy conversion systems (WECS) – Wind-Diesel hybrid system – Effects of wind speed and grid condition (System integration)	5	Chalk, Talk & Seminar		
	Wind energy storage- Environmental aspects – Wind energy program in India.	5			
IV Biomass and	Photo synthesis process – Usable forms of biomass, their composition and fuel properties – Biomass resources – Biomass conversion technologies	6	Chalk, Talk & PPT		
Geothermal	Urban waste to energy conversion - Biomass gasification – Biomass liquefaction – Biomass to ethanol production.	7			
Energy	Geothermal Energy – Types of Geothermal Resources.	6			
	Tidal Energy: Origin and nature of tidal energy – Limitations – Tidal energy technology – Present status – Environmental impacts.	6			
V Ocean energy	Wave energy: Power in waves – Waves energy technology – Present status – Environmental impacts. Ocean thermal energy.	5	Chalk, Talk & Exercise		
and Emerging Technologies	Emerging Technologies: Introduction – Fuel Cell – Potential Applications – Classifications of Fuel Cells – Phosphoric Acid Fuel Cell – Alkaline Fuel Cell.	6			

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
				Section MCQ	Section A		on B nswers	Section C	Section		
Internal	CO	s	K Level	No. of. Questions	K - Level	No. of. Questio ns	K - Level	Either or Choice	D Open Choice		
CI	CO	1	K3	2	K1	1	K1	2 (K3&K3)	1(K3)		
AI	CO	2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)		
CI	CO	3	K4	2	K1	1	K2	2 (K3&K3)	1(K4)		
AII	CO	4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)		
		Ques	No. of stions to be asked	4		3		4	2		
Questio Pattern		No. of Questions to be answered Marks for each question		Questions to be		4		3		2	1
CIA I &	Π			1		2		5	10		
		fe	tal Marks or each section	4		6		10	10		

Course designed by: Mr. P. Dharmaraja & Dr. P.P. Kannan

		Dist	ribution of]	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	10	30	60	60
	K4	-	-	-	10	10	20	20
1	Marks	4	6	20	20	50	100	100
	K1	2	-	-	_	2	4	20
	K2	2	6	-	-	8	16	20
CIA	K3	-	-	20	-	20	40	40
II	K4	-	-	-	20	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D			
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
110.		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)			
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ons to	10		5		10	5			
b	e Aske	d	10		5		10	5			
No. of	f Questi	ons to	10		5		5	3			
be	answei	ed	10		5		5	5			
Mar	rks for e	each	1		2		5	10			
(question		1				5	10			
Tota	al Mark	s for	10		10		25	30			
ea	ch secti	on	10		10		23	50			
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)			

	Distribution of Marks with K Level											
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %					
K1	5	4	-	-	9	7.5	8					
K2	5	6	-	-	11	9.17	9					
K3	-	-	50	10	60	50	50					
K4	-	-	-	30	30	25	25					
K5	_	_	_	10	10	8.33	8					
Marks	10	10	50	50	120	100	100					
ND. II.	han laval of m	C	£ 41				hall and handl					

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Answer		iple Choice stions	(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	•
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section I	3 (Shor	t Answer Q	uestions)
Answer .	•	•	(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section (C (Eithe	er or Choice	Questions)
Answer .	All Que	stions	(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Hig	gher lev	el of perfo	rmance of the students is to be assessed by attempting higher
levelof I	K levels	5	
Section I	D (Oper	n Choice)	
		ree question	ns (3x10=30 marks)
Q. No	ĊO	K Level	Questions
21	CO1	K4	-
	CO2	K4	
22			
22 23	CO3	K3	
	CO3 CO4	K3 K4	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name PHYSICS OF HUMAN BODY			
Course Code 21PPHE33	L	Р	С
Category Elective	6	-	6
Nature of course:EMPLOYABILITYSKILL ORIENTED✓ENTRE	EPRENE	EURS	HIP
Course Objectives:			
• To visualize the dynamics of fluid in human body			
• To explain the physics of circulation system in cardiovascular system			
• To understand breathing technique in a effective way			
 To differentiate various sounds from sources 			
• To describe various visual impairments and their corrective measures			
Unit: I Fluid Flow and its Motion in Body	1	8 Hrs	5.
Characteristic Pressures in the Body - Definition and Units - Measuring Pressure			
Pressure and Flow of Fluids - Law of Laplace - Fluids in Motion - Equation	n of Co	ontinu	ity -
Bernoulli's Equation - Interactions among the Flow Parameters - Viscous Flow	v and P	oiseu	ille's
Law - Diffusion (Advanced Topic) - Pressure and Flow in the Body - Motion of	Humans	s in F	luids
- Swimming - Human Flight.			
Unit: II Cardiovascular System		8 Hrs	
Overview of the Circulatory System and Cardiac Cycle - Circulation - Cardiac			
Physics of the Circulation System - Properties of Blood - Blood Pressure and			
Capillaries and Osmotic Pressure - Blood Flow Rates and Speeds - Consequence			
Arteries - Work Done by the Heart and the Metabolic Needs of the Heart - Stroke			-
- Arterial Bifurcations and Saccular Aneurysms - Stenosis and Ischemic Stro		-	
Motion of Arteries and Aneurysms during Pulsatile Flow (Advanced Topic)			-
Circulatory System and the Heart - Model of the Heart - Model of the Ov			
Circulatory System - The Arterial Pulse- Windkessel Model - Modelling the Mal			
Unit: III Lungs and Breathing		8 Hrs	
Structure of the Lungs - The Physics of the Alveoli - Physics of Breathing - Volu			-
Breathing Under Usual and Unusual Conditions - Flow of Air During Breath	0		
Model of Breathing and Model Parameters - Inspiration/Expiration Cycle -	Breathir	ng w	ith a
Diseased Lung - Breathing at Higher Elevations - Work Needed to Breathe			
Unit: IV Sound, Speech, and Hearing		8 Hrs	
The Physics of Sound Waves - The Speed and Properties of Sound Waves - I	-		
Waves - What Happens when Sound Travels from One Medium to An- Resonant		-	
Production - Types of Sounds - Systems in Speech Production - Parameters of the			
The Energetic of Speaking – Hearing- Auditory Sensitivity - Connections to He	aring Pe	rcept	ion -
Other Vibrations in the Body - Cardiac and Other Sources of Sounds			
Unit: V Light, Eyes and Vision		8 Hrs	
Structure of the Eye - Focusing and Imaging with Lenses - Image Formation- S			
Imaging - Combinations of Lenses or Refractive Surfaces - Imaging and Detection	•		•
Transmission of Light in the Eye - The Eye as a Compound Lens – Accommodati			
and Binocular Vision - Adjustments of Light Levels - Limitations to Visual A			
Human Vision - Correction of Vision by Eyeglasses, Contact Lenses and Other	Means -	Тур	es of
Vision Impairment - Connections to Visual Perception.			

	Total Lecture Hours	90 Hrs.
Books	for Study:	
Irving	P. Herman, Physics of Human body, Springer-Verlag Berlin Heidelberg, (2008)	
Unit I :	Chapter 7	
Unit II	:Chapter 8	
Unit II	L: Chapter 9	
Unit IV	Chapter 10	
Unit V	:Chapter 11	
Books	for References:	
202		JSA, Reprint
	esources:	
	ps://openregon.pressbooks.pub/bodyphysics/chapter/human-metabolism/	
	<u>ps://en.m.wikipedia.org/wiki/Composition_of_the_human_body</u>	
	ps://en.m.wikipedia.org/wiki/Human_body	T
Course	e Outcomes	K Level
CO1:	Infer the dynamics of fluid in human body	K4
CO2:	Focus the physics of circulation system such as blood pressure, osmotic pressure, metabolic needs, etc.,	K4
CO3:	Apply breathing technique in a effective way which resulted from the understanding of detailed theory behind breathing	К3
CO4:	Distinguish various sources of sound	K4
CO5:	Justify the various visual impairments and about their corrective measures	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	2	2	2			
CO2	3	1	2	3	3	3			
CO3	2	2	3	2	3	3			
CO4	3	3	2	2	2	2			
CO5	2	3	1	3	3	3			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT PHYSICS OF HUMAN BODY Hrs Mode Characteristic Pressures in the Body, Definition and Units, Measuring Pressure, Basic Physics of Pressure and Flow of 6 Fluids Ι Law of Laplace, Fluids in Motion, Equation of Continuity, Fluid Flow and Chalk & its Motion in Bernoulli's Equation Talk and 6 Interactions among the Flow Parameters, Viscous Flow and **Body** Assignment Poiseuille's Law, Diffusion (Advanced Topic), Pressure and Flow in the Body, Motion of Humans in Fluids, Swimming, 6 Human Flight. Overview of the Circulatory System and Cardiac Cycle, Circulation, Cardiac Cycle, Valves, Physics of the Circulation System, Properties of Blood, Blood Pressure and 6 Flow in Vessels, Capillaries and Osmotic Pressure, Blood Flow Rates and Speeds, Consequences of Clogged Arteries Π Work Done by the Heart and the Metabolic Needs of the Chalk & Cardiovascular Heart, Strokes and Aneurysms, Arterial Bifurcations and Talk and 6 **System** Saccular Aneurysms, Stenosis and Ischemic Strokes PPT Equation of Motion of Arteries and Aneurysms during Pulsatile Flow (Advanced Topic), Modelling the Circulatory System and the Heart, Model of the Heart, Model of the 6 Overall Flow in the Circulatory System, The Arterial Pulse, Windkessel Model, Modelling the Malfunctioning Heart. Structure of the Lungs, The Physics of the Alveoli, Physics of Breathing, Volume of the Lungs, Breathing Under Usual and 6 Ш Unusual Conditions, Lungs and Chalk. Flow of Air During Breathing, Mechanical Model of **Breathing** Talk& Breathing and Model Parameters, Inspiration/Expiration 6 class test Cycle, Breathing with a Diseased Lung, Breathing at Higher 6 Elevations, Work Needed to Breathe The Physics of Sound Waves, The Speed and Properties of Sound Waves, Intensity of Sound Waves, Sound Travels 6 from One Medium to other Resonant Cavities, Speech Production, Types of Sounds, IV Chalk & Sound, Speech Systems in Speech Production, Parameters of the Human 6 Talk, PPT and Hearing Voice, The Energetic of Speaking, Hearing, Auditory Sensitivity, Connections to Hearing Perception, Other Vibrations in the 6 Body, Cardiac and Other Sources of Sounds Structure of the Eye, Focusing and Imaging with Lenses, Image Formation, Scientific Basis for Imaging, Combinations 6 of Lenses or Refractive Surface, Chalk. Imaging and Detection by the Eye, Transmission of Light in Light, eye and Talk& the Eye, The Eye as a Compound Lens, Accommodation, Vision Seminar 6 Field of View and Binocular Vision, Adjustments of Light Levels Limitations to Visual Acuity, Imperfect Human Vision, 6

LESSON PLAN

Volume IV – Science Syllabu	ıs / 2022 - 2023
-----------------------------	------------------

Correction of Vision by Eyeglasses, Contact Lenses and Other Means, Types of Vision Impairment, Connections to Visual Perception, Vision in Other Animals.	
--	--

Course Designed by: Mr. N. Venkatesh Bharathi & Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print										
	Articulation Mapping – K Levels with Course Outcomes (COs)										
			Section	n A	Sectior	Section B					
Intern			MCQ	s	Short An	swers	Section C	Section D			
al	Cos	s K Level	No. of.	K - Level	No. of.	К-	Either or	Open			
ai			Questions		Question	Leve	Choice	Choice			
			Questions		S	1					
CI	CO	1 K4	2	K1	1	K1	2 (K3&K3)	1(K4)			
AI	CO	2 K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
CI	CO.	3 K3	2	K1	1	K1	2 (K3&K3)	1(K3)			
AII	CO4	4 K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
		No. of Questions to be asked	4		3		4	2			
Questi Patte		No. of Questions to be answered			3		2	1			
CIA I &	& II	Marks for each questior	1		2		5	10			
		Total Marks for each section	4		6		10	10			

		Dist	ribution of 1	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	-	20	40	40
	K4	-	-	-	20	20	40	40
1	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	10	30	60	60
II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

5	Summa	tive Exa	amination –			Mapping –	K Level with	Course
		1	I		mes (COs)		I	
S.		K -	MCQs		Short A	Inswers	Section C	Section D
No.	COs	Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)
	No. of Questions to be Asked		10		5		10	5
No. of Questions to be answered		10		5		5	3	
Marks for each question		1		2		5	10	
	Total Marks for each section		10		10		25	30
	(Figure	es in pa	renthesis der	notes, questi	ons should l	be asked wit	h the given K	level)

		Dis	tribution of	Marks with	n K Leve	1	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	_	9	7.5	8
K2	5	6	-	-	11	9.17	9
K3	-	-	50	10	60	50	50
K4	-	-	-	30	30	25	25
K5	-	-	-	10	10	8.33	8
Marks	10	10	50	50	120	100	100
-	NB: Higher level of performance of the students is to be assessed by attempting higher level						
of K lev	els.						

Answer A Q. No	CO	K Level	(10x1=10 marks) Questions
1	C01	K Level K1	Questions
2	C01	K1 K2	
3	CO1 CO2	K2 K1	
4	CO2 CO2	K1 K2	
5	CO2 CO3	<u>K2</u> K1	
<u> </u>	CO3	K1 K2	
7	CO3	K2 K1	
8	CO4	K1 K2	
9	C04	K2 K1	
10	CO5	K1 K2	
		Answer Qu	estions)
Answer A		-	(5x2=10 marks
Q. No	CO	K Level	
11	C01	K Level K1	
11	CO1	K1 K1	
12	CO2	K1 K2	
13	CO3	K2 K2	
14	C04	K2 K2	
		· or Choice	Questions)
Answer A			(5x5=25 marks
Q. No	CO	K Level	(5A5-25 marks
16) a	C01	K3	
16) b	C01	K3	
10) e	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
			mance of the students is to be assessed by attempting higher
levelof K		i or perior	manee of the statemes is to be assessed by attempting ingree
Section D		Choice)	
		ee question	s (3x10=30 marks
Q. No	CO	K Level	Questions
21	C01	K Level K4	Zucsuons
$\frac{21}{22}$	CO1 CO2	K4	
22	CO2 CO3	K4 K3	
/ 1		IN.J	
	COA	\mathbf{V}^{A}	
23 24 25	CO4 CO5	K4 K5	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	MICROPROCESSO	R AN	D MICROCONTROL	LER				
Course Code	21PPHE34					L	Р	С
Category	Elective					6	-	6
Nature of cours	e EMPLOYABILIT	Y ✓	SKILL ORIENTED	√	ENTREPR	ENEU	URSI	HIP
COURSE OBJ	ECTIVES:	•						
To unde	rstand the architecture a	and ins	struction set of INTEL 8	085 ir	n Microproo	cessoi	ſ.	
• To crea	te assembly language	prog	rams by studying some	e exa	mples in 1	Micro	proc	essor
Program	Programs.							
To fami	iarize different prograr	nmabl	e device and methods to	interf	ace them.			
To unde	rstand the working of a	micro	controller.					
• To use a	microcontroller for var	ious a	pplications.					
			language programming	g			17	Hrs.
		-	classification – Instruct	-	data format	, and	stora	age –
How to write, a	ssemble, and execute a	simpl	e program. Data transfer	r (cop	y) operation	ns - A	Arithi	netic
operations – L	ogic operations – Bra	unch o	operations – Writing a	ssemt	oly languag	ge pr	ograi	ns –
Debugging a pr							•	
Unit: II Co	unters and time delays	5					18	Hrs.
Counters and tin	ne delays – Illustrative	progra	ams: Hexadecimal count	ers –	zero to nine	e (Mo	dulo	Ten)
counters – Gen	erating pulse waveform	is – D	ebugging counters and t	time c	lelay progr	ams.	Stack	c and
subroutines: St	ack – Subroutine – R	estart,	conditional call, and r	return	instruction	ns –	Adva	inced
subroutine conc	epts.							
Unit: III Co	de conversion, BCD	arith	metic and 16 bit da	ata o	perations	and	17	Hrs.
Int Int	erfacing data converte	rs					1/.	1115.
-			CD conversion – BCD		-			
	-		binary code conversion					
			applications – Multiplica					•
			g (D/A) converters- Ana				nver	ters.
		sseml	bly Language Program	ming	& Jump,	loop	19	Hrs.
and	l call instructions							
			mbly programming – A					
			space in the $8051 - 803$		• •			
-	-	oop ar	nd jump instructions – Ca	all ins	tructions –	Time	e dela	y for
various 8051 ch	1						r	
	Port Programming &							Hrs.
-	-	-	tion programming. Imn		-			-
	• •	ous ad	dressing modes. Bit add	resses	s for I/O and	d RA	M – I	Extra
128-byte on-chi	p RAM in 8052.							
			r	Fotal	Lecture H	ours	90	Hrs.
Book for study			11	-	<u> </u>		000	+h
			chitecture, Programming	g and	Application	n witl	n 808	55 5 ^m
,	ntice Hall Pearson Edu							
Unit I: Chapter	2 (2.1-2.4), Chapter 6 (5.1-6.0	6)					

Unit II: Chapter 8 and Chapter 9

Unit III: Chapter 10 and Chapter 13

2. Muhammed Ali Mazidi, Janice GillispieMazidi and Rolin D. McKinlay, The 8051 Microcontroller and Embedded Systems, 2nd Edition, Pearson Education, Inc., New Delhi, 2005.

Unit IV: Chapter 2 and 3

Unit V: Chapter 4 and 5

Books for References:

- 1. Krishnakanth, Microprocessor and Microcontrollers, PHI Learning Pvt. Ltd., First Edition, New Delhi, 2007.
- **2.** R. Latha and S. Sakthivel, 8085,8086, Microprocessor and 8051 Microcontrollers Hardware, Applications and Interfacing, First Edition, Anuradha Publication, Kumbakonam,2006.
- **3.** A. NagoorKani, Microprocessor and it's applications, 3rd Edition, McGraw Hill India Pvt Ltd, New Delhi, 2017.
- **4.** A.P. Mathur, Introduction to Microprocessor, 3rd Edition, McGraw Hill India Pvt Ltd, New Delhi, Reprint 2006.

Web Resources:

https://www.mooc-list.com/tags/microprocessors

https://nptel.ac.in/courses/108/105/108105102/

https://www.classcentral.com/course/swayam-microprocessors-and-interfacing-17694

COUR	SE OUTCOMES	K Level
CO1:	Discover an assembly language programming (ALP) in 8085 microprocessor for the given specification	K4
CO2:	Organize the architecture and functional block of 8051 microcontroller	K4
CO3:	Construct an embedded C and ALP in 8051 microcontroller using the internal functional blocks for the given specification	K3
CO4:	Differentiate various peripherals devices such as 8051, 8085 and 8052	K4
CO5:	Reframe electrical circuitry to the Microprocessor I/O ports in order to interface the processor to external devices	К5

CO & PO Mapping:

Course Outcomes (CO's)		Progr	amme O	utcomes ((PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	3	3	2	3	2						
CO2	2	2	3	2	2	2						
CO3	1	3	2	2	2	3						
CO4	2	2	2	3	2	2						
CO5	3	3	3	3	3	3						

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	MICROPROCESSOR AND MICROCONTROLLER	Hrs	Mode
	The 8085 programming model – Instruction classification	5	
Ι	– Instruction, data format, and storage	3	
Introduction to	How to write, assemble, and execute a simple program.	6	Chalk Talk
8085 assembly	Data transfer (copy) operations	U	,
language	Arithmetic operations – Logic operations – Branch		
programming	operations – Writing assembly language programs –	6	
	Debugging a program.		
	Counters and time delays – Illustrative programs:		
	Hexadecimal counters – zero to nine (Modulo Ten)	6	
II	counters		
Counters and	Generating pulse waveforms – Debugging counters and	-	· ·
time delays	time delay programs. Stack and subroutines: Stack –	6	&Assignment
	Subroutine		Chalk, Talk & PPT Chalk, Talk &Assignment Chalk, Talk & Seminar Chalk, Talk & PPT
	Restart, conditional call, and return instructions –	6	
	Advanced subroutine concepts.		
III	BCD to binary conversion – Binary to BCD conversion –	_	
Code conversion,	BCD to seven segment LED code conversion – Binary to	5	
BCD arithmetic	ASCII and ASCII to binary code conversion		
and 16 bit data	BCD addition and subtraction – Introduction to advanced	-	,
operations and	instructions and applications – Multiplications –	7	& Seminar
Interfacing data	Subtraction with carry.		-
converters	Interfacing Data Converters: Digital to analog (D/A)	5	
TX 7	converters– Analog to digital (A/D) converters.		
IV Miana controllares	Inside the 8051 – Introduction to 8051 Assembly	7	
Microcontrollers:	programming – Assembling and running an 8051 program The program counter and POM space in the 8051 8051		-
8051 Assembly Language	The program counter and ROM space in the $8051 - 8051$ data types and derivatives -8051 flag bits and the PSW	7	Chalk, Talk
Programming &	register.		& PPT
Jump, loop and	Loop and jump instructions – Call instructions – Time		1
call instructions	delay for various 8051 chips.	5	
	8051 I/O Programming – I/O bit manipulation		
V	programming.	7	
I/O Port	Immediate and register addressing modes – Assessing		Chalk Talk
Programming &	memory using various addressing modes.	7	&Exercise
8051 Addressing	Bit addresses for I/O and RAM – Extra 128-byte on-chip		
modes	RAM in 8052.	5	

LESSON PLAN

Course designed by: Mr. P. Dharmaraja & Dr. P. P. Kannan

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)								
				Section MCQ		Section Short An		Section C	Section
Intern al	n CO		K Level	No. of. Questions	K - Level	No. of. Question	K - Level	Either or Choice	D Open Choice
CI	CO1		K3	2	K1	1	K1	2 (K3&K3)	1(K3)
AI	CO2		K4	2	K2	2	K2	2 (K3&K3)	1(K4)
CI	CO3		K4	2	K1	1	K2	2 (K3&K3)	1(K4)
AII	CO)4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked		4		3		4	2
Question Pattern		No. of Questions to be answered		4		3		2	1
CIA I & II		Μ	arks for each question	1		2		5	10
]	Fotal Marks for each section	4		6		10	10

		Di	stribution of	Marks with	K Level CI	A I & Cl	AII	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	10	30	60	60
	K4	-	-	-	10	10	20	20
1	Marks	4	6	20	20	50	100	100
	K1	2	-	-	-	2	4	20
	K2	2	6	-	-	8	16	20
CIA	K3	-	-	20	-	20	40	40
II	K4	-	-	-	20	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course							
				Outco	mes (COs)			
S.		К-	MCQs Short A		Inswers	Section C	Section D	
S. No.	COs	Leve	No. of	K – Level	No. of	K – Level	(Either / or	(Open
190.		1	Questions	K – Level	Question	K – Level	Choice)	Choice)
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)
No. of	f Questi	ons to	10		5		10	Section D (Open Choice) 1 (K4) 1 (K4) 1 (K3) 1 (K4) 1 (K5) 5 3 10 30
b	e Aske	d	10		5		10	
No. of	f Questi	ons to	10		5		5	3
be	be answered		10		5		5	5
Marks for each		1		2		5	10	
question		1		2		5	10	
Tota	Total Marks for		10		10		25	30
ea	each section		10		10		23	50
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)

	Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %	
K1	5	4	-	-	9	7.5	8	
K2	5	6	-	-	11	9.17	9	
K3	-	-	50	10	60	50	50	
K4	-	-	-	30	30	25	25	
K5	-	-	-	10	10	8.33	8	
Marks	10	10	50	50	120	100	100	
NB: Hig	NB: Higher level of performance of the students is to be assessed by attempting higher level							

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

	-	-
		(10x1=10 marks)
		Questions
		Questions)
<u> </u>		(5x2=10 marks)
CO	K Level	
CO1	K1	
CO2	K1	
CO3	K2	
CO4	K2	
CO5	K2	
C (Eith	er or Choi	ce Questions)
All Que	estions	(5x5=25 marks)
CO	K Level	
CO1	K3	
CO1	K3	
CO2	K3	
CO2	K3	
CO3	K3	
CO3	K3	
CO4	K3	
CO4	K3	
CO5	K3	
CO5	K3	
ner leve	el of perfo	rmance of the students is to be assessed by attempting higher
	-	
Oper	n Choice)	
		ons (3x10=30 marks)
CO	K Level	Questions
CO1	K4	
CO2	K4	
CO3	K3	
	K3 K4	
	II Que CO CO1 CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO4 CO3 CO4 CO5 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5 <td< td=""><td>CO1 K1 CO1 K2 CO2 K1 CO2 K1 CO3 K1 CO3 K1 CO3 K2 CO4 K1 CO5 K1 CO5 K1 CO5 K1 CO5 K2 S (Short Answer Mathematications) Mathematications CO1 K1 CO2 K1 CO3 K2 CO4 K2 CO5 K2 CO4 K2 CO5 K1 CO2 K1 CO3 K2 CO4 K2 CO5 K2 CO4 K2 CO5 K2 CO4 K3 CO1 K3 CO2 K3 CO3 K3 CO4 K3 CO5 K3 CO4 K3 CO5 K3 CO5 K3 CO5</td></td<>	CO1 K1 CO1 K2 CO2 K1 CO2 K1 CO3 K1 CO3 K1 CO3 K2 CO4 K1 CO5 K1 CO5 K1 CO5 K1 CO5 K2 S (Short Answer Mathematications) Mathematications CO1 K1 CO2 K1 CO3 K2 CO4 K2 CO5 K2 CO4 K2 CO5 K1 CO2 K1 CO3 K2 CO4 K2 CO5 K2 CO4 K2 CO5 K2 CO4 K3 CO1 K3 CO2 K3 CO3 K3 CO4 K3 CO5 K3 CO4 K3 CO5 K3 CO5 K3 CO5

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Code 21PPHE35 L P C Category Elective 6 - 6 - 6 Nature of course EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENEURSHIP COURSE OBJECTIVES: • To introduce the principles and theory of instrument analysis. • To acquire knowledge about the widely used analytical instruments. • To describe the calibration methods for various analytical instruments. • To describe the calibration methods for various analytical instruments. • To compare different techniques of instrumentation with their efficiency and uses. Unit: 1 Ultraviolet and visible spectrometry 18 Hrs. Radiation sources - Wavelength selection - Cells and sampling devices - Detectors - Readou Modules - Instruments for absorption photometry. 19 Hrs. Correlation of infrared spectrometry and Raman spectroscopy 19 Hrs. Comparison of Raman with infrared spectroscopy. 17 Hrs. Production of X-rays and X-ray spectra - Instrumentation - Sample handling an illumination - Structural analysis - Polarization measurements - Quantitative analysis. 17 Hrs. Production of X-rays and X-ray fluorescence method - X-ray diffraction - Auger Emission Spectroscopy (AES) - Electron spectroscopy. 17 Hrs. Basic principles - Continuous wave NMR spectrometers - Pulsed Fourier	Course Name ANALYTICAL INSTRUMENTATION			
Nature of course EMPLOYABILITY ✓ SKILL ORIENTED ✓ ENTREPRENEURSHIP COURSE OBJECTIVES: • To introduce the principles and theory of instrument analysis. • To acquire knowledge about the widely used analytical instruments. • To learn specific technique employed for monitoring different pollutants in air and water. • To describe the calibration methods for various analytical instruments. • To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. 19 Hrs. Correlation of infrared spectrowith molecular structure – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis. 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy or chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in massing in medicine. 19 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – C	Course Code 21PPHE35	L	Р	С
COURSE OBJECTIVES: • To introduce the principles and theory of instrument analysis. • To acquire knowledge about the widely used analytical instruments. • To learn specific technique employed for monitoring different pollutants in air and water. • To describe the calibration methods for various analytical instruments. • To describe the calibration methods for various analytical instruments. • To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectroscory. 19 Hrs. Correlation of infrared spectroscopy. 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Sample handling an illumination – Structural analysis – Polarization measurements – Quantitative analysis. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMH spectrometer – Spe	Category Elective	6	-	6
 To introduce the principles and theory of instrument analysis. To acquire knowledge about the widely used analytical instruments. To learn specific technique employed for monitoring different pollutants in air and water. To describe the calibration methods for various analytical instruments. To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry I8 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy I9 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling and Quantitative analysis. Raman spectroscopy. Theory – Instrumentation – Sample handling and Illumination – Structural analysis – Polarization measurements – Quantitative analysis. Comparison of Raman with infrared spectroscopy. Uni: II X-ray Methods Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Uni: IV Nuclear Magnetic Resonance Spectroscopy Pasic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMR spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. I0 Hrs. Book for study: I1 Hrs. Book for study: I1 Hrs. I1 Hrs. I1 Hrs. I1 Hrs. I1 Hrs. I1 Hrs. <li< th=""><th>Nature of courseEMPLOYABILITYImage: Skill ORIENTEDImage: Skill ORIENTED</th><th>ENEU</th><th>URSI</th><th>HIP</th></li<>	Nature of courseEMPLOYABILITYImage: Skill ORIENTEDImage: Skill ORIENTED	ENEU	URSI	HIP
 To acquire knowledge about the widely used analytical instruments. To learn specific technique employed for monitoring different pollutants in air and water. To describe the calibration methods for various analytical instruments. To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectrometry and Raman spectroscopy. Unit: III X-ray Methods – Nama spectroscopy. Unit: III X-ray Methods Tray and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: V Nuclear Magnetic Resonance Spectroscopy 117 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR maging in medicine. Unit: V Mass spectrometry – Instrumental Methods of Analysis, 7¹ Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 15 Unit – I: Chapter 15 Unit – V: Chapter 16 (16.1 – 16.10) 	COURSE OBJECTIVES:			
 To learn specific technique employed for monitoring different pollutants in air and water. To describe the calibration methods for various analytical instruments. To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: II X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy or chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass apetrometry – Correlation of mass spectrometry – Quantitative analysis of mixtures. Supple flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Het. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – II: Chapter 13 Unit – II: Chapter 14 (2	• To introduce the principles and theory of instrument analysis.			
water. • To describe the calibration methods for various analytical instruments. • To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: II X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMR spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry – Instrumental of NMR spectra – Quantitative analysis of mixtures. <u>Total Lecture Hours</u> 90 Hrs. Book for study: 1 H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 15 Unit – I: Chapter 15 Unit – V: Chapter 15	• To acquire knowledge about the widely used analytical instruments.			
 To describe the calibration methods for various analytical instruments. To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry [18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy [19 Hrs. Correlation of infrared spectro metry and Raman spectroscopy [19 Hrs. Correlation – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: II X-ray Methods [17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy [17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMR spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours [90 Hrs. Book for study: H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7th Edition, CBS Pub & Co, New Delhi, (1986). Unit - I: Chapter 6 Unit - I: Chapter 15 Unit - II: Chapter 15 Unit - II: Chapter 15 Unit - V: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10) 	• To learn specific technique employed for monitoring different pollutar	nts i	n air	and
 To compare different techniques of instrumentation with their efficiency and uses. Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling - Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: III X-ray Methods Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy I7 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: H. H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7th Edition, CBS Pub & Co, New Delhi, (1986). Unit – II: Chapter 6 Unit – II: Chapter 15 Unit – V: Chapter 16 (16.1 – 16.10) 	water.			
Unit: I Ultraviolet and visible spectrometry 18 Hrs. Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling an illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. 17 Hrs. Production of X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass. 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass. 19 Hrs. Boot for study: 19 Hrs. 19 Hrs. <	• To describe the calibration methods for various analytical instruments.			
Radiation sources – Wavelength selection – Cells and sampling devices – Detectors – Readou Modules – Instruments for absorption photometry. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. 17 Hrs. Vinit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling - Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 11 H.4. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition	To compare different techniques of instrumentation with their efficiency and the second	nd us	ses.	
Modules – Instruments for absorption photometry. 19 Hrs. Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. 17 Hrs. Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling - Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1 1.1 H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition,				
Unit: II Infrared spectrometry and Raman spectroscopy 19 Hrs. Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. 17 Hrs. Vinit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Sample flow in a Mass spectrometry – Correlation of mass spectro system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 11 Hrs. 90 Hrs. I. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – II: Chapter 6 11 11 11		ors -	- Rea	adout
Correlation of infrared spectra with molecular structure – Instrumentation – Sample handling – Quantitative analysis. Raman spectroscopy: Theory – Instrumentation – Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)				
Quantitative analysis. Raman spectroscopy: Theory – Instrumentation - Sample handling and illumination – Structural analysis – Polarization measurements – Quantitative analysis - Comparison of Raman with infrared spectroscopy. Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapters 11 & 12 Unit – II: Chapters 11 & 12 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 15				
illumination – Structural analysis – Polarization measurements – Quantitative analysis – Comparison of Raman with infrared spectroscopy. Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapters 11 & 12 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)				
Comparison of Raman with infrared spectroscopy. 17 Hrs. Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ⁴ Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapter 13 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – II: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)				
Unit: III X-ray Methods 17 Hrs. Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Vinit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapter 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10) Unit – V: Chapter 16 (16.1 – 16.10)		ve a	nalys	is –
Production of X-rays and X-ray spectra – Instrumentation – Direct X-ray Methods – X-ray absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NME spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)	· · · · · · · · · · · · · · · · · · ·			
absorption methods – X-ray fluorescence method – X-ray diffraction – Auger Emission Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitativa analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometery 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitativa analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – I: Chapter 13 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10)				
Spectroscopy (AES) – Electron spectroscopy for chemical analysis (ESCA). 17 Hrs. Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMR spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. 19 Hrs. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapter 13 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)				
Unit: IV Nuclear Magnetic Resonance Spectroscopy 17 Hrs. Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMR spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. 90 Hrs. Book for study: 11. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapter 13 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)		ıger	Emi	ssion
Basic principles – Continuous wave NMR spectrometers – Pulsed Fourier Transform NMF spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10)			17	
spectrometer – Spectra and molecular structure – Elucidation of NMR spectra – Quantitative analysis and integration – NMR imaging in medicine. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapter 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10)				
analysis and integration – NMR imaging in medicine. 19 Hrs. Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). 90 Hrs. Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – I6 (16.1 – 16.10) 90 Hrs.				
Unit: V Mass spectrometry 19 Hrs. Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit – IV: Chapter 16 (16.1 – 16.10) Unit – V: Chapter 16 (16.1 – 16.10)		- Qi	lantn	alive
Sample flow in a Mass spectrometer – Inlet Sample system – Ionization methods in mass spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – IV: Chapter 13 Unit – IO Unit – IV: Chapter 16 (16.1 – 16.10)			101	Ura
spectrometry – Mass analyzers – Ion-collection systems – Vacuum system – Data handling – Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IIS Unit – IV: Chapter 16 (16.1 – 16.10)		hode		
Isotope-Ratio spectrometry – Correlation of mass spectra with molecular structure – Quantitative analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10)	· · · ·			
analysis of mixtures. Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 th Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapters 13 Unit – IV: Chapter 15 Unit – V: Chapter 16 (16.1 – 16.10)				
Total Lecture Hours 90 Hrs. Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7 ^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – II: Chapter 13 Unit – IV: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10)		٧u	amen	unve
 Book for study: 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit-V: Chapter 16 (16.1 – 16.10) 		urs	901	Hrs
 H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, 7^t Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit - V: Chapter 16 (16.1 – 16.10) 		ui s	101	
Edition, CBS Pub & Co, New Delhi, (1986). Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit- V: Chapter 16 (16.1 – 16.10)	•	f An	alvsi	s. 7^{th}
Unit – I: Chapter 6 Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit- V: Chapter 16 (16.1 – 16.10)			<u>j</u>	- , - ,
Unit – II: Chapters 11 & 12 Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit- V: Chapter 16 (16.1 – 16.10)				
Unit – III: Chapter 13 Unit – IV: Chapter 15 Unit- V: Chapter 16 (16.1 – 16.10)	1			
Unit- V: Chapter 16 (16.1 – 16.10)	-			
	Unit – IV: Chapter 15			
Books for References:	Unit- V: Chapter 16 (16.1 – 16.10)			
	Books for References:			

- 1. R.S. Khandpur, Handbook of Analytical Instruments, Tata McGraw-Hill Publications, New Delhi, 2006.
- 2. G. McMahon, Analytical Instrumentation: A Guide to Laboratory, Portable and Miniaturized Instruments, John Wiley & Sons, Ltd., New York, 2007.
- 3. J. Cazes, Analytical Instrumentation Handbook, CRC Press, 2004.

Web Resources:

https://www.mooc-list.com/course/analytical-chemistry-instrumental-analysis-coursera https://nptel.ac.in/courses/103/108/103108100/

https://onlinecourses.swayam2.ac.in/cec20_bt22/preview

COUR	SE OUTCOMES	K Level
CO1:	Categorize the required instruments for spectroscopic analysis.	K4
CO2:	Analyze the effects of different constituent in a process outcome and the performance of various instruments.	K4
CO3:	Compute the working of X- ray diffractometer and scanning electron microscope.	K3
CO4:	Classify the frequency selection of the substance from spectrum analysis.	K4
CO5:	Interpret the experimental analysis for analyzing the real samples using instruments.	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	2	3	2		
CO2	2	2	3	2	2	2		
CO3	1	3	2	2	2	3		
CO4	2	2	2	3	2	2		
CO5	3	3	3	3	3	3		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	ANALYTICAL INSTRUMENTATION	Hrs	Mode
Ι	Radiation sources, Wavelength selection	6	
Ultraviolet	Cells and sampling devices, Detectors	6	Chalk, Talk
and visible spectrometry	Readout Modules, Instruments for absorption photometry	6	& PPT
II Infrared	Correlation of infrared spectra with molecular structure, Instrumentation	7	
spectrometry and Raman	Sample handling, Quantitative analysis. Raman spectroscopy: Theory, Instrumentation	6	Chalk, Talk &Exercise
spectroscopy	Sample handling and illumination, Structural analysis, Comparison of infrared and Raman spectroscopy	6	
TT	Production of X-rays and X-ray spectra, Instrumentation	5	
III X-ray Mathada	Direct X-ray Methods, X-ray absorption methods, X-ray fluorescence method	6	Chalk, Talk &Assignment
Methods	Methods X-ray diffraction, Auger Emission Spectroscopy (AES).		_
	NMR basic principles, Continuous wave NMR spectrometers	5	
IV NMR	Pulsed Fourier Transform NMR spectrometer, Spectra and molecular structure	5	Chalk, Talk & Seminar
spectroscopy	Elucidation of NMR spectra, quantitative analysis and integration, NMR imaging in medicine	7	& Seminar
V	Sample flow in a Mass spectrometer, Inlet Sample system, Ionization methods in mass spectrometry	7	
Mass	Mass analyzers, Ion-collection systems, Vacuum system, Data handling, Isotope-Ratio spectrometry	7	Chalk, Talk & PPT
spectrometry	Correlation of mass spectra with molecular structure, Quantitative analysis of mixtures	5	

LESSON PLAN

Course designed by: Mr. P. Dharmaraja & Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping – K Levels with Course Outcomes (COs)										
Inter				Section A MCQs		Section B Short Answers		Section C	Section D		
Inter nal CC		S	K Level	No. of. Questions	K - Level	No. of. Question s	K - Level	Either or Choice	D Open Choice		
CI	CO	1	K3	2	K1	1	K1	2 (K3&K3)	1(K3)		
AI	CO	02 K4		2	K2	2	K2	2 (K3&K3)	1(K4)		
CI	CO	3	K4	2	K1	1	K2	2 (K3&K3)	1(K4)		
AII	CO4		K4	2	K2	2	K2	2 (K3&K3)	1(K4)		
		No. of Questions to be asked		4		3		4	2		
Quest Patte		No. of Questions to be answered		Questions to be		4		3		2	1
CIAI	& II	Marks for each question		1		2		5	10		
			Fotal Marks for each section	4		6		10	10		

	Distribution of Marks with K Level CIA I & CIA II											
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %				
	K1	2	2	-	-	4	8	20				
	K2	2	4	-	-	6	12	20				
CIA	K3	-	-	20	10	30	60	60				
I	K4	-	-	-	10	10	20	20				
1	Marks	4	6	20	20	50	100	100				
	K1	2	-	-	-	2	4	20				
	K2	2	6	-	-	8	16	20				
CIA	K3	-	-	20	-	20	40	40				
II	K4	-	-	-	20	20	40	40				
	Marks	4	6	20	20	50	100	100				

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
S.		K -	MO	CQs	Short A	nswers	Section C	Section D			
No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
			Questions		Question		Choice)	Choice)			
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
	f Questi e Aske		10		5		10	5			
	No. of Questions to be answered		10		5		5	3			
	rks for e question		1		2		5	10			
	al Mark ch secti		10		10		25	30			
	(Figures in parenthesis denotes, questions should be asked with the given K level)										

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	8			
K2	5	6	-	-	11	9.17	9			
K3	-	-	50	10	60	50	50			
K4	-	-	-	30	30	25	25			
K5	-	-	-	10	10	8.33	8			
Marks	10	10	50	50	120	100	100			
NB: Hig	NB: Higher level of performance of the students is to be assessed by attempting higher level									

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

10 marks)
 10 marks)
 10 marks)
 10 marks)
10 marks)
10 marks)
10 marks)
10 marks)
10 marks)
10 marks)
25 marks)
nigher
30 marks)
,

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

 OURSE OBJECTIVES To understand the fl To realize the extension method To familiarize the model of the extension of the exten	e OYABILITY S: heories involv nded knowled od. nelt growth pr r growth techr crystal charac heory owth – Classi	SKILL ORIENTED red in crystal growth nuclea ge on advanced condensed rocedure for single crystals. niques and characterization cterization methods.	l matter topics lik			C 6 ✓
ature of course: EMPL ature of course: EMPL OURSE OBJECTIVES • To understand the the • To understand the the • To realize the extern from solution method • To familiarize the m • To familiarize the m • To know the vapour • To demonstrate the • Itil Nucleation the • Nucleation the • Itil Solution Grow • To familiarize the m	OYABILITY S: heories involved odd knowled od. helt growth pr r growth techr crystal charac heory owth – Classi	red in crystal growth nuclea ge on advanced condensed rocedure for single crystals. niques and characterization	tion process. I matter topics lik	NEUR		√
 OURSE OBJECTIVES To understand the fl To realize the extension method To familiarize the model of the extension of the exten	S: heories involv nded knowled od. nelt growth pr r growth techr crystal charac neory owth – Class	red in crystal growth nuclea ge on advanced condensed rocedure for single crystals. niques and characterization	tion process. I matter topics lik			
 To understand the the To realize the extern from solution method. To familiarize the method. To know the vapour. To demonstrate the method. T	heories involv nded knowled od. nelt growth pr r growth techr crystal charac neory owth – Class	ge on advanced condensed rocedure for single crystals. niques and characterization	l matter topics lik	e crys	tal gro	owth
 To realize the externation solution method To familiarize the mail of the vapour To know the vapour To demonstrate the mail of the vapour To demonstrate the	nded knowled od. nelt growth pr r growth techr crystal charac neory owth – Classi	ge on advanced condensed rocedure for single crystals. niques and characterization	l matter topics lik	e crys	tal gro	owtł
from solution metho To familiarize the m To know the vapour To demonstrate the Mit: I Nucleation the nportance of crystal gro Linds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of Mit: II Solution Gro	od. nelt growth pr r growth techr crystal charac neory owth – Class	ocedure for single crystals. niques and characterization		e crys	tal gro	owth
To familiarize the m To know the vapour To demonstrate the Init: I Nucleation the Inportance of crystal grow Inds of nucleation – Hor lassical theory of nuclear f nucleation – Energy of Init: II Solution Gro	nelt growth pr r growth techr crystal charac neory owth – Classi	niques and characterization		·	C	
To know the vapour To demonstrate the Nucleation th nportance of crystal gro inds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of fnit: II Solution Gro	r growth techr crystal charac neory owth – Class	niques and characterization				
To know the vapour To demonstrate the Nucleation th nportance of crystal gro inds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of fnit: II Solution Gro	r growth techr crystal charac neory owth – Class	niques and characterization				
To demonstrate the init: I Nucleation the nportance of crystal gro inds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of init: II Solution Gro	crystal charac neory owth – Class	-				
Init: INucleation thenportanceof crystal growninds of nucleation – Horlassical theory of nucleationf nucleation – Energy ofinit: IISolution Grown	neory owth – Classi					
nportance of crystal gro inds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of fnit: II Solution Gro	owth – Classi			1	8 Hrs	
inds of nucleation – Hor lassical theory of nuclea f nucleation – Energy of nit: II Solution Gro		ification of crystal growth	methods – Nucl	leation	Theo	ory .
f nucleation – Energy ofInit: IISolution Gro		cleation - Heterogeneous r				•
f nucleation – Energy ofInit: IISolution Gro	ation: Gibbs 7	Thomson equations for vap	our and solution	– Kine	etic th	eory
		a spherical nucleus and cyl				-
	wth Techniq	ues		1	9 Hrs	
rowth from low tempe	erature soluti	ions: Selection of solvents	and solubility -1	Meir's	solut	oility
iagram – Saturation ar	nd super satu	aration – Metastable zone	e width – Grow	th by	restr	icted
vaporation of solvent, sl	low cooling o	f solution and temperature	gradient method	s - Ġe	el Gro	owth
		s – Structure of gel – In				
		- Single and double diffus				
ethod - Complex and a	decomplexion	method – Advantages of	gel method. Gro	owth f	rom 1	high
emperature solutions: F	lux growth –	Hydrothermal growth meth	nod.			
nit: III Melt Growth	Techniques			1	7 Hrs	•
asics of melt growth - B	ridgman meth	nod – Growth apparatus: Ci	rucibles, Heater, n	neasur	ement	and
ontrol of temperature – g	growth proces	s – Applications of Bridgm	an method; Czocł	ıralski	techn	ique
Growth apparatus - see	ed preparation	n – pulling rate – shape o	f crystal melt into	erface	– Gro	owth
rocess.						
nit: IV Vapour Grov	wth Techniqu	ies		1	9 Hrs	•
hysical Vapour Transpor	rt (PVT) – Pro	ocesses of sublimation and	condensation – p	rincipl	e – cr	ysta!
rowth in closed and sem	i-open ampou	lles – Chemical Vapour Tra	ansport – Criteria	for the	choic	ce of
		ials and transporting agents				
or crystal growth: Statio	onary tempera	ture profile, Linearly time	e varying tempera	ture p	rofile	and
scillatory temperature pr	rofile.					
nit: V Characteriza	tion Techniq	ues		1	7 Hrs	•
-Ray Diffraction (XRD) – Powder	and single crystal - Four	ier transform Inf	rared	(FT-I	R) -
-		V-Visible spectrometer – V				
tching.		-				
		1	otal Lecture Ho	urs 9	0	
Books for Study:				•		
J. C. Brice. Crystal Gro	1.0	s, John Wiley and Sons, Ne	Varle 1006			

2. P. Santhana Ragavan and P. Ramasamy, Crystal Growth Processes and Me	thods, KRU				
Publications, Kumbakonam, 2001.					
Books for References:					
1. Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath Prasad, Michael Dudley (Eds.), Hand				
book of Crystal Growth, Springer Heidelberg Dordrecht, New York, 2010.					
2. H.L. Bhat, Introduction to Crystal Growth Principles and Practice, CRC Press, Taylor & Francis					
Group, Boca Raton, Florida, 2015.					
3. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization Techniques, CRC	Press, Taylor				
& Francis Group, Boca Raton, Florida, 2009.					
4. G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engineering A Text book, World Scientific,					
Singapore, 2011.					
Web Resources:					
https://www.mooc-list.com/tags/x-rays					
https://nptel.ac.in/courses/113/106/113106069/					
https://onlinecourses.swayam2.ac.in/arp20_ap42/preview					
COURSE OUTCOME	K Level				
On Completion of this course, the student will be able to	K Level				
CO1: Analyze the theory of nucleation for crystal growth.	K4				
CO2: Assume the detailed description on solution and gel growth techniques	K4				
CO3: Experiment with the melt and vapour growth techniques easily	K3				
CO4: Examine the preparation of crystals using vapour deposition method	K4				
CO5: Importance on different characterization techniques	K5				

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	2	3	2		
CO2	2	2	3	2	2	2		
CO3	1	3	2	2	2	3		
CO4	2	2	2	3	2	2		
CO5	3	3	3	3	3	3		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Units	CRYSTAL GROWTH AND CHARACTERIZATION TECHNIQUES	Hrs	Mode
	Importance of crystal growth, Classification of crystal growth methods, Nucleation Theory, Kinds of nucleation	4	
I Nucleation	Homogeneous nucleation, Heterogeneous nucleation, secondary nucleation	4	Chalk &Talk,
theory	Classical theory of nucleation: Gibbs Thomson equations for vapour and solution	5	PPT
	Kinetic theory of nucleation, Energy of formation of a	5	
	spherical nucleus and cylindrical nucleus. Growth from low temperature solutions: Selection of solvents and solubility, Meir's solubility diagram, Saturation and supersaturation, Metastable zone width Growth by restricted evaporation of solvent, slow cooling of solution and temperature gradient methods.	5	
II Solution Growth Techniques	Growth Technique: Principle, Various types, Structure of gel, Importance of gel, Experimental procedure Chemical reaction method, Single and double	5	Chalk &Talk, PPT, Assignment
	diffusion method, Chemical reduction method, Complex and decomplexion method, Advantages of gel method.	5	1155151111011
	Growth from high temperature solutions : Flux growth – Hydrothermal growth method.	4	
ш	Basics of melt growth, Bridgman method, Growth apparatus: Crucibles, Heater, measurement and control of temperature	6	
Melt Growth Techniques	growth process, Applications of Bridgman method; Czochralski technique, Growth apparatus	5	Chalk &Talk
	seedpreparation, pulling rate, shape of crystal melt interface, Growth process.	6	
	Physical Vapour Transport (PVT), Processes of sublimation and condensation, principle, crystal growth in closed and semi-open ampoules.	6	
IV Vapour Growth Techniques	Chemical Vapour Transport, Criteria for the choice of transport reaction. Transported materials and transporting agents.	6	Chalk &Talk, Class Test
	Temperature variation method for crystal growth: Stationary temperature profile, Linearly time varying temperature profile and Oscillatory temperature profile.	6	C1455 I USI
	X-Ray Diffraction (XRD), Powder and single crystal.	6	Seminar,
V Characterization Techniques	Fourier transform Infrared (FT-IR), Raman analysis. TG-DTA / DSC, UV-Visible spectrometer, Vickers Micro hardness, Chemical Etching.	6 6	Chalk &Talk, PPT

LESSON PLAN

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print										
	Articulation Mapping – K Levels with Course Outcomes (COs) Section A Section B										
T			MCQ		Short An		Section C	Section D			
Intern al	Cos	K Level	No. of.	К-	No. of.	K -	Either or	Open			
ai			Questions	Level	Question	Leve	Choice	Choice			
CI	C01	K4	2	K1	s	K1	2 (K3&K3)	1(K4)			
AI	CO1 CO2	K4 K4	2	K1 K2	2	K1 K2	2 (K3&K3) 2 (K3&K3)	1(K4) 1(K4)			
CI	CO2	K3	2	K1	1	K1	2 (K3&K3)	1(K3)			
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
		No. of Questions to be asked	4		3		4	2			
Quest		No. of Questions to be answered	4		3		2	1			
Patte CIA I d		Marks for each question	1		2		5	10			
	-	Total Marks for each section	4		6		10	10			

Course Designed	l by: Dr. S. Ramaswamy	& Mr. N.	Venkatesh Bharathi

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %		
	K1	2	2	-	-	4	8	20		
	K2	2	4	-	-	6	12	20		
CIA	K3	-	-	20	-	20	40	40		
	K4	-	-	-	20	20	40	40		
1	Marks	4	6	20	20	50	100	100		
	K1	2	2	-	-	4	8	20		
	K2	2	4	-	-	6	12	20		
CIA	K3	-	-	20	10	30	60	60		
II	K4	-	-	_	10	10	20	20		
	Marks	4	6	20	20	50	100	100		

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course									
	Outcomes (COs)									
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D		
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open		
1100		Level	Questions	IX Level	Question	IX Level	Choice)	Choice)		
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)		
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)		
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)		
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)		
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)		
No. of	Questi	ons to	10		5		10	5		
b	e Aske	d	10		5		10	5		
No. of	Questi	ons to	10		5		5	3		
be	answei	ed	10		5		5	5		
Mar	ks for e	each	1	1 2			5	10		
(question	1	1		2		5	10		
Total Marks for		10		10		25	30			
ead	ch secti	on	10		10		23	50		
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)		

	Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	8			
K2	5	6	-	-	11	9.17	9			
K3	-	-	50	10	60	50	50			
K4	-	-	-	30	30	25	25			
K5	-	-	_	10	10	8.33	8			
Marks	10	10	50	50	120	100	100			
NB: Hig	gher level of p	erformance o	of the students	s is to be asse	essed by a	attempting	higher level			

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

	Il Quest		(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		Answer Qu	
Answer A			(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		or Choice	
Answer A			(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
	CO5		
NB: Hig	her leve	el of perfor	mance of the students is to be assessed by attempting higher level
of K leve	els		
Section D	(Open	Choice)	
Answer A	ny Thr	ee questions	(3x10=30 marks)
Q. No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
24	001		

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name SOLID STATE PHYSICS - II						
Course Code 21PPHC41	L	Р	С			
Category Core	6	-	4			
Nature of course:EMPLOYABILITYSKILL ORIENTED✓ENTRE	EPREI	NURS	HIP			
COURSE OBJECTIVES:						
• To recognize the occurrence of superconductivity and different theories about i	it.					
• To understand the properties of para, dia and ferro magnetic materials.						
• To study the importance of the Dielectric and ferroelectric solid systems	and it	s pot	ential			
applications.						
• To get knowledge of plasmons, polaritons, polarons an exitons.						
• To elucidate the electrical and optical properties of crystalline solids.						
 To familiarize about various defects in solids and concepts of alloys. 						
Unit: I Superconductivity		18	Hrs.			
Experimental survey - Occurrence of superconductivity - Destruction of super	ercond					
magnetic fields - Meissner effect - Heat capacity - Energy gap – Microwave and in			• •			
- Isotope effect - London equation - Coherence length - BCS theory of superco						
ground state - Flux quantization in a superconducting ring - Duration of persistent		-				
superconductors - Vortex state - Estimation of H_{c1} and H_{c2} - Single particle tunned						
superconductors vortex state Estimation of Π_{c1} and Π_{c2} Single particle tunks superconductor tunneling – DC Josephson effect - AC Josephson effect - Macr	-	-				
interference.	loscop	ie quu	incum			
Unit: II Magnetic Properties of Materials		191	Hrs.			
Diamagnetism and paramagnetism: Langevin diamagnetism equation - Qua	antum					
diamagnetism of mononuclear systems - Paramagnetism - Quantum theory of						
Hund rules - Crystal field splitting - Spectroscopic splitting factor - Van Vl	-	0				
independent paramagnetism. Ferromegnetism and antiferromegnetism: Ferromagn						
point and the exchange integral - Temperature dependence of the saturation						
Magnons - Quantization of spin waves - Thermal excitation of magnons - Ferri	0					
Curie temperature and susceptibility of ferrimagnets - Antiferromagnetic order	-					
below the Neel temperature - Ferromagnetic domains - Anisotropy energy - "		-	-			
between domains - Origin of domains.			- 8			
Unit: III Plasmons, Polaritons, Polarons and Excitons		19	Hrs.			
Plasmons, Polaritons and Polarons: Dielectric function of the electron gas - Def	finitior					
optics - dispersion relation for electromagnetic waves - transverse optical mod						
Transparency of metals in the ultraviolet - Longitudinal plasma oscillation		-				
Electrostatic screening - Screened coulomb potential - Polaritons - LST Rela						
Electron interaction - Fermi liquid - Electron-Electron collisions - Electron-Phonon interaction:						
Polarons - Optical processes and excitons: Optical reflectance - Kramers-Kronig relations -						
Excitons - Frenkel excitons - Alkali halides - Molecular crystals - Weakly bound (Mott-Wannier)						
excitons - Exciton condensation into electron-hole drops (EHD) - Raman effect in			,			
Unit: IV Dielectrics and Ferroelectrics	<u> </u>		Hrs.			
Dielectrics and Ferroelectrics: Maxwell equations - Polarization - Macroscopi	ic elec					
Depolarization field - Local electric field at an atom - Lorentz field - Field of dipol						

D'1		1
	constant and polarizability- Electronic polarizability - Classical theory of	
-	lity - Ferroelectric crystals - Classification of ferroelectric crystals - Displacive	
-	cal phonons - Landau theory of the phase transition - Second-order transition - I	First-order
	- Antiferroelectricity - Ferroelectric domains - Piezoelectricity.	1
Unit: V	Defects in Solids and Alloys	16 Hrs.
Point defe	ects: Lattice vacancies - Color centers - F centers - Other centers in alka	li halides.
Dislocatio	ns: slip - dislocations - Burgers vectors - Stress fields of dislocations - D	Dislocation
	- Dislocations and crystal growth - Whiskers - Hardness of materials	
	nal solid solutions - Hume-Rothery rules - Order-Disorder transformation - E	
	order - Kondo effect.	Jielilellielliel
theory or c	Total Lecture Hours	90 Hrs.
Books for		70 1113.
	•	Jaw Dalhi
	Kittel, Introduction to Solid State Physics, 8 th Edition, Wiley India Pvt. Ltd., N	New Deim
	(2005) Reprint 2019.	
	I: Chapters 10	
	II: Chapter 11 and 12	
Unit -	III: Chapter 14 and 15	
Unit -	IV: Chapters 16	
Unit -	V: Chapters 20, 21 and 22	
Books for	References:	
1. S.L. H	Kakani and C. Hemarajani, Solid State Physics, Sultan Chand & Sons E	ducational
	hers, New Delhi - 2, Fourth Edition, 2005.	
	V. Aschroft and N. David. Mermin, Solid State Physics, Cengage Learning I	Publishers.
	Delhi, Fourteenth Indian reprint, 2014.	<i>wonsiters</i> ,
	Wahab, Solid State Physics, Narosa Publishing House, Chennai, Third Edit	ion 2015
	Reprint 2017.	1011, 2013,
	Omar, Elementary Solid State Physics - Principles and Applications, Addiso	n Waslay
	Delhi, 2000.	II westey,
		Itali Marri
	. Animalu, Intermedite Quantum Theory of the Crystalline Solid, Prentice	Hall, New
Delhi,		
	illai, Solid State Physics, New Age International Publishers, New Delhi, 1997.	
Web Reso		
	www.mooc-list.com/course/solid-state-devices-1-edx	
	ptel.ac.in/courses/115/105/115105099/	
<u>https://w</u>	<u>www.classcentral.com/course/swayam-solid-state-physics-14298</u>	
COURSE	OUTCOME	K Level
On Compl	etion of this course, the student will be able to	
AI AI	nalyze the basic concepts of the occurrence of Super Conductivity and to	TZ 4
CO1: $\begin{bmatrix} AI \\ stu$	dy the characteristic properties, types and applications of superconductors.	K4
Ca	ategorize about properties and phase change phenomena in Magnetic	
	aterials.	K4
Δr	oply the concepts of electron, phonon and excitons with their optical	
		K3
	operties in crystals.	
	elate and differentiate the basic theories to explain the behaviors of various	K4
	aterials like dielectric, ferroelectric materials.	-
ma		
ma	ake use of the concepts of defects and dislocations in crystals for higher	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	3	2	3			
CO2	2	2	3	2	3	1			
CO3	2	3	2	3	2	2			
CO4	2	3	3	2	2	3			
CO5	3	2	3	3	3	2			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	SOLID STATE PHYSICS - II	Hrs.	Mode
	Experimental survey, Occurrence of superconductivity, Destruction of superconductivity by magnetic fields, Meissner effect, Heat capacity.	4	
_	Energy gap, Microwave and infrared properties, Isotope effect, London equation, Coherence length.		
I		4	Chalk
Superconduc tivity	BCS theory of superconductivity, BCS ground state, Flux quantization in a superconducting ring, Duration of persistent currents, Type II superconductors, Vortex state, Estimation of H _{c1} and H _{c2} .	5	&Talk, PPT
	Single particle tunneling, Josephson superconductor tunneling, DC Josephson effect, AC Josephson effect, Macroscopic quantum interference.	5	
	Diamagnetism and paramagnetism: Langevin diamagnetism equation, Quantum theory of diamagnetism of mononuclear systems, Paramagnetism, Quantum theory of paramagnetism.	5	
	Hund rules, Crystal field splitting, Spectroscopic splitting factor, Van Vleck temperature-independent paramagnetism.	4	
II Magnetic properties of materials	Ferromegnetism and antiferromegnetism: Ferromagnetic order, Curie point and the exchange integral, Temperature dependence of the saturation magnetization, Magnons, Quantization of spin waves, Thermal excitation of magnons.	5	Chalk &Talk, PPT, Quiz
	Ferrimagnetic order, Curie temperature and susceptibility of ferrimagnets, Antiferromagnetic order, Susceptibility below the Neel temperature, Ferromagnetic domains, Anisotropy energy, Transition region between domains, Origin of domains.	5	
III	Plasmons, Polaritons, and Polarons: Dielectric function of		
Plasmons, Polaritons,	the electron gas, Definitions, Plasma optics, dispersion relation for electromagnetic waves, transverse optical modes	7	PPT, Chalk &Talk,

-	Longitudinal plasma oscillations, Plasmons, Electrostatic screening, Screened coulomb potential. Polaritons - LST Relation - Electron-Electron interaction - Fermi liquid - Electron-Electron collisions - Electron- Phonon interaction: Polarons.	6	_
· · · · · · · · · · · · · · · · · · ·	Polaritons - LST Relation - Electron-Electron interaction - Fermi liquid - Electron-Electron collisions - Electron- Phonon interaction: Polarons.	6	-
	Fermi liquid - Electron-Electron collisions - Electron- Phonon interaction: Polarons.	6	
	Phonon interaction: Polarons.	6	
			1
			_
	Optical processes and excitons: Optical reflectance -		
	Kramers-Kronig relations - Excitons - Frenkel excitons -		
	Alkali halides - Molecular crystals - Weakly bound (Mott-	6	
	Wannier) excitons - Exciton condensation into electron-hole		
	drops (EHD) - Raman effect in crystals.		
	Dielectrics and Ferroelectrics: Maxwell's equations,		
	Polarization, Macroscopic electric field (E), Depolarization		
	field (E ₁), local electric field at an atom, Lorentz field (E ₂), Field of disclose inside sector (E ₂)	6	
	Field of dipoles inside cavity (E ₃).		Chalk
lialactricc	Dielectric constant and polarizability, Electronic		&Talk,
and Harra I	polarizability, Classical theory of electronic polarizability,	6	PPT,
ALAOTPIOS	Ferroelectric crystals, Classification of ferroelectric crystals, Displacive transitions.	6	Assignment
	Soft optical phonons, Landau theory of the phase transition,		-
	Second-order transition, First-order transition,		
	Antiferroelectricity, Ferroelectric domains, Piezoelectricity.	6	
	Point defects: Lattice vacancies, Color centers, F centers,		
	Other centers in alkali halides.	4	
V	Dislocations: slip, dislocations, Burgers vectors, Stress fields		
	of dislocations, Dislocation densities, Dislocations and		Seminar,
	crystal growth, Whiskers, Hardness of materials.	6	PPT, Chalk
	Alloys: substitutional solid solutions, Hume-Rothery rules,		&Talk
	Order-Disorder transformation, Elementary theory of order, Kondo effect.	6	

Course Designed by: Dr. S. Ramaswamy & Mr. N. Venkatesh Bharathi

Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print									
Articulation Mapping – K Levels with Course Outcomes (COs)									
			Section A MCQs		Section B Short Answers			Section D	
Interna							Section C		
l	Cos	K Level	No. of.	K -	No. of.	К-	Either or	Open	
-			Questions	Level	Question	Leve	Choice	Choice	
	0.01		-		S	1	. (77.2.0.77.2)		
CI	CO1	K4	2	K1	1	K1	2 (K3&K3)	1(K4)	
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)	
CI	CO3	K3	2	K1	1	K1	2 (K3&K3)	1(K3)	
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)	
		No. of Questions to be asked	4		3		4	2	
Question Pattern CIA I & II		No. of Questions to be answered	4		3		2	1	
		Marks for each question	1		2		5	10	
		Total Marks for each section	4		6		10	10	

	Distribution of Marks with K Level CIA I & CIA II									
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %		
	K1	2	2	-	-	4	8	20		
	K2	2	4	-	-	6	12	20		
CIA	K3	-	-	20	-	20	40	40		
	K4	-	-	-	20	20	40	40		
1	Marks	4	6	20	20	50	100	100		
	K1	2	2	-	-	4	8	20		
	K2	2	4	-	-	6	12	20		
CIA	K3	-	-	20	10	30	60	60		
II	K4	-	-	_	10	10	20	20		
	Marks	4	6	20	20	50	100	100		

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

Summative Examination – Blue Print Articulation Mapping – K Level with Course											
Outcomes (COs)											
S.		К-	MC	Qs Short Answers		Inswers	Section C	Section D			
S. No.	COs	K - Level	_	_	_	No. of	K – Level	No. of	K – Level	(Either / or	(Open
1100		Level	Questions	IX Level	Question	K – Level	Choice)	Choice)			
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	No. of Questions to		10	5		10	5				
b	e Aske	d	10		5		10	5			
No. of	Questi	ons to	10		5		5	3			
be	answei	ed	10		5		5	5			
Mar	ks for e	each	1		2		5	10			
question		1		2		5	10				
Total Marks for		10		10		25	30				
ead	ch secti	on	10		10		23	30			
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)			

Distribution of Marks with K Level									
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	-	9	7.5	8		
K2	5	6	-	-	11	9.17	9		
K3	-	-	50	10	60	50	50		
K4	-	-	-	30	30	25	25		
K5	-	_	_	10	10	8.33	8		
Marks	10	10	50	50	120	100	100		
NB: Hig	NB: Higher level of performance of the students is to be assessed by attempting higher level								

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Section A Answer A			e Questions) (10x1=10 marks)
Q. No	CO	K Level	Questions
1	C01	K Level K1	Questions
2	C01	K1 K2	
3	CO1 CO2	K2 K1	
4	CO2	K1 K2	
5	CO2 CO3	K2 K1	
6	CO3	K1 K2	
7	CO4	K2 K1	
8	CO4	K1 K2	
9	CO5	K2 K1	
10	CO5	K1 K2	
		t Answer Q	uestions)
Answer			(5x2=10 marks)
Q. No	CO	K Level	, , , , , , , , , , , , , , , , , , ,
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section (C (Eithe	er or Choic	e Questions)
Answer A	All Que	stions	(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Hig level of l			rmance of the students is to be assessed by attempting higher
Section I	D (Oper	n Choice)	
		ree questio	
Q. No	CO1	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
25	CO5	K5	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	MOLECULAR SPECT	ROSCOPY						
Course Code	21PPHC42			L	Р	С		
Category	Core			6	-	4		
Nature of cours	EMPLOYABILITY	SKILL ORIENTED		RENE	URS	HIP		
Course Objectives:								
	ibe the spectra of atom in o							
	_	various molecules in detail						
	-	ional spectra of polyatomic	molecules.					
	guish the Raman spectra of							
v	<u> </u>	rtance of electronic spectra of	of molecules		10.11			
	ctra of atoms				<u>18 H</u>			
• •		n – Angular momentum – La	-		•			
-	-	The vector atom model – Sp			-			
		of many electron atoms –						
		of equivalent electrons - h effect – Influence of nucle						
		- Characteristic x-ray spectr			uuuu	ure –		
	ation of molecules	Characteristic x ray speet	u woseley s	18 Hrs.				
		f radiation with rotating mo	lecule – Rotat					
		in rotational spectra – Intens			-			
		fect – Linear polyatomic						
		– Stark effect – Quadrug						
		ometer – Information derive						
Unit: III Infr	ared spectroscopy			1	8 Hrs			
		- Infrared Spectra-Prelimina						
-		nic vibrating rotator – Asym	•					
	1 0	les - More about anharmo	•					
• •	-	bectra of polyatomic molecu	-	ropho	otome	eter –		
		ue – FTIR Spectroscopy – A	Applications.					
	nan spectroscopy		1.5		8 Hrs			
-	-	Raman spectra – Vibration	-					
		r – Sample handling technic	-	-				
-	Spectrometer – Fourier transform Raman spectrometer – Polarization of Raman Scattered light – Single Crystal Raman spectra - Structure determination using IR and Raman spectroscopy – Raman							
	-		-					
Investigation of Phase transitions – Proton conduction in solids-Raman Spectral study – Industrial applications – Resonance Raman scattering – Raman microscopy.								
	ctronic spectra of molecu			1	8 Hrs			
		analysis of band systems – 1	Progressions a					
		ysis – Franck-Condon Princ	0		-			
		ucture of Electronic-Vibra	-	•				
_		on. Spin – resonance spec	-					
Resonance: Ma	gnetic properties of nuc	ei – Resonance condition	– NMR Ins	trume	ntatio	on –		

Electron Spin Resonance: Principle of ESR – ESR Spectrometer – Hyperfine structure							
Total Lecture Hours	90 Hrs.						
Books for Study:							
1. G. Aruldhas, Molecular Structure and Spectroscopy, II Edition, PHI Learning	Pvt. Limited,						
New Delhi, 2011.							
Unit – I Chapter 3							
Unit – II Chapter 6							
Unit – III Chapter 7 (Section 7.1 to 7.11, 7.16 to 7.19)							
Unit – IV Chapter 8							
Unit – V Chapter 9 (Section 9.1 to 9.12).							
Chapter 10(Section10.1 to 10.3)							
Chapter 11 (Section 11.1 to 11.3, 11.5)							
Books for References:							
1. H. J. Michael, Modern Spectroscopy, 4th Edition, Wiley India Pvt. Ltd., New Delh	i,2014						
2. M. S. Yadev, A text book of Spectroscopy, 2 nd Edition, Anmol Publications Pvt. I	.td., New						
Delhi, 2008							
3. P. S. Sindhu, Molecular spectroscopy, 1 st Edition, PMH New Delhi, 1988.							
4. C.N. Banwell, Fundamentals of Molecular Spectroscopy, 4 th Edition, M	Ic-Graw Hill						
International Ltd., United Kingdom, Reprint 207.							
Web Resources:							
1. http://www.freebookcentre.net/Chemistry/Spectroscopy-Books-Download.htt	<u>nl</u>						
2. <u>http://chemistry.du.ac.in/study_material/202-A/MSc%20Teaching-</u>							
<u>May%2011,%202020.pdf</u>							
3. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5</u>							
Course Outcomes	K Level						
CO1: Illustrate the spectra's of atom and discuss about the influences of external	K4						
fields such as electric and magnetic field on matter.	114						
CO2: Elaborate the rotational spectra for various molecules in detail.	K4						
CO3: Develop the information on the vibrational spectra of molecules in various	К3						
forms such as diatomic molecules and poly atomic molecules.	KJ						
CO4: Analyze Raman spectra of different molecules by its instrumentation	K4						
Measure the electronic spectra of molecules from the detailed understanding	V5						
CO5: from rotational – vibrational spectra							

CO & PO Mapping:

CO's	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	2	2	2
CO 2	3	2	3	2	3	3
CO 3	2	3	3	3	2	2
CO 4	2	2	2	2	3	3
CO 5	3	3	1	3	2	2

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Unit	MOLECULAR SPECTROSCOPY	Hrs	Mode
	Early atomic spectra, hydrogen spectrum, angular momentum, Larmor precession, energy of a magnetic moment in a magnetic field.	6	
I Spectra of atoms	the vector atom model, spin orbit interaction spectra of alkali atom, angular momentum of many electron atom, energy levels and spectral transition of helium, spectral terms of equivalent electrons. Normal Zeeman effect – Anamolous Zeeman effect – Paschen,	6	Chalk & Talk, PPT
	Bach effect – influence of nuclear – spin hyperfine structure – Stark effect – Rydberg atom – lamb shift – characteristic x-ray spectra – Moseley's law.	6	
п	Classification of molecules, interaction of radiation with rotating molecule, rotational spectra of rigid diatomic molecule, isotope effect in rotational spectra, intensity of rotational lines,	6	
Rotation of molecules	Non-rigid rotator, Vibrational Excitation Effect, Linear polyatomic molecules, Symmetric top molecules, Asymmetric top molecules	6	Chalk, Talk& Assignment
	Stark effect, Quadrupole hyperfine interaction, Interstellar molecules, Microwave Spectrometer, Information derived from rotational spectra.	6	
III	Vibration energy of a diatomic molecule Infrared Spectra Preliminaries, Infrared selection rules, Vibrating diatomic molecule, Diatomic vibrating rotator.	6	Chalk,
Infrared spectroscopy	Asymmetry of rotational - vibrational band, Vibrations of polyatomic molecules, More about anharmonicity, Fermi Resonance, Hydrogen bonding, Rotation – Vibration spectra of polyatomic molecules.	6	Talk& class test
	IR Spectrometer, Sample handling technique, FTIR Spectroscopy. Theory of Raman scattering, Rotational Raman spectra, Vibrational Raman spectra, Mutual Exclusion Principle.	6 6	
IV Raman spectroscopy	Raman spectrometer, Sample handling techniques, Fibre Coupled Raman Spectrometer, Fourier transform Raman spectrometer, Polarization of Raman Scattered light, Single Crystal Raman spectra, Structure determination using IR and Raman spectroscopy.	6	Chalk & Talk, PPT
	Raman Investigation of Phase transition, Proton conduction in solids, Raman Spectral studies, Industrial applications, Resonance Raman scattering, Raman microscopy.	6	
V	Vibrational coarse structure, Vibrational analysis of band systems, Progressions and sequences, Information derived from vibrational analysis.	6	
Electronic spectra of molecules	Franck - Condon Principle, Rotational fine structure of Electronic Vibration spectra, The FortratParabolae, Dissociation, Pre-dissociation.	6	Chalk, Talk& Seminar
molecules	Spin – resonance spectroscopy: Nuclear Magnetic Resonance: Magnetic properties of nuclei, Resonance condition, NMR Instrumentation, Electron Spin Resonance: Principle of ESR, ESR	6	

Volume	IV –	Science	Syllabus	/ 2022 -	2023
--------	------	---------	-----------------	----------	------

Spectrometer – Hyperfine structure.

Course Designed by: Mr. N. Venkatesh Bharathi & Dr. P. P. Kannan

ucture.

	Learning Outcome Based Education & Assessment (LOBE)										
	Formative Examination - Blue Print										
Articulation Mapping – K Levels with Course Outcomes (COs)											
			Section		Section		~ . ~	~			
	~		MCQ	S	Short An	1	Section C	Section D			
Internal	Cos	K Level	No. of.	К-	No. of.	К-	Either or	Open			
			Questions	Level	Question	Leve	Choice	Choice			
			-		S	1					
CI	CO1	K4	2	K1	1	K1	2 (K3&K3)	1(K4)			
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
CI	CO3	K3	2	K1	1	K1	2 (K3&K3)	1(K3)			
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
			4		3		4	2			
Question Pattern CIA I & II		to be asked No. of Questions to be answered	4		3		2	1			
		Marks for each question	1		2		5	10			
		Total Marks for each section	4		6		10	10			

		Dist	ribution of 1	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	-	20	40	40
	K4	-	-	-	20	20	40	40
1	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	10	30	60	60
II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

Academic Council Meeting Held On 17.05.2022

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
C		V	MC	CQs	Short A	Inswers	Section C	Section D			
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open			
190.		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)			
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ions to	10		5		10	5			
b	e Aske	d	10		5		10	5			
No. of	f Questi	ions to	10		5		5	3			
be	answei	red	10		5		5	5			
Mai	rks for e	each	1		2		5	10			
question		1				5	10				
Tota	Total Marks for		10		10		25	30			
ea	ch secti	on	10		10		23	50			
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	be asked wit	h the given K	level)			

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	4	-	-	9	7.5	8				
K2	5	6	-	-	11	9.17	9				
K3	-	-	50	10	60	50	50				
K4	-	-	-	30	30	25	25				
K5	-	-	-	10	10	8.33	8				
Marks	10	10	50	50	120	100	100				
NB: Hig	NB: Higher level of performance of the students is to be assessed by attempting higher level										
of K lev	els.				-		_				

	l Question		(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		swer Question	
Answer Al			(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		Choice Ques	tions)
Answer Al	l Question		(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Higł	ner level	of perform	ance of the students is to be assessed by attempting higher
level of K		F	······································
Section D		aiaa)	
Answer Ai			(3x10=30 marks)
Q. No	CO	K Level	Questions
21	C01	K Level K4	<u>Yutsuons</u>
	CO1	K4 K4	
·)·)	004		
22	CO3	K3	
22 23 24	CO3 CO4	K3 K4	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ADVANCED PHYSIC	CS PRACTICAL				
Course Code	21РРНСР3			L	Р	C
Category	Core			-	3	4
Nature of Course:	EMPLOYABILITY	SKILL ORIENTED	✓ ENTREPRENEUI	RSHI	P	~
COURSE OBJ	ECTIVES:					
 To give hand To develop t To get famil To make the and converted To understa programs us: ANY TWELVE 1. Voltage I 2. Pulse Wii 3. Amplitud 4. Active Fi 5. Analog C 6. 4 Bit Shii 7. 4 Bit D/A 8. 4 Bit Bin 9. Hall Effe 10. Quincke 11. Four Prot 12. Interpret Waller fa 13. Fraunho 14. Refractiv 15. Michelso 16. Micropri 17. Micropri 	Is on training in the const he skills in handling inst arization on advanced pl students to understand rs. To acquire knowledge and the concepts of OPA ing microprocessors and EXPERIMENTS Regulator using IC 723 dth Modulation Using IC le Modulation Using IC le Modulation using Tran lters using OPAMPs Computation using OPAM ft Register using JK Flip Converter ary Counter ct Experiment 's Method – Susceptibilition be Method – Band Energy ation of PXRD Photogra ctor fer Diffraction using Las e Index of liquids using I on's Interferometer occessor 8085 (Assembly pocessor 8085 (Interfacing ntroller 8051 based expe	ruments and make mea hysics experiments. practically the character e of semiconductor dev AMPS and their uses. microcontrollers. C 555 Timer hisistor MPs Flops ty measurements gy gap aph - indexing, calcular er Laser Language Program) g I/O Operation)	surements. eristics of filters, count vices and their application To develop the skill	ons. s in	writ	ye
	of this course, the stude	ents will be able to		4		
Understand the b	ehavior of electronic con		analysis and	ľ	X1	
design of electro				ſ	**	
	ategies and select proper f electronic circuits.	instruments to evaluat	e performance	ŀ	Χ5	
	ng and experimental proc	edures on different typ	es of electronic	T	7.4	
circuits and anal	yze their operation in dif	ferent operating condit	ions.		K 4	
	of semiconductor device				<u>K2</u>	
Build the skills i	n handling instruments a	nd make measurements	5.	ŀ	K3	

Academic Council Meeting Held On 17.05.2022

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	1	3	3	2			
CO2	2	3	3	2	2	2			
CO3	2	2	2	2	3	3			
CO4	2	2	2	2	2	2			
CO5	3	3	3	3	3	3			

CO & PO Mapping:

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course designed by: Dr. S. Ramaswamy & Mr. N. Venkatesh Bharathi

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	Project							
Course Code	21PPHPR1					L	Р	С
Category	Core					-	3	-
Nature of course:	EMPLOYABILITY	✓	SKILL ORIENTED	~	ENTREPRE	ENEU	RSHI	» ✓
COUDSE OD		•	•		•			•

COURSE OBJECTIVES:

- To develop strong student competencies in Physics and its applications in a technology-rich, interactive environment.
- To enable the skills in research, analysis and interpretation of new findings.
- To prepare the students to successfully complete the projects offered a wide range of experience to meet the industrial needs.
- To apply knowledge and skill in the design and development of instruments to cater to the needs of society.
- To become professionally trained in the area of electronics, optical communications, nonlinear circuits, materials characterization and lasers etc.
- Evaluation method for Project:

	Max.	Credit
	Internal	
Project evaluation	40	
Viva Voce	-	4
Total	1	

- Internal examiners are the respective supervisors.
- Viva –voce examination to be evaluated by the external examiner.
- The report of the project must be in the prescribed form. It should be typed neatly in MS word with the equation editor or using Latex. The font size of the letter should be 12 with double space.
- The format of the project should have the following components.
 - First page should contain
 - Title of the project report
 - Name of the candidate
 - Register number
 - Name of the supervisor
 - Address of the institution
 - Month and year of submission
- Contents
- Declaration by candidate
- Certificate by supervisor
- Acknowledgement
- Preface

Academic Council Meeting Held On 17.05.2022

- Chapter-1-Preliminaries
- > Other chapters
- References
 - \checkmark The number of pages in the project may be 40 to 50
 - ✓ Each page should contain at least 18 lines
 - \checkmark Three copies of the project report with binding should be submitted.

COUR	SE OUTCOME	K Level
On Con	mpletion of this course, the students will be able to	
CO1:	Familiarize various theories behind the instrumentation involved in the Characterizations techniques.	K1
CO2:	Get hands on experience on different instrumentation techniques to design a research problem and solve it using different research methods.	K2
CO3:	Organize and pursue a scientific and industrial research project and work effectively as an individual in multidisciplinary settings.	К3
CO4:	Analyze the theoretical problems and solve them using the knowledge of basic Physics ideas.	K4
CO5:	Have a comprehensive idea on research methods, methodology and ethics to communicate the research findings.	K5

CO & PO Mapping:

Course Outcomes (CO's)		Programme Outcomes (PO's)								
course outcomes (co s)	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	2	2	2				
CO2	2	3	2	2	2	2				
CO3	2	1	2	3	2	2				
CO4	2	2	2	3	3	3				
CO5	2	2	2	2	3	2				

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Course Designed by: Dr. S. Ramaswamy & Mr. P. Dharmaraja

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	NUCLEAR AND PARTI	NUCLEAR AND PARTICLE PHYSICS					
Course Code	21PPHE41			L	Р	С	
Core	Elective			6	-	6	
Nature of cours	e EMPLOYABILITY	SKILL ORIENTED	✓ ENTREPR	ENEU	JRSH	IP	
Course Objecti	ves						
To descr	be the properties of Nucleus	s and Deuteron.					
To illustr	ate the characteristics of rad	lioactivity and their detec	tors.				
To outlin	e the various nuclear model	s and nuclear accelerator	s.				
To determent	nine the energy values in nu	clear reactions.					
 To classi 	y the elementary particles a	and their interactions.					
GEI GEI	ERAL PROPERTIES OI	F ATOMIC NUCLEI A	ND NUCLEA	R	10 IL.	_	
Unit: I FOI	RCES				19 Hr	s.	
General Propert	es Of Atomic Nuclei – Nu	ıclear spin – Pauli's spir	u – parity of Nu	ıclei -	- Nuc	lear	
size – Nuclear	mass and mass spectrosc	opy - double focusing	spectrometer	– Nie	er's n	nass	
spectrograph -	Nuclear stability, binding	energy, mass defect a	nd packing fra	ction	– Se	emi-	
empirical mass :	ormula – The Deuteron – M	Magnetic moment of the	Deuteron – The	e mes	on the	eory	
of nuclear forces	- Charge independence of	nuclear Forces.					
Unit: II RA	DIOACTIVITY AND NUC	CLEAR DETECTORS			20 Hr	s.	
Alpha Ray Em	ssion: Properties of Alpha	-particles – velocity and	d energy of al	pha-p	article	es –	
Scattering of al	oha particles – Alpha-deca	y and barrier penetration	n – Gamow's t	heory	of al	pha	
		_					
	-		Muller counter	– Sc	intilla	tion	
	0	-			-	-	
	-						
	-					atic	
	2	<i>y</i>	2				
	-			•		-	
-					-		
			•				
				i sten	ar ene	ergy	
			DI.		10 U.	0	
			Gravitational a				
	• 1				-		
-		• •	•				
Unit: IIRAIAlpha Ray EmiScattering of algorithmdecay. Beta Deinteraction andmatter-interactionDetectors: Ionizcounter – SemicUnit: IIINUCNuclear Model:model – The alrotational statesGenerators – ThUnit: IVNUCNuclear ReactionTheories of Nucand Pick up reNeutron emissionthe Liquid dropTransuranic elerControlled TherrUnit: VELIClassification ofstrong, weak)	DIOACTIVITY AND NUC ssion: Properties of Alpha	CLEAR DETECTORS -particles – velocity any y and barrier penetration -Ray spectrum – Fermit n beta decay. Gamma-R - multipole radiations – onal counter – Geiger-M nd the bubble chamber. ARTICLE ACCELERA I – Quantum mechanicat shell model – Collective nodel. Particle Accelerate e Synchro-cyclotron – The Nuclear Reactions – Nuclear Reactions – Nuclear Mass and energy distributed and delayed neutrons – main reaction – controll – Thermo-nuclear reaction out dual interactions (Cariance under charge, particle and charge, particle and charge, particle and charge, particular charge, par	n – Gamow's t s theory of β- ays: Absorptio - nuclear isom Muller counter ATORS I treatment – T e model – vibu ors: Van de Gra ne Electron synd Y clear reaction c eactions – Theo pution of fissio - Theory of nuc ed fission-nucl ons as source o or. Gravitational, e urity , C.P., tin	pha-p heory decay n of erism. – Sc – Sc – Sc – In the lid cationa off Ele chrotr ross s ry of n fra lear fi lear fi lear fi lear fi lear fi lear fi lear fi lear fi lear fi	article of al form γ -rays Nuc intilla 16 Hr quid c al state ctrost on. 17 Hr section Stripp gment ssion eactor ar ene 18 Hr magne 1 CP	rs - pha s of by lear tion s. Irop re - atic s. $rs - bing$ rs - bing rs - bing	

	o Photon and Gluon – Meson: muons, Tauons, Pions, K- meson, η - mesons, Hype	erons : Λ -,
Ξ, Σ, Ο	2- hyperons. Quarks.	00
Books	for study:	90
	M.L. Pandya, R.P.S. Yadav and A. Dash, Elements of Nuclear Physics, 8 th Edit Nath Ram Nath Publications, Meerut, 2019.	ion, Kedar
Unit -	- I Chapter 1 (Section 1.1 to 1.4, 1.10-1.13, 1.16 & 1.18) Chapter 2 (Section 2.1, 2.2, 2.5 & 2.16)	
Unit	- II Chapter 5 (Section 5.1-5.5)	
	Chapter 6 (Section 6.4 - 6.7)	
	Chapter 7 (Section 7.1 to 7.3, 7.6, 7.8 & 7.10)	
	Chapter 8(Section 8.1-8.5, 8.7 & 8.9)	
Unit –	III Chapter 3 (Section 3.1 - 3.6)	
	Chapter 9 (Section 9.9, 9.11, 9.12, 9.14 & 9.15)	
Unit –	IV Chapter 11(Section11.1,11.8-11.12)	
	Chapter 12 (Section 12.1 -12.3, 12.7, 12.9-12.14)	
2.	D.C. Tayal, Nuclear Physics, Revised and Enlarged Edition, Himalaya Publishin	g House,
.	New Delhi, 2008.	
	V Chapter 18 (Section 18.1 to 18.15 & 18.19).	
Refere		
	R Roy and B.P. Nigam, Nuclear Physics (Theory and experiment), 3 rd Edition, Wil	ey Eastern
	l, New Delhi,2006.	itad Nam
	Devanathan, Nuclear Physics, 2 nd Edition, Narosa Publishing House Private Lin Ihi,2011.	iited, New
	S.N.Ghoshal, Nuclear Physics, S. Chand & Company Pvt. Ltd.,2006	
	B.Gupta and H.Roy, Physics of the Nucleus, Books and Allied (P), 2008	
	hya Prakash, Nuclear Physics & Particle Physics, Sultan Chand & Sons, New Dell	
	Kaplan, Nuclear Physics, 2 nd Edition, Addison-Wesley Publishing Companingdom, 1977.	y, United
Web r	esources	
	nptel.ac.in/courses/115/104/115104043/	
	e Outcomes	K Level
On Co	mpletion of this course, the student will be able to	
CO1:	Describe the basic nuclear properties and the concept of nuclear forces	K2
CO2:	Build the knowledge of radioactivity and the essential instrumentation for	K3
02.	detection	KJ
CO3:	Compute the nuclear models and particle accelerators.	K3
CO4:	Analyze the energy values in kinematics of nuclear reactions, fission and fusion reactions	K4
CO5:	Evaluate the properties of elementary particles and their associated symmetries, conservation laws	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	1	3	3			
CO2	2	3	3	3	2	2			
CO3	3	3	2	3	2	3			
CO4	2	2	3	3	3	2			
CO5	3	3	2	2	3	3			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

Units	NUCLEAR AND PARTICLE PHYSICS	Hrs	Mode
I Basic	Basic Nuclear Properties and Nuclear Forces: Nuclear spin, Pauli's spin, parity of Nuclei, Nuclear size, Nuclear mass and mass spectroscopy, double focusing spectrometer	6	
Nuclear Properties and Nuclear Forces	Nier's mass spectrograph, Nuclear stability, binding energy, mass defect and packing fraction, Semi- empirical mass formula, Nuclear Forces: Concept of Nuclear forces	6	Chalk & Talk
	The Deuteron, Magnetic moment of Deuteron, The meson theory of nuclear forces, Charge independence of nuclear Forces	7	
	Alpha Ray Emission: Properties of Alpha particles, velocity and energy of alpha-particles, Scattering of alpha particles, Alpha-decay and barrier penetration, Gamow's theory of alpha decay	7	
II Radioactivity and nuclear detectors	Beta Decay: General Features of β -Ray spectrum, Fermi's theory of β -decay, form of interaction and selection rules-non conservation of parity in beta decay. Gamma-Rays: Absorption of γ -rays by matter, interaction of γ -rays with matter, multipole radiations, nuclear isomerism	6	Chalk & Talk, PPT, seminar
	Nuclear Detectors: Ionization chamber, Proportional counter, Geiger counter, Scintillation counter, Semiconductor counter, Cloud and bubble chambers	6	
III Nuclear models and	Nuclear Model: The degenerate gas model, Quantum mechanical treatment, The liquid drop model, The alpha-particle model	6	Chalk & Talk,
particle accelerators	The shell model, Collective model, vibrational states, rotational states, Unified model, Optical model	5	exercise

	Particle Accelerators: Van de Graff ElectrostaticGenerators, The Cyclotron, Betatron, Synchro- cyclotron, Electron synchrotron.Conservation laws for Nuclear Reactions, Nuclear reaction cross sections, Theories of Nuclear	5	
IV Nuclear Reactions	Reactions, The compound nucleus, Direct reactions Theory of Stripping and Pick up reactions. Nuclear Energy: Mass energy distribution of fission fragments, Neutron emission in fission process- prompt and delayed neutrons, Theory of nuclear fission	5	Chalk & Talk, Assignment
	Liquid drop model, The nuclear chain reaction, controlled fission, nuclear reactors, Transuranic elements, fusion reaction, Thermo-nuclear reactions as source of stellar energy, The possibility of fusion reactor.	6	
V	Classification of elementary particles, Particle interactions (Gravitational, electromagnetic, strong, weak), Conservation laws	6	
v Elementary particles	Invariance under charge, parity, C.P, C.P.T, Electrons and positrons, Protons and anti- protons, Neutrons6and anti- neutrons6		Chalk & Talk , Exercise
	Neutrinos and anti- neutrinos, Meson: muons, Pions, K- meson, η - mesons, Hyperons: Λ -, Ξ , Σ , Ω - hyperons. Quarks	6	

Course Designed by: Mrs. S. Nagadeepa & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print											
	Articulation Mapping – K Levels with Course Outcomes (COs)											
				Section	h A	Section	n B		Section			
				MCQ	S	Short An	swers	Section C	D			
Internal	Co	os K Level		No. of. Questions	K - Level	No. of. Question s	K - Level	Either or Choice	Open Choice			
CI	CO)1	K2	2	K1	1	K1	2 (K2&K2)	1(K2)			
AI	CO)2	K3	2	K2	2	K2	2 (K3&K3)	1(K3)			
CI	CO)3	K3	2	K1	1	K2	2 (K3&K3)	1(K3)			
AII	CO)4	K4	2	K2	2	K2	2 (K4&K4)	1(K4)			
	n Questions to be		estions to be	4		3		4	2			
Question Pattern			estions to be	4		3		2	1			
CIAI&:	**	Marks for each question Total Marks for each section		1		2		5	10			
				4		6		10	10			

	Distribution of Marks with K Level CIA I & CIA II										
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %			
	K1	2	2	-	-	4	8	60			
	K2	2	4	10	10	26	52	00			
CIA	K3	-	-	10	10	20	40	40			
	K4	-	-	-	-	-	-	-			
1	Marks	4	6	20	20	50	100	100			
	K1	2	-	-	-	4	8	20			
	K2	2	6	-	-	6	12	20			
CIA	K3	-	-	10	10	20	40	40			
II	K4	-	-	10	10	20	40	40			
	Marks	4	6	20	20	50	100	100			

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

Su	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
			MC		Short A	nswers	Section C	Section		
S. No	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	D (Open Choice)		
1	CO1	K2	2	K1&K2	1	K1	2 (K2&K2)	1 (K2)		
2	CO2	K3	2	K1&K2	1	K1	2 (K2&K2)	1 (K3)		
3	CO3	K3	2	K1&K2	1	K2	2 (K2&K2)	1 (K3)		
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)		
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)		
	of Quest be Aske		10		5		10	5		
	of Quest e answe		10		5		5	3		
Marks for each question		1		2		5	10			
Total Marks for each section		10		10		25	30			
(]	Figures	in pare	nthesis deno	tes, questic	ons should b	e asked wi	th the given K	level)		

		Dis	tribution of	Marks with	n K Leve	1	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	50
K2	5	6	30	10	51	42.5	50
K3	-	-	20	20	40	33.34	33
K4	-	-	-	10	10	8.33	8
K5	-	-	-	10	10	8.33	9
Marks	10	10	50	50	120	100	100
NB: Hig of K lev	,	erformance o	f the students	s is to be asse	essed by a	attempting	higher level

Section A Answer Al	· -	ole Choice (ions	Questions) (10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	C01	K2	
3	CO2	K1	
4	CO2	K2	
5	CO2	K2 K1	
6	CO3	K1 K2	
7	CO4	K2 K1	
8	CO4	K1 K2	
9	CO5	K1	
10	CO5	K1 K2	
		Answer Qu	estions)
Answer Al	•	•	(5x2=10 marks)
Q. No	CO	K Level	
11	C01	K Level K1	
12	CO2	K1	
12	CO3	K1 K2	
13	CO4	K2	
15	C04	K2 K2	
		or Choice	Questions)
Answer Al			(5x5=25 marks)
Q. No		K Level	(0A0-20 marks)
16) a	C01	K2	
16) b	C01	K2	
10) e 17) a	CO2	K2	
17) a	CO2	K2	
17) o 18) a	CO3	K2	
18) b	CO3	K2	
10) o 19) a	CO4	K2 K3	
19) a	CO4	K3	
20) a	CO5	K3	
20) a 20) b	CO5	K3	
,			ance of the students is to be assessed by attempting higher levelof
K levels		-	
Section D	· •		(2-10, 20,
		ee question	
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K5	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ELECTRONIC COMMUNI	ICATIONS				
Course Code	21PPHE42			L	Р	С
Category	Elective			6	-	6
Nature of cours	e: EMPLOYABILITY S	SKILL ORIENTED	✓ ENTREPH	RENE	URS	HIP
Course Objecti	ves:					
 To discu 	ss about the digital communicat	tion system and its ass	ociated devices	in de	tail	
• To elabo	rate on the propagation of radio	waves through variou	s layers of atm	osphe	re	
• To devel	op understanding about antenn	a characteristics such	as power gain,	effec	tive	area,
effective	length.					
To corre	ate the details of satellite orbit	, positioning and static	on keeping			
To descr	ibe the light propagation in fibe	er optic cables				
Unit: I Dig	ital Communication			1	8 Hı	rs.
	- Asynchronous transmission -					
	Optimum terminal filters – B					
systems : Freque	ency shift keying, Phase shift ke	eying – Carrier recover	y circuits – Di	fferen	tial p	hase
shift keying – H	ard and soft decision decoders -	 Error control coding: 	Block codes.			
	io wave propagation				8 Hı	
	ree space: Mode of propagatio					
1 1 0	ation, Radio horizon, Contour	1 1				
	F/UHF radio systems – Ionosp			Low	frequ	ency
	very low frequency – Extremel	ly low frequency propa	agation.			
	ennas				<u>8 H</u>	
	lent circuits – Coordinate syst					
	gain of an antenna – Effective		-			
-	e – Half wave dipole – Vertica		-	and 1	errit	e rod
-	as – Nonresonant antennas – D	Priven arrays – Parasitio	c arrays.		0.11	
	ellite communication	7 1 7 41 1 1 0			8 H	
	w – Kepler's second law – K					
-	- Attitude control - satellite s		-			
	uency plans and polarization –			t calc	liatio	ons –
	budget calculations – Overall er optic communication	This budget calculation	1	1	0 TT.	•
		agation within a fibor	Eihan indax nn		8 H	
	nt transmission in a fiber: Propa mber of propagated modes in	-	-			
	for fiber optics – Photodet	-			-	
communication	-	1000000000000000000000000000000000000	and sphees	- 1		optic
communication	link.	Tota	l Lecture Hou	re (0 H	*6
Books for Stud	y•	100	I Lecture nou	15 7	U III	
	d J. Coolen, Electronic Commu	unication 4 th Edition 1	PHI Private Ltd	. (19	99)	
Unit I - Chapt			Dittate Dit	., (1))•	
Unit II - Chapt						
-	er 16 (Section 16.1 to 16.17)					

Academic Council Meeting Held On 17.05.2022

 Chapter 19 (Section 19.1 to 19.16) Chapter 20 for References: ujeev Gupta, Electronic Communication Systems (Khanna Publications, New Del D. Deshandae, P.K. Rangole, Communication Electronics, Tata McGraw Hil 8. Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku 92. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice Hvate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus https://nptel.ac.in/courses/111/105/111105122/ 	l Pvt. Ltd., mbakonam, re, 2000.
for References: Jeev Gupta, Electronic Communication Systems (Khanna Publications, New Del D. Deshandae, P.K. Rangole, Communication Electronics, Tata McGraw Hil 8. Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku 92. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	l Pvt. Ltd., mbakonam, re, 2000.
 Jeev Gupta, Electronic Communication Systems (Khanna Publications, New Del D. Deshandae, P.K. Rangole, Communication Electronics, Tata McGraw Hil 8. Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku 2. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus 	l Pvt. Ltd., mbakonam, re, 2000.
 D. Deshandae, P.K. Rangole, Communication Electronics, Tata McGraw Hill Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus 	l Pvt. Ltd., mbakonam, re, 2000.
 Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku 2. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus 	mbakonam, re, 2000.
Arumugam, Optical Fiber Communication and Sensors, Anuradha Agencies, Ku 22. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	re, 2000.
22. Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	re, 2000.
Kennedy and Davis, Electronic Communication system, TMH, New Delhi, 1999. rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	re, 2000.
rd Keiser, Optical Fiber Communication, Third Edition, McGraw – Hill, Singapo Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	re, 2000.
Pandya, Mobile and Personal Communication Services and Systems, Prentice H vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	
vate Ltd., New Delhi, 2003. esources: https://www.coursera.org/courses?query=vector%20calculus	Iall of India
esources: https://www.coursera.org/courses?query=vector%20calculus	
https://www.coursera.org/courses?query=vector%20calculus	
https://nptel.ac.in/courses/111/105/111105122/	
https://nptel.ac.in/courses/111/106/111106100	
Outcomes	K Level
npletion of this course, the student will be able to	
Classify the digital communication system and about its various components	K4
Correlate the radio wave propagation through various atmospheric layer such	К4
as in trophospheric, ionospheric, surface and at ground zones	N 4
Collect depth knowledge on antenna in terms of power gain, effective area and	V.
effective length, etc.,	K3
	K4
Analyze satellite communication in terms of its orbit, positioning and station	КД
keeping	134
	as in trophospheric, ionospheric, surface and at ground zones Collect depth knowledge on antenna in terms of power gain, effective area and effective length, etc., Analyze satellite communication in terms of its orbit, positioning and station

CO & PO Mapping:

Course Outcomes (CO's)		Progr	amme O	utcomes	(PO's)	
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	1	3	3
CO2	2	3	3	3	2	2
CO3	3	3	2	3	2	3
CO4	2	2	3	3	3	2
CO5	3	3	2	2	3	3

3-Advanced Application; 2-Intermediate Development; 1-Introductory Level

LESSON PLAN

Unit	ELECTRONIC COMMUNICATIONS	Hrs	Mode
I	Synchronization, Asynchronous transmission, probability of Bit error in baseband transmission, the matched filter, optimum terminal filters, bit timing Recovery, eye diagrams.	6	
Digital Communications	Digital carrier systems: frequency shift keying, phase shift keying, carrier recovery circuits, differential phase shift keying.	6	Chalk & Talk, PPT
	Hard and soft decision decoders, error control coding: block codes.	6	
	Propagation in free space: mode of propagation, microwave systems,	6	
II Radio wave propagation	tropospheric propagation: mode of propagation, radio horizon, contour maps, super and sub refractions, attenuation in the atmosphere, VHF/UHF radio systems,	6	Chalk, Talk &Assignm
propagation	ionospheric propagation, surface wave, low frequency propagation and very low frequency, extremely low frequency propagation	6	ent
	Antenna equivalent circuits, coordinate system, radiation fields, polarization, isotrophic radiator	6	
III Antennas	power gain of an antenna, effective area of an antenna, effective length of an antenna, Hertzian dipole, half wave dipole	6	Chalk, Talk&
	vertical antennas, folded elements, loop and ferrite rod receiving antennas non resonant antennas, driven arrays, parasitic arrays.	6	Exercise
IV Satellite	Kepler's First law, Kepler's second law, Kepler's third law, orbits, Geostationary orbit, power systems, Attitude control	6	
communication	satellite station keeping, Antenna look angles, limits of visibility, frequency plan and polarization, transponders,	6	Chalk & Talk, PPT
	uplink power budget calculations, downlink power budget calculations, overall link budget calculation	6	
• •	Principles of light, principles of light transmission in a fiber: propagation within a fiber,	6	
V Fiber optic communication	Fiber index profiles, mode of propagation, number of propagated modes in step index fibers, losses in fibers, dispersion	6	Chalk, Talk& Seminar
	light sources for optic fibers, photodetectors, connectors and splices, fiber optic communication link.	6	

Course Designed by: Mr. N. Venkatesh Bharathi & Mr. P. Dharmaraja

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print										
	Ar	ticulation Ma					es (COs)				
			Section		Section B Short Answers						
			MCQ	S			Section C	Section D			
Internal	Cos	K Level	No. of.	К-	No. of. K -		Either or	Open			
			Questions	Level	Question	Leve	Choice	Choice			
-					S	1					
CI	CO1	K4	2	K1	1	K1	2 (K3&K3)	1(K4)			
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
CI	CO3	K3	2	K1	1	K1	2 (K3&K3)	1(K3)			
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)			
			4		3		4	2			
Question 1	Pattern	No. of Questions to be answered	4		3		2	1			
CIA I & II		Marks for each question	1		2		5	10			
		Total Marks for each section	4		6		10	10			

		Dist	ribution of I	Marks with	K Level C	IA I & 0	CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	-	20	40	40
	K4	-	-	-	20	20	40	40
1	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	10	30	60	60
Π	K4	-	-	_	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)								
C		TZ.	MCQs			nswers	Section C	Section D	
S. No.	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)	
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)	
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)	
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)	
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)	
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)	
	f Questi e Aske		10		5		10	5	
	f Questi answei		10		5		5	3	
	Marks for each question		1		2		5	10	
	al Mark ch secti		10		10		25	30	
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)	

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

		Dis	tribution of	Marks with	n K Leve	1				
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %			
K1	5	4	-	-	9	7.5	8			
K2	5	6	-	-	11	9.17	9			
K3	-	-	50	10	60	50	50			
K4	-	-	-	30	30	25	25			
K5	-	-	-	10	10	8.33	8			
Marks	10	10	50	50	120	100	100			
	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.									

Answer Al	-		(10x1=10 marks
Q. No	CO	K Level	Questions
1	C01	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		Answer Qu	
Answer Al			(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
			Questions)
Answer A			(5x5=25 marks
Q. No	CO	K Level	
16) a	C01	K3	
16) b	C01	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
		l of perfo	rmance of the students is to be assessed by attempting higher level
of K level			
Section D			
Answer A	-	e question	s (3x10=30 marks
Q. No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K3	
		K4	
24 25	CO4	K4 K5	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ADVANCED OPTICS			
Course Code	21PPHE43	L	Р	С
Category	Elective	6	-	6
Nature of course		ENEU	JRSE	IP
COURSE OBJE				
To acquire	the knowledge about the magneto and electro optic effects.			
-	bout laser principles and their types.			
• To study the	ne holographic formation and applications.			
	tand the principles and applications of fiber and non-linear of	ptics	and	their
applicatior	18.			
• To teach a	n introduction on radar system and its application.			
	eto – optics and Electro – optics		18 H	
	Determination of magnetic rotation – Classical theory of Faraday ef			
	err electro - optic effect - Determination of speed of light b	у Ке	err co	ell –
Significance of the				
Unit: II Laser			19 H	
1	emission of radiation by matter - Einstein's theory: A and B			
	ion : different methods - Basic laser system : Main compon			
-	ue – Threshold condition for laser action – An alternative expression			
• 1	al lasers: Pulsed Ruby laser – Continuous He-Ne laser – CO_2 las	er –	Nd :	í AG
	ctor laser – Properties and uses of a laser beam.		10.11	
	Optics	• 1	19 H	
	sification – Acceptance angle and numerical aperture – Fractional			
	umber of internal reflections – Ray path in a graded – index (
_	nodal dispersion – Intra-modal dispersion - Fibre optic sensors – L ns of attenuation – Fibre optics communication system – Advant		-	
	on – Applications of fibre optics.	ages	or of	nicai
	Laser		17 H	rs
	densation - Methods of cooling the atoms – Laser Doppler cooling	T_{T_1}		
	te cooling – Basic laser system – Important characteristics of a			
_	tom laser – applications of atom laser.			
	linear optics		17 H	rs.
	linear optics – Harmonic generation – Wave propagation at	nd m		
	Aomentum mismatch: Phase matching condition, angle tuning			
difference of free	juency generation – Self-focusing phenomenon of light – Stin	ulate	d Ra	man
scattering.				
	Total Lecture Ho	urs	90 H	rs.
Book for study:				
	dern Optics, 3 rd edition, Arunabha Sen Books & Allied Pvt. Ltd., K	olkat	a, (20)12).
Unit I: Chapter - 1				
Unit 2: Chapter –				
Unit 3: Chapter - 2				
Unit 4: Chapter -2				
Unit 5: Chapter - 2	24			

Academic Council Meeting Held On 17.05.2022

Books for References:

- 1. Grant R. Fowles, Introduction to Modern optics, 2nd Edition, Dover Publications, INC., New York, 2012.
- 2. B.D. Guenther, Modern optics, 2nd Edition, Oxford University Press, New York, 2015.
- **3.** S. H. Guang, Non- linear optic and Photonics, 1st Edition, Oxford University Press, New York, 2014.

Web R	Resources:	
https:/	/www.mooc-list.com/course/phys201x-waves-optics-edx	
https:/	<u>/nptel.ac.in/courses/117/101/117101002/</u>	
https:/	/onlinecourses.nptel.ac.in/noc20_ee48/preview_	
COUR	SE OUTCOMES	K Level
CO1:	Analyze the propagation of light in conducting and non-conducting media.	K4
CO2:	Examine the laser behavior and light matter interaction.	K4
CO3:	Apply wave optics and diffraction theory to a range of problems.	K3
CO4:	Classify the tools, methodologies, language and conventions of physics for test and communicative ideas and explanations.	K4
CO5:	Predict the properties of various lasers and the propagation of laser beams.	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)							
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3	1	3	3		
CO2	2	3	3	3	2	2		
CO3	3	3	2	3	2	3		
CO4	2	2	3	3	3	2		
CO5	3	3	2	2	3	3		

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	ADVANCED OPTICS	Hrs	Mode	
I Magneto –	Faraday effect, Determination of magnetic rotation, Classical theory of Faraday effects	7		
optics and Electro –	6	Chalk, Talk & PPT		
optics	Significance of the velocity of light	5		
	Absorption and emission of radiation by matter, Einstein"s theory : A and B co-efficient, Population inversion : different methods	6		
II Lasers	Basic laser system : Main components , Optical resonator : Q- value , Threshold condition for laser action	6	Chalk,Talk	
	An alternative expression for threshold condition, Typical lasers: Pulsed Ruby laser, Continuous He-Ne laser, CO2 laser, Nd :YAG laser, Semiconductor laser, Properties and uses of a laser beam	7		
ш	Structure and classification, Acceptance angle and numerical aperture, Fractional index change, Skip distance : Number of internal reflections	6		
Fibre	Ray path in a graded, index (GRIN) fibre, Dispersion: Intermodal dispersion, Intra-modal dispersion	6	Chalk, Talk &Assignment	
Optics	Fibre optic sensors, Losses in optical fibre, Mechanisms of attenuation, Fibre optics communication system, Advantages of optical fibre communication, Applications of fibre optics	7		
	Bose-Einstein condensation, Methods of cooling the atoms	5		
IV Atom Lacon	Laser Doppler cooling, Trapping of atoms, Evaporate cooling, Basic laser system	6	Chalk, Talk & Exercise	
Atom Laser	Atom Laser Important characteristics of a laser beam, Optical laser vs atom laser, applications of atom laser			
V	Linear and non-linear optics, Harmonic generation, Wave propagation and momentum conservation	5		
v Non- linear optics	Momentum mismatch: Phase matching condition, angle tuning , Sum and difference of frequency generation	6 Chalk, Talk &Seminar		
optics	Self-focusing phenomenon of light, Stimulated Raman scattering	6		

Course designed by: Mr. P. Dharmaraja & Mrs. S. Nagadeepa

	Learning Outcome Based Education & Assessment (LOBE) Formative Examination - Blue Print											
	Articulation Mapping – K Levels with Course Outcomes (COs)											
			Section	ı A	Section	n B						
			MCQ	S	Short An	swers	Section C	Section D				
Internal	Cos	K Level	No. of.	К-	No. of.	К-	Either or	Open				
			Questions	Level	Question	Leve	Choice	Choice				
			•		S	1						
CI	CO1	K4	2	K1	1	K1	2 (K3&K3)	1(K4)				
AI	CO2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)				
CI	CO3	K3	2	K1	1	K1	2 (K3&K3)	1(K3)				
AII	CO4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)				
		No. of Questions to be asked	4		3		4	2				
Quest		No. of Questions to be answered	4		3		2	1				
Pattern CIA I & II		Marks for each question	1		2		5	10				
		Total Marks for each section	4		6		10	10				

		Dist	ribution of I	Marks with	K Level C	IA I & 0	CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	-	-	20	-	20	40	40
	K4	-	-	-	20	20	40	40
1	Marks	4	6	20	20	50	100	100
	K1	2	2	-	-	4	8	20
	K2	2	4	-	-	6	12	20
CIA	K3	_	_	20	10	30	60	60
II	K4	-	-	-	10	10	20	20
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

 $\ensuremath{\mathbf{K2}}\xspace$ Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

5	Summative Examination – Blue Print Articulation Mapping – K Level with Course Outcomes (COs)									
G		TZ.	MC		, , ,	nswers	Section C	Section D		
S. No.	COs	K - Level	No. of Questions	K – Level	No. of Question	K – Level	(Either / or Choice)	(Open Choice)		
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)		
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)		
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)		
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)		
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)		
	f Questi oe Aske		10		5		10	5		
	f Questi answei		10		5		5	3		
Marks for each question		1		2		5	10			
	Total Marks for each section		10		10		25	30		
	(Figure	es in pa	renthesis der	notes, questi	ons should l	oe asked wit	h the given K	level)		

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

	Distribution of Marks with K Level										
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %				
K1	5	4	-	-	9	7.5	8				
K2	5	6	-	-	11	9.17	9				
K3	-	-	50	10	60	50	50				
K4	-	-	-	30	30	25	25				
K5	-	-	-	10	10	8.33	8				
Marks	10	10	50	50	120	100	100				
-	NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.										

Section A Answer A	-	-	e Questions) (10x1=10 marks)
Q. No	CO	K Level	Questions
1	C01	K1	Questions
2	C01	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K1 K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	C05	K2	
-		t Answer (Duestions)
Answer A			(5x2=10 marks)
Q. No	CO	K Level	
11	C01	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section C	C (Eithe	er or Choic	ce Questions)
Answer A			(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: High levelof K		el of perfor	mance of the students is to be assessed by attempting higher
		n Choice)	
		ree questi	ons (3x10=30 marks)
Q. No	CO	K Level	Questions
21	C01	K4	
21	CO2	K4	
22	CO3	K1 K3	
23	CO4	K4	
25	CO4	K5	
	005	110	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	ASTROPHYSICS					
Course Code	21PPHE44			L	Р	С
Category	Elective			6	-	6
Nature of cours	e: EMPLOYABILITY	✓ SKILL ORIENTED		RENE	URS	HIP
COURSE OBJ	ECTIVES:					
• To a	equire knowledge about the f	fundamentals of stars				
• To u	nderstand the concepts of law	ws of radiation and Impor	tant relations	betwe	een st	tellar
	neters	1				
• To re	ecognize the concepts of inter	rnal structure of stars				
	miliarize with stellar evolution		of binary star	S		
	se the phenomenological theo	• •	•			
	ctral Classification of Stars				18 I	Hrs.
	rmula – Saha's equation of		larvard syste	em of		
	The Hendry-draper (HD) Cat		•		-	
	onization theory in astrophy					
Russell diagram		,			r	0
	Sun				17 I	Hrs.
	al Star. The photosphere: L	imb-darkening – Solar g	ranulation –	Facul		
	Solar corona – Prominence					
	fields – Theory of sun spots					
_	r neutrino puzzle.					
	nosphere of Stars				17 I	Hrs.
	definitions – The equation of	f transfer – The solution o	f the equation	n of th	e tra	nsfer
-	sorption in stellar atmosphere		-			
ions (H ⁻) in co	oler stars – Analysis of spec	tral line broadening – Th	e curve of g	rowth	– St	tellar
	The chemical composition of	-	-			
Unit: IV Bin	ary, multiple and variable S	Stars			19 I	Hrs.
Visual Binary –	spectroscopic Binary - Eclip	sing binary – Multiple Sta	ars – Origin c	of bina	ry st	ars –
Stellar masses a	nd mass luminosity relation -	- Mass transfer in close bi	nary systems	- Clas	sific	ation
of variable stars	- The Cepheid group of var	iables – Period luminosity	y relations of	Ceph	eid g	roup
of variables.						
Unit: V Mo	re stars of interest				19 I	Hrs.
Stars with exter	ded atmospheres: The Wolf	-Rayet stars – P Cygni a	nd a Cygni s	tars –	Be	stars:
Shell stars – Of	stars – Some cooler stars of	interest: Peculiar A stars a	and Metallic-	line A	star	s - T
Tauri stars – Th	e emission-line Red Dwarf ((dMe stars) – R Coronae	Borealis (R C	Cor Bo	or) st	ars –
The carbon stat	rs (R and N stars) – The l	heavy-metal oxide stars	(S stars) – I	nfrare	d sta	ars –
Sundwarfs - Bro	wn dwarfs.					
		Tota	al Lecture H	ours	90 I	Hrs.
Book for study						
	Chattopadhyay, S.N. Biswas, A	n Introduction to Astrophys	ics, 2 nd Editio	n, PH	I Lea	rning
	w Delhi, (2011).					
Unit _I. Chapter	$\cdot \Lambda$					

Academic Council Meeting Held On 17.05.2022

Unit –	II: Chapter 5	
Unit –l	III: Chapter 6	
Unit –l	V: Chapter 7, Chapter 8 (8.1 to 8.3)	
Unit –	V: Chapter 10	
Books	for References:	
1. J. I	Dufay, Introduction to Astro Physics, 1 st Edition, Dover Publications, INC, New York, 2	012.
2. K.	Badmanabhan, Theoretical Astro Physics, Volume - I, Cambridge University Press, Che	nnai, 2010.
3. K.	D. Abhyankar, AstroPhyscis: Stars and galaxies, Universities Press, Hyderabad, 2001.	
4. N.	Thomas, An Introduction to Comets, 1 st Edition, Springer, 2020.	
Web F	Resources:	
https:/	//www.mooc-list.com/tags/astrophysics	
https:/	/ <u>/nptel.ac.in/courses/115/105/115105046/</u>	
https:/	//onlinecourses.swayam2.ac.in/arp19_ap73/preview_	
COUR	RSE OUTCOMES	K Level
CO1:	Discover the spectral classifications of the stars	K4
CO2:	Apply basic physical principles from a broad range of topics in physics to astronomical situations	K4
CO3:	Develop skills to design observing instruments with research telescopes and take projects upon literature data and achieves.	К3
CO4:	Distinguish the competence in focused areas of astronomical theory and its experiment.	K4
CO5:	Categorize the various types of stars with their spectral analyses	K5

CO & PO Mapping:

	Programme Outcomes (PO's)						
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	3	1	3	3	
CO2	2	3	3	3	2	2	
CO3	3	3	2	3	2	3	
CO4	2	2	3	3	3	2	
CO5	3	3	2	2	3	3	

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	ASTROPHYSICS	Hrs	Mode
Ι	Bolzmann's formula, Saha's equation of thermal ionization. Harvard system of spectral classification	6	Chalk,
Spectral Classification of Stars	Hendry draper (HD) Catalogue luminosity effect on stellar spectra, Importance of ionization theory in astrophysics	7	Talk & PPT
orbuits	Spectroscopic parallax, Hertzsprung, Russell diagram.	5	
	Sun, A Typical Star. The photosphere: Limb-darkening, Solar granulation, Faculae, The chromospheres	5	Chally Tally
II The Sun	Solar corona, Prominences, The eleven year solar cycle and sun spots, Solar magnetic fields	5	Chalk, Talk &
	Theory of sun spots, Solar flares, Radio emission from the sun, solar wind, Solar neutrino puzzle.	7	Assignment
III	Some important definitions – The equation of transfer – The solution of the equation of the transfer.	5	Chalk,
Atmosphere of Stars	Process of absorption in stellar atmospheres – Continuous absorption by the negative hydrogen ions (H^{-}) in cooler stars.	5	Talk, Test & Seminar
of Stars	Analysis of spectral line broadening – The curve of growth – Stellar temperatures – The chemical composition of stars.	7	& Seminar
IV	Visual Binary, spectroscopic Binary, Eclipsing binary, Multiple Stars, Origin of binary stars	6	
Binary, multiple and	Stellar masses and mass luminosity relation, mass transfer in close binary systems, Classification of variable stars	7	Chalk, Talk & Group
variable Stars	The Cepheid group of variables, Period luminosity relations of Cepheid group of variables	6	discussion
	Stars with extended atmospheres: The Wolf-Rayet stars, P Cygni and Cygni stars	6	
V More stars	Be stars: Shell stars, Of stars, Some cooler stars of interest: Peculiar A stars and Metallic-line Red Dwarf (dMe stars)	7	Chalk, Talk &
of interest	R Coronae Borealis (R CorBor) stars, The carbon stars (R and N stars), The heavy-metal oxide stars (S stars), Infrared stars – Brown dwarfs.	6	Exercise

LESSON PLAN

Course designed by: Dr. P.P. Kannan & Mrs. S. Nagadeepa

		Ar	0	Dutcome Bas rmative Exa pping – K L	minatio	on - Blue Pr	int		
				Section MCQ		Section Short An		Section C	Section
Internal	CC)s	K Level	No. of. Questions	K - Level	No. of. Question	K - Level	Either or Choice	D Open Choice
CI	CC) 1	K3	2	K1	1	K1	2 (K3&K3)	1(K3)
AI	CC)2	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
CI	CC)3	K4	2	K1	1	K2	2 (K3&K3)	1(K4)
AII	CC)4	K4	2	K2	2	K2	2 (K3&K3)	1(K4)
		No. of Questions to be asked		4		3		4	2
Questio Patteri		Qı	No. of lestions to be answered	4		3		2	1
CIA I &	II	M	arks for each question	1		2		5	10
]	Fotal Marks for each section	4		6		10	10

		Di	stribution of	Marks with	K Level CI	A I & Cl	AII		
	K	Section A (Multiple	Section B (Short	Section C (Either /	Section D (Open	Total	% of (Marks	Consolidate	
	Level	Choice Questions)	Answer Questions)	Or Choice)	(Open Choice)	Marks	without choice)	of %	
	K1	2	2	-	-	4	8	20	
	K2	2	4	-	-	6	12	20	
CIA	K3	-	-	20	10	30	60	60	
	K4	-	-	-	10	10	20	20	
	Marks	4	6	20	20	50	100	100	
	K1	2	-	-	-	2	4	20	
	K2	2	6	-	-	8	16	20	
CIA	K3	-	-	20	-	20	40	40	
II	K4	-	-	-	20	20	40	40	
	Marks	4	6	20	20	50	100	100	

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course												
	Outcomes (COs)												
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D					
S. No.	COs	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open					
140.			Questions	K – Level	Question	K – Level	Choice)	Choice)					
1	1 CO1 K4		2	K1&K2	1	K1	2 (K3&K3)	1 (K4)					
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)					
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)					
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)					
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)					
No. of	f Questi	ons to	10		5		10	5					
b	e Aske	d	10		5		10	5					
No. of	f Questi	ons to	10		5		5	3					
be	answei	ed	10		5		5	5					
Mar	ks for e	each	1		2		5	10					
question			1		2		5	10					
	al Mark		10		10		25	30					
ea	each section 10 10 25 30												
	(Figure	es in pa	renthesis dei	notes, questi	ons should l	oe asked wit	h the given K	level)					

		D	istribution of	Marks with	K Level		
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %
K1	5	4	-	-	9	7.5	8
K2	5	6	-	-	11	9.17	9
K3	-	-	50	10	60	50	50
K4	-	-	-	30	30	25	25
K5	_	-	_	10	10	8.33	8
Marks	10	10	50	50	120	100	100
NID. II!	l l l . f	and a second a second	f dla a star d as t		and has a		high an level

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

		Choice Ques	
Answer Al			(10x1=10 marks)
Q. No	CO CO1	K Level K1	Questions
1		KI K2	
2	CO1		
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
		swer Questio	
Answer Al			(5x2=10 marks)
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
		Choice Que	
Answer Al	-		(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: High levelof K		of perform	nance of the students is to be assessed by attempting higher
Section D (nice)	
Answer An			(3x10=30 marks)
Q. No	CO	K Level	Questions
21	C01	K4	X RESERVED
21	CO1	K4 K4	
23	CO3	K4 K3	
23	CO4	K3 K4	
<u>∠</u> ⊤	007	117	

Summative Examinations - Question Paper – Format

K5

CO5

25

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	BIC	0 -	- MI	EDI(CAL	INSTR	UM	(E	ENTA	[IO]	N								
Course Code	21P	PPI	HE4	5												Ι		Р	С
Category	Ele	ecti	ve													(5	-	6
Nature of Cour	se	E	CMP	'LO'	YAB]	ILITY	\checkmark		SKIL	L O]	RIEN	NTE	D	✓	ENT	REPR	EN	IURS	HIP
COURSE OBJ	EC	TI	VES	:															
To descr	ibe t	the	basi	c tra	insdu	cer prin	ciple	es	s and tl	eir s	sourc	es							
 To discu 	ss th	ne c	ardi	ovas	cular	system	n and	l r	measui	eme	nt of	hear	rt sou	und					
 To analy 	ze th	he j	princ	ciple	s of r	nonitor	ing e	eq	quipme	nt in	the j	patie	nt ca	are					
• To illust	rate t	the	tecl	hniqı	ues of	f equip	nent	f	for resp	irato	ory tł	neraț	oy an	d ul	traso	nic di	agr	nosis	
 To apply 	the	cli	nica	l ins	trum	ents for	diag	gn	nosis X	-rays	s &ra	ıdio	thera	ıру.					
Unit: I BA	SIC	TI	RAN	ISDI	UCE	R PRIN	ICIE	PL	LES A	ND S	SOU	RCI	ES O)F				18 Hı	•0
BIC	DEL	EC	CTR	IC P	OTE	ENTIA	LS											1011	5.
The transducer					-	-						-							
for biomedical a	11		tions	s – R	lestin	g and a	ctio	n	potent	ials	– pro	opag	ation	l of	actio	n pote	enti	als –	The
bioelectric poter																			
						LAR S												18 H	
The Heart and C																			
Heart sounds –				-							-			Mea	suren	nent o	of b	lood f	low
and cardiac outp										of he	eart s	oun	ds.				<u> </u>		
						MON					~							18 H	
The elements of																			
monitoring equi	-											-	ents	- T	he O	rganiz	zati	on of	the
hospital for patie															<u>-</u>				
						Г ЕМ & л	NU	IN	NIIN V A	51 V	E DI	IAG	NUS)110	Ĵ			18 H	rs.
The Physiology					FION		m	,	Tasta	and	Inct		ntat	ion	for t	ho N	[ool	hania	
Breathing – G																			
measurements –			-	-						-	-			-				-	
Measurements f			-				asui			UII.	14501		nagn	10513). THC		ou	s Dysi	.cm.
Unit: V X –) (CLIN	CA		STR	UM	EN'	ТАТ	IONS		18 H	'S.
Generation of I																			
Instrumentation																			
cells – Chemica									F				-r J -						
												Т	otal	Lec	ture	Hour	s	90 H	rs.
Books for study	y:																		
1. L. Cromwell	l, Fr	red	J. W	Veibe	ell, E	Erich A.	Pfei	iff	fer, Bi	ome	lical	Inst	rume	enta	tion a	nd me	easi	ureme	ents,
2 nd Edition,	Pears	soi	n Ed	ucat	ion Ir	nc, (200	5).												
Unit I: Chapter																			
Unit II: Chapter	5 &	6																	
Unit III: Chapte																			
Unit IV: Chapte	r 8 &	& 9	and	10.7	7														

Academic Council Meeting Held On 17.05.2022

Unit V: Chapter 14 & Chapter 13 (13.1 to 13.3)

Books for Reference:

- 1. John R. Cameron and James G. Skofronick, *Medical Physics*, John Wiley & Sons, New York 1978.
- 2. M. Arumugam ,*Bio*-medical Instrumentation, Anuradha Publications, First Edition, Reprint 2015.
- 3. K.S. Khandpur, Handbook of biomedical Instrumentation, 3rdEdition,Mc.Graw Hills Education (India) Pvt Ltd, New Delhi.

Web R	Resoueces	
https:/	/nptel.ac.in/courses/108/105/108105101/#	
Course	e Outcomes	K Level
On Cor	mpletion of this course, the student will be able to	
CO1:	Describe the basic transducer principles and their sources	K2
CO2:	Compute the cardiovascular system and measurement of heard sound	K3
CO3:	Apply the principles of monitoring equipment into the patient care monitoring	K3
CO4:	Analyze the techniques of respiratory therapy equipment and ultrasonic diagnosis equipment	K4
CO5:	Conclude the clinical instrument of diagnosis X-rays &radio therapy.	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	1	3	3			
CO2	2	3	3	3	2	2			
CO3	3	3	2	3	2	3			
CO4	2	2	3	3	3	2			
CO5	3	3	2	2	3	3			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

Units	BIO – MEDICAL INSTRUMENTATION	Hrs	Mode
I Basic	The transducer and transduction principles, active transducer, passive transducer	6	
Transducer Principles and	transducers of biomedical applications, Resting and action potentials	6	Chalk & Talk
Sources of Bioelectric Potentials	propagation of action potentials, The bioelectric potentials	6	Taix
II The	The Heart and Cardiovascular system, The Heart, Blood pressure	7	Chalk &
Cardiovascular System and Measurements	Characteristics of blood flow, Heart sounds, Electrocardiography, Measurement of Blood pressure	5	Talk, PPT, Group discussion
Wreasurements	Measurement of blood flow and cardiac output, Plethhysmography, Measurement of heart sounds	6	uiscussion
III	The elements of Intensive, care monitoring, Respairability of Patient, monitoring equipment	6	Chalk &
Patient Care and	Other instrumentation for monitoring patients	6	Talk,
Monitoring	The Organization of the hospital for patient care monitoring, Pacemakers ,Defibrillators	6	exercise
IV Respiratory	The Physiology of the Respiratory System, Tests and Instrumentation for the Mechanics of Breathing	7	Challe &
System & Noninvasive Diagnostic	Gas exchange and Distribution, Respiratory Therapy Equipment, Temperature measurements, Principles of Ultrasonic measurement	5	Chalk & Talk, Assignment
Instrumentation	Ultrasonic Diagnosis. The Nervous System: Measurements from the Nervous System	6	
V X – RAY,	Generation of Ionizing Radiation, Instrumentation for Diagnostic X rays	6	- Chalk &
A – KAT, Radioisotope and Clinical	Special Techniques, Instrumentation for the medical use of Radioisotopes	6	Talk , Exercise
Instrumentations	Radio Therapy. The Blood: Test on Blood cells – Chemical test.	6	LACICISC

LESSON PLAN

Course Designed by: Mrs. S. Nagadeepa & Mr.P.Dharmaraja

			0	utcome Base mative Exa				t (LOBE)				
	Articulation Mapping – K Levels with Course Outcomes (COs)											
				Section A		Section	n B		Section			
				MCQ	S	Short An	swers	Section C	D			
Internal	Cos		K Level	No. of. Questions	K - Level	No. of. Question s	K - Level	Either or Choice	Open Choice			
CI	CI CO1		K2	2	K1	1	K1	2 (K2&K2)	1(K2)			
AI	CC)2	K3	2	K2	2	K2	2 (K3&K3)	1(K3)			
CI	CC)3	K3	2	K1	1	K2	2 (K3&K3)	1(K3)			
AII	CC)4	K4	2	K2	2	K2	2 (K4&K4)	1(K4)			
		Qu	No. of estions to be asked	4		3		4	2			
Questic Patter	n Q		No. of lestions to be answered	4		3		2	1			
CIA I &	(11	M	arks for each question	1		2		5	10			
			tal Marks for ach section	4		6		10	10			

		Dist	ribution of 1	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	00
CIA	K3	-	-	10	10	20	40	40
	K4	-	-	-	-	-	-	-
1	Marks	4	6	20	20	50	100	100
	K1	2	-	-	-	4	8	20
	K2	2	6	-	-	6	12	20
CIA	K3	-	-	10	10	20	40	40
II	K4	-	-	10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

Su	ımmati	ve Exan	nination – B	lue Print Art Outcom		Mapping -	– K Level with	Course
			M	CQs	·	Answers	Section C	Section
S. No	COs	K - Level	No. of Questions	K – Level	No. of Quest ion	K – Level	(Either / or Choice)	D (Open Choice)
1	CO1	K2	2	K1 & K2	1	K1	2 (K2&K2)	1 (K2)
2	CO2	K3	2	K1 & K2	1	K1	2 (K2&K2)	1 (K3)
3	CO3	K3	2	K1 & K2	1	K2	2 (K3&K3)	1 (K3)
4	CO4	K4	2	K1 & K2	1	K2	2 (K3&K3)	1 (K4)
5	CO5	K5	2	K1 & K2	1	K2	2 (K3&K3)	1 (K5)
	of Quest be Aske	tions to ed	10		5		10	5
	of Quest e answe		10		5		5	3
Marks for each question		1		2		5	10	
Total Marks for each section		10		10		25	30	
(]	Figures	in pare	nthesis deno	tes, question	s should	be asked w	vith the given K	level)

		Dist	ribution of	Marks wi	ith K Lev	vel	
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate d %
K1	5	4	-	-	9	7.5	50
K2	5	6	30	10	51	42.5	50
K3	-	-	20	20	40	33.34	33
K4	-	-	_	10	10	8.33	8
K5	_	-	-	10	10	8.33	9
Marks	10	10	50	50	120	100	100
	gher level of K levels.	performance	of the stude	ents is to be	e assessed	by attem	pting higher

	Il Quest		(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section B	(Short	Answer Qu	iestions)
Answer A	Il Quest	tions	(5x2=10 marks
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section C	c (Either	or Choice	Questions)
Answer A	II Quest	tions	(5x5=25 marks
Q. No	СО	K Level	
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K2	
17) b	CO2	K2	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
,	er level	of perform	ance of the students is to be assessed by attempting higher level
of K level		•	v k 0 0
Section D	(Open	Choice)	
		ee question	as (3x10=30 marks
Q. No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
		1	

Summative Examinations - Question Paper – Format

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF PG PHYSICS (For those who joined in 2021-2022 and after)

Course Name	COMPUTER ORIENTED NUMERICAL METHODS			
Course Code	21PPHE46	L	Р	С
Category	Elective	6	-	6
Nature of cours	e: EMPLOYABILITY 🖌 SKILL ORIENTED 🖌 ENTREPI	RENE	URS	HIP
COURSE OBJ	ECTIVES:			
• To fi	nd roots using bisection, linear interpolation, Secant and/or Newton'	s met	hods	
	emonstrate the ability to use Least squares and Lagrangian polynomi			
• To a	oply method of interpolation and extrapolation for predictions			
	evelop the mathematical skills of the students in the areas of numeric	al me	thod	S
• To fa	cilitate numerical computing by the method studied			
	ative methods		17 H	rs.
Beginning an ite	rative methods- The method of successive bisection- The method of	f false	posi	tion-
	n iterative method- The secant method- The method of successive a			
Comparison of i	terative methods – Solution of polynomial and simultaneous non line	ear eq	uatio	ns.
	ition of simultaneous algebraic equations		18 H	
The Gauss elim	ination method- pivoting- III conditioned equations - Refinement	of the	e sol	ution
obtained by Gau	ssian elimination- The Gauss-Seidel iterative method – An algorithm	n to i	mple	ment
the Gauss-Seide	l method - Comparison of direct and iterative methods.			
Unit: III Inte	erpolation and Least square approximation functions		19 H	lrs.
Lagrange Interp	olation-difference tables-Truncation error in interpolation - Spline	e inte	rpola	tion-
Least squares a	pproximation of function: Linear regression- Algorithm for linea	ar reg	ressi	on –
Polynomial regr	ession – Fitting exponential and trigonometric functions.			
	erentiation and integration		18 H	
	americal differentiation and integration - Simpson's rule - Errors			
_	prithms for integration of tabulated function – Algorithm for integra	rating	a kr	nown
	ian quadrature formulae - Comparison of integration formulae.			
	nerical solution of differential equations		18 H	
	- Taylor series method - Runge-Kutta methods - Runge-Kutta fourth			
	rector method – Higher order differential equations – Comparison	ı of p	redic	tor -
corrector and Ru	inge-Kutta methods.			
	Total Lecture Ho	urs	90 H	rs.
Book for study:				D
	Computer oriented Numerical methods, 2 nd Edition, Prentice Hal		ndia.	Pvt.
Ltd, New De	,			
Unit –I: Chapter				
Unit –II: Chapte				
Unit –III: Chapt				
Unit – IV: Chap Unit – V: Chapt				
Books for Refe				
	Carl de Boor, Elementary Numerical Analysis An Algorithmic	Δnn	roac	h 3 rd
	a McGraw Hill International company, New Delhi, 1983.	, uhh	noac	11 5
Eution, Tat	a mooraw min momanonai company, New Denn, 1905.			

Academic Council Meeting Held On 17.05.2022

- **2.** Steven C. Chopra. Raymond P. Canale, Numerical Methods for Engineers, 2nd Edition, Tata McGraw Hill International Editions, New Delhi, 1990.
- **3.** M.K Jain, S.R.K Iyengar, R.K Jain, Numerical Method for Scientific and Engineering Computation, New Age International publishers, Kochi, 1992.

Web R	Resources:	
	//www.mooc-list.com/course/numerical-methods-engineers-saylororg?page=9	
	/nptel.ac.in/courses/111/107/111107105/	
-	/onlinecourses.swayam2.ac.in/cec20_ma11/preview	
	SE OUTCOMES	K Level
CO1:	Simplify the numerical differentiation and integration whenever and wherever routine methods are not applicable.	K4
CO2:	Compare the various interpolation methods and finite difference concepts in least square approximation functions.	K4
CO3:	Apply numerical methods to find out solution of algebraic equations using different methods under different conditions and numerical solution of system of algebraic equations.	К3
CO4:	Simplify the calculation and interpretation of errors in numerical methods.	K4
CO5:	Justify the functions from the programming language library for efficient calculations.	K5

CO & PO Mapping:

Course Outcomes (CO's)	Programme Outcomes (PO's)								
Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	1	3	3			
CO2	2	3	3	3	2	2			
CO3	3	3	2	3	2	3			
CO4	2	2	3	3	3	2			
CO5	3	3	2	2	3	3			

3 – Advanced Application; 2 – Intermediate Development; 1 - Introductory Level

UNIT	COMPUTER ORIENTED NUMERICAL METHODS	Hrs	Mode		
-	Beginning an iterative method, Method of successive	7	Chalk,		
Ι	-				
Iterative	The second sec				
methods	Comparison of iterative methods	5 5	Seminar&		
	Solution of polynomial and simultaneous nonlinear equation				
II	Gauss elimination method, pivoting- III conditioned equations	5			
Solution of	Refinement of the solution obtained by Gaussian elimination,	7	Challe		
simultaneous	Gauss-Seidel iterative method	/	Chalk, Talk &		
algebraic	An algorithm to implement the Gauss-Seidel method,	-	PPT		
equation	Comparison of direct and iterative methods	7	PP1		
III	Lagrange Interpolation-difference tables, Truncation error in	(
Interpolation	interpolation	6	Challs		
and Least	Least squares approximation of function, Linear regression,	6	Chalk, Talk &		
square	· · · · ·				
approximation	Polynomial regression, Fitting exponential and trigonometric	6	Assignment		
functions	functions.	6			
	Formulae for numerical differentiation and integration,	6			
IV	Simpson's rule, Errors in integration formulae	0			
Differentiation	Algorithms for integration of tabulated function, Algorithm for	6	Chalk, Talk		
and	integrating a known function	0	& Exercise		
integration	Gaussian quadrature formulae, Comparison of integration	6			
	formulae.	6			
	Euler's method, Taylor series method - Solution of first order	_			
V	differential equation (Runge-Kutta method)	5	Chalk,		
Numerical	Solution of IV order differential equation (Runge- Kutta	_	Talk &		
solution of	method), Predictor-corrector method	7	Group		
differential	Higher order differential equations, Comparison of predictor,		discussion		
equations	corrector and Runge-Kutta methods	6			

LESSON PLAN

Course designed by: Dr. P.P. Kannan & Mr. P. Dharmaraja

		Aı	0	Dutcome Bas ormative Exa opping – K L	minatio	on - Blue Pr	int		
				Section		Section		Section C	Section
Internal (os K Level		MCQ No. of. Questions	K - Level	Short An No. of. Question S	K - Level	Either or Choice	D Open Choice
CI	C	01	K2	2	K1	1	K1	2 (K2&K2)	1(K2)
AI	C	02	K3	2	K2	2	K2	2 (K3&K3)	1(K3)
CI	CO3		K3	2	K1	1	K2	2 (K3&K3)	1(K3)
AII	C	D4	K4	2	K2	2	K2	2 (K4&K4)	1(K4)
		Qu	No. of testions to be asked	4		3		4	2
Question Pattern	1	No. of Questions to be answered		4		3		2	1
CIA I &	11	Ma	arks for each question	1		2		5	10
		Total Marks for each section		4		6		10	10

		Dist	ribution of I	Marks with	K Level C	IA I & (CIA II	
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidate of %
	K1	2	2	-	-	4	8	60
	K2	2	4	10	10	26	52	00
CIA	K3	-	-	10	10	20	40	40
	K4	-	-	-	-	-	-	-
1	Marks	4	6	20	20	50	100	100
	K1	2	-	-	-	4	8	20
	K2	2	6	-	-	6	12	20
CIA	K3	-	-	10	10	20	40	40
II	K4	-	-	10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers

K2- Basic understanding of facts and stating main ideas with general answers

K3- Application oriented- Solving Problems

K4- Examining, analyzing, presentation and make inferences with evidences

CO5 will be allotted for individual Assignment which carries five marks as a part of CIA component.

S	Summative Examination – Blue Print Articulation Mapping – K Level with Course										
	Outcomes (COs)										
S.		К-	MC	CQs	Short A	Inswers	Section C	Section D			
S. No.	COs	S _	_	_	K - Level	No. of	K – Level	No. of	K – Level	(Either / or	(Open
140.		Level	Questions	K – Level	Question	K – Level	Choice)	Choice)			
1	CO1	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
2	CO2	K4	2	K1&K2	1	K1	2 (K3&K3)	1 (K4)			
3	CO3	K3	2	K1&K2	1	K2	2 (K3&K3)	1 (K3)			
4	CO4	K4	2	K1&K2	1	K2	2 (K3&K3)	1 (K4)			
5	CO5	K5	2	K1&K2	1	K2	2 (K3&K3)	1 (K5)			
No. of	f Questi	ons to	10	10		5		10	5		
b	e Aske	d	10		5		10	5			
No. of	f Questi	ons to	10		5		5	3			
be	answei	red	10		5		5	5			
Mar	Marks for each		1	2			5	10			
question		1		2		5	10				
Tota	Total Marks for		10		10		25	30			
ea	ch secti	on	10		10		23	50			
	(Figure	es in pa	renthesis dei	notes, questi	ons should b	oe asked wit	h the given K	level)			

	Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	% of (Marks without choice)	Consolidated %		
K1	5	4	-	-	9	7.5	8		
K2	5	6	-	-	11	9.17	9		
K3	-	-	50	10	60	50	50		
K4	-	-	-	30	30	25	25		
K5	-	-	_	10	10	8.33	8		
Marks	10	10	50	50	120	100	100		
NB: Hig	gher level of p	erformance o	f the students	s is to be asso	essed by a	attempting	higher level		

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Answer A	All Que	estions	(10x1=10 marks)
Q. No	CO	K Level	Questions
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Section H	6 (Shor	t Answer (Questions)
Answer A	All Que		(5x2=10 marks)
Q. No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	
Section (C (Eith	er or Choic	e Questions)
Answer A	All Que	estions	(5x5=25 marks)
Q. No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K3	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	
NB: Higl of K leve		el of perfor	mance of the students is to be assessed by attempting higher level
		n Choice)	
	· •		ons (3x10=30 marks)
	$\frac{1}{CO}$	ree questio K Level	
Q. No 21	C01	K Level K4	Questions
$\frac{21}{22}$	CO1 CO2	<u>K4</u> K4	
22		<u>K4</u> K3	
	CO3 CO4	<u>K3</u> K4	
	1/1	K4	
$\frac{24}{25}$	CO ₄	K5	

Summative Examinations - Question Paper – Format