M.Sc., MATHEMATICS

Syllabus

Program Code: PMT

2021-2022 onwards

MANNAR THIRUMALAI NAICKER COLLEGE
(AUTONOMOUS)
Re-accredited with "A" Grade by NAAC
PASUMALAI, MADURAI - 625004

Eligibility condition for admission

For admission to Post Graduate Programmers (P.G) a candidate should have passed the 3years degree course (under $10+2+3$ pattern) (B.Sc Mathematics and B.Sc Mathematics with CA) recognized by the university as equivalent there to.

Duration

Two years. Each year consists of 2 semesters. The duration of a semester is 90 working days.

Attendance

75% of the classes in each semester shortage of attendance can be condoned as per existing university rules.

Evaluation procedure:

A mark Statement with \quad CGPA $=\quad \sum($ MarksXcredits $)$ \sum (Credits)
Where the summations are over all paper appeared up to the current semester. Examinations: 3 hours duration. Total marks 100 for all papers External Internal ratio 75:25 with 2 Internal tests.

Subjects of Study

The courses offered under the PG programs belong to the following categories:

1. Core Subjects
2. Electives
3. Non Major Electives (NME)

Pattern of the question paper for the Continuous Internal Assessment Note: Duration - $\mathbf{1}$ hour 30 minutes

The components for continuous internal assessment are:
Part -A
Four multiple choice questions (answer all)
$4 \times 01=04$ Marks
Part -B
Three short answers questions (answer all)
$3 \times 02=06$ Marks
Part -C
Two questions ('either or 'type)
$2 \times 05=10$ Marks
Part -D
Two questions out of three
$2 \times 10=20$ Marks

Total

The scheme of Examinations:

The components for continuous internal assessment are:
(40 Marks of two continuous internal assessments will be converted to 15 marks)

Two tests and their average
Seminar /Group discussion
Assignment

Total
--5 marks
--5 marks

25 Marks

Pattern of the question paper for the Summative Examinations:

Note: Duration- 3 hours

Part -A

Ten multiple choice questions $10 \times 01=10$ Marks
No Unit shall be omitted: not more than two questions from each unit.)

Part -B

Short answer questions (one question from each unit) $5 \times 02=10$ Marks

Part -C

Five Paragraph questions ('either \qquad or 'type)
$5 \times 05=25$ Marks
(One question from each Unit)

Part -D

Three Essay questions out of five $3 \times 10=30$ Marks
(One question from each Unit)
Total
75 Marks

Minimum Marks for a Pass

50% of the aggregate (Internal +Summative Examinations).
No separate pass minimum for the Internal Examinations.
34 marks out of 75 is the pass minimum for the Summative Examinations.

VISION

To empower the students so as to face the competitive world and make them fit for the MNCs according to their necessity and requirement

MISSION

To maintain the standard of teaching in various areas of Pure and Applied Mathematics
> To provide an excellent learning environment with theoretical and practical knowledge where students can explore mathematical concepts.
> To mold the students to become a competent users of Mathematics and its applications.
> To instill the spirit of research through innovative teaching and research facilities.
To qualify the students to meet the industry expectations.

The 12 Graduate Attributes*:

1. (KB) A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions
3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.
4. (Des.) Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
5. (Tools) Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
6. (Team) Individual and teamwork: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
7. (Comm.) Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.
8. (Prof.) Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
9. (Impacts) Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.
10. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.
11. (Econ.) Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
12. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

WA	Graduate Attributes	Caption as
$\mathbf{1}$	Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.	A knowledge base for engineering
$\mathbf{2}$	An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions	Problem analysis
$\mathbf{3}$	An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.	Investigation
$\mathbf{7}$	An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.	Communicat ion skills
$\mathbf{6}$	An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.	Individual and teamwork
$\mathbf{1 0}$	An ability to apply professional ethics, accountability, and equity.	Ethics and equity
$\mathbf{1 2}$	An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge	Life-long learning

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	
PEO1:	Enhance the entrepreneurial abilities, life skills and research initiates through experiential learning practices and building self confidence
PEO2:	Collaborate with industry and alumnae to explore the new avenues in respective domains and raise the employability ratio
PEO3:	Equip with soft skills and critical thinking to produce an erudite and trustworthy generation to fit into versatile situations
PEO4:	Adhere to the ethical and environmental sustainability to create morally upright and empowered citizens to face industry/ Institution
PEO5:	Up-skill / Re-skill their primary knowledge and potentials to compete in the dynamic global environment.
PEO6:	To build confidence to appear for Competitive / Civil Service examinations and to conquer commanding positions in organizational level.

PO NO	PROGRAMME OUTCOMES (POs)	
At the end of the programme, the students will be able to		
PO - 1	Demonstrate the knowledge and understanding of Science concepts and its relevant fields.	Disciplinary Knowledge
PO - 2	Identify, formulate, analyse complex problems and reach valid conclusions using the methodologies of Science.	Problem Solving
PO - 3	Employ critical and analytical thinking in understanding the concepts and apply them in various problems appearing in different branches of Science.	Analytical Critical Thinking
PO - 4	Communicate the known concepts effectively within the profession and with any forum	Communication Skills
PO - 5	Function successfully as a member/leader in any team and to apply ethics, accountability and equity in their life.	Team Work and Moral/Ethical Awareness
PO - 6	Use ICT tools in various learning situations, related information sources, suitable software to analyze data and furthermore participating in learning activities throughout life to meet the demands of work place through knowledge /up-skilling / re-skilling	 Life-long Learning

PROGRAM SPECIFIC OUTCOME (PSOs)	
PSO1:	Demonstrate the understanding of mathematical concepts in the field of Science and Technology.
PSO2:	Express their mathematical knowledge with others effectively in both oral and written form in an organized manner.
PSO3:	Proficient in using digital learning platforms and update their knowledge, skills to fulfill the requirements at the workplace in their life span.
PSO4:	Employ critical and analytical thinking in understanding the concepts of Mathematical Science and in appearing Competitive examinations SET/ NET/ TET.
PSO5:	Choose appropriate mathematical and computational methods in order to solve different types of problems and work efficiently as a team member / leader..
PSO6:	Work independently and do detailed study of various concepts of Science. Plan, execute, report the results of an experiment/investigation with the highest standard of ethics in research

Bloom's Taxonomy

MANNAR THIRUMALAI NAICKER COLLEGE (Autonomous), Pasumalai M.Sc., MATHEMATICS, Curriculum

(For the student admitted during the academic year 2021-2022 onwards)

Course Code	Title of the Course	Hours	Credits	Maximum Marks		
				Int	Ext	Total
FIRST SEMESTER						
	Core Courses					
21PMTC11	Algebra	6	4	25	75	100
21PMTC12	Analysis	6	4	25	75	100
21PMTC13	Ordinary Differential Equations	6	4	25	75	100
21PMTC14	Graph Theory and its Algorithms	6	4	25	75	100
21PMTC15	Classical Mechanics	6	4	25	75	100
	Total	30	20	125	375	500
SECOND SEMESTER						
21PMTC21	Advanced Algebra	6	4	25	75	100
21PMTC22	Partial Differential Equations	6	4	25	75	100
21PMTC23	Numerical Analysis	6	4	25	75	100
21PMTC24	Fuzzy Algebra and its Applications	6	4	25	75	100
21PMTN21	Mathematics for Competitive Examinations	6	6	25	75	100
	Total	30	22	125	375	500
THIRD SEMESTER						
21PMTC31	Field Theory and Lattices	6	4	25	75	100
21PMTC32	Complex Analysis	6	4	25	75	100
21PMTC33	Topology	6	4	25	75	100
21PMTE31	Operations Research	6	6	25	75	100
21PMTE32	Integral Equations	6	6	25	75	100
	Total	30	24	125	375	500
FOURTH SEMESTER						
21PMTC41	Measure Theory and Integration	6	4	25	75	100
21PMTC42	Functional Analysis	6	4	25	75	100
21PMTPR1	Project	6	4	40	60	100
21PMTE41	Number Theory	6	6	25	75	100
21PMTE42	Stochastic Process	6	6	25	75	100
	Total	30	24	140	360	500
	Grand Total	120	90	515	1485	2000

(For those who joined in 2021-2022 and after)

$\begin{array}{\|l} \text { Course Name } \\ \hline \text { Course Code } \\ \hline \end{array}$	ALGEBRA							
Course Code	21PMTC11				P	C		
Category	Core							
Nature of course: EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP				
Course Objectives:								
- To introduce the advanced ideas in Group theory. - To familiarize Abelian groups and Ring theory. - To know about unique factorization domain. - To equip the students in fields and ideals. - To know about Euclidean rings, Polynomial rings.								
Unit: I					18			
Groups (Definitions only) - Subgroups - A Counting Principle - Normal subgroups and Quotient groups - Permutation groups.								
Unit: II Another Counting Principle -Sylow's Theorems - Direct Products -Finite Abelian Groups								
Unit: III					18			
Ideals and Quotient Rings - More Ideals and Quotient Rings, The Field of Quotients of an Integral Domain								
Unit: IV					18			
Euclidean Rings - A particular Euclidean Rings.								
Unit: V					18			
Polynomial rings - Polynomials over the rational field - Polynomial rings over Commutative rings.								
				tal Lecture Hou	90			
Unit I - Chapter 2: Sections 2.1, 2.4, 2.5, 2.6, 2.10 Unit II - Chapter 2: Sections 2.11, 2.12, 2.13, 2.14 Unit III- Chapter 3: Sections 3.4, 3.5, 3.6, Unit IV - Chapter 3: Sections 3.7, 3.8 Unit V - Chapter 3: Sections 3.9,3.10,3.11.								
Books for References: 1. Joseph A Gallian,Contemporary Abstract Algebra, $8^{\text {th }}$ Edition, Cengage Learning India Private Limited, New Delhi, 2013. 2. Thomas W.Hungerford, Algebra, Springer International Edition, Newyork, 2009. 3. Lang Serge ,Algebra , Addison - Welsey, 2002								
Web Resources								
$\begin{aligned} & \text { https://www.youtube.com/watch?v=PN-cro0J_v8\&list=PLEAYkSg4uSQ1Yhxu2U- } \\ & \text { BxtRiZEIrfVVcO } \end{aligned}$								

https://nptel.ac.in/courses/111/106/111106113/		
http://www.freebookcentre.net/maths-books-download/Notes-on-Abstract-Algebra-by-John-		
COURSE OUTCOMES		K Level
On the successful completion of the course, the students will be able to		
C01:	Demonstrate the understanding of group, normal groups, quotient group and permutation groups.	K2
CO2:	Use Sylow's theorem in algebraic structures	K4
CO3:	Examine ideals, quotient rings and integral domain	K3
CO4:	Analyse Euclidean ring	K5
C05:	Classify the irreducibility of polynomials, rings over field	K4

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	1	1	3	2
CO 2	3	2	1	-	2	2
CO 3	2	3	-	1	2	1
CO 4	2	3	1	1	3	2
CO 5	2	2	1	1	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Groups (Definitions only) - Subgroups - A Counting Principle - Normal subgroups and Quotient groups - Permutation groups	$\mathbf{1 8}$	 Talk
II	Another Counting Principle -Sylow's Theorems - Direct Products - Finite Abelian Groups.	$\mathbf{1 8}$	 Talk
III	Ideals and Quotient Rings - More Ideals and Quotient Rings, The Field of Quotients of an Integral Domain.	$\mathbf{1 8}$	 Talk
IV	Euclidean Rings - A particular Euclidean Rings.	$\mathbf{1 8}$	 Talk
V	Polynomial rings - Polynomials over the rational field - Polynomial rings over Commutative rings.	$\mathbf{1 8}$	 Talk

Course Designed by: Dr.A.Hamari Choudhi and Dr.V.Ramachandran

$\begin{gathered} \hline \text { Learning Outcome Based Education \& Assessment (LOBE) } \\ \text { Formative Examination - Blue Print } \\ \text { Articulation Mapping - K Levels with Course Outcomes (COs) } \\ \hline \end{gathered}$								
Inte rnal	Cos	K Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B		Section C Either or Choice	$\begin{aligned} & \text { Section D } \\ & \text { Open } \\ & \text { Choice } \end{aligned}$
					Short An	wers		
			No. of. Questions	K Level	No. of. Questions	K Level		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{array}{\|c\|c\|} \hline \text { CII } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
			MO		Short An	wers	Section C	Section
S.No	COs	Level	No. of Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	(Either / or Choice)	(Open Choice)
1	CO1	Upto K2	2	K1\&K2		K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\mathbf{\%}$
K1	5	4			9	7.5	
K2	5	6			11	9.17	
K3			25	20	45	37.5	$\mathbf{3 7}$
K4		25	30	55	45.83	$\mathbf{4 6}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO 2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers) Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO 2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type) Answer All Questions				
				($5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K4		
17) b	CO 2	K4		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K5		
19) b	CO4	K5		
20) a	CO5	K4		
20) b	CO5	K4		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				(3x10=30 marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO 2	K4		
23	CO3	K3		
24	CO4	K5		
25	CO5	K4		

(For those who joined in 2021-2022 and after)

https://nptel.ac.in/courses/111/106/111106053/ https://ocw.mit.edu/courses/mathematics/18-100c-real-analysis-fall-2012/ https://cosmolearning.org/courses/real-analysis-with-prof-sh-kulkarni/			
COURSE OUTCOMES	K Level		
On the successful completion of the course, the students will be able to	K2		
CO1:	Knowledge about limit, continuity, connectedness and its properties.		

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	1	1
CO 2	3	2	2	1	2	-
CO 3	3	2	2	2	2	1
CO 4	3	2	3	2	1	-
CO 5	3	2	3	1	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Limits of Functions - Continuous Functions - Continuity and Compactness - Continuity and Connectedness - Discontinuities - Monotonic Functions - Infinite Limits and Limits at Infinity.	$\mathbf{1 8}$	 Talk
II	The Derivative of a Real Function - Mean Value Theorems - The Continuity of Derivatives - L'Hospital's Rule - Derivatives of Higher Order - Taylor's Theorem - Differentiation of Vector valued Functions	$\mathbf{1 8}$	 Talk
III	The Riemann-Stieltjes Integral- Definition and Existence of the Integral - Properties of the Integral - Integration and Differentiation - Integration of Vector valued functions -Rectifiable Curves.	$\mathbf{1 8}$	 Talk
IV	Sequence and Series of functions - Uniform convergence - Uniform convergence and Continuity - Uniform convergence and Integration	$\mathbf{1 8}$	 Talk
V	Uniform Convergence and Differentiation - Equicontinuous Families of Functions - The Stone - Weierstrass Theorem	$\mathbf{1 8}$	 Talk

Course Designed by: Mrs.S.Andal and Mrs. S.Ragavi

Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	Secti	A	Section		Section C	Section D
			MC		Short An	wers		
			No. of. Questions	K - Level	No. of. Questions	K Level	Choice	Choice
$\begin{aligned} & \hline \text { CI } \\ & \text { AI } \end{aligned}$	CO1	1 Upto K2	2	K1\&K2	1	K1	2	1
	CO2	2 Upto K3	2	K1\&K2	2	K2	2	1
CIAII	CO 3	3 Upto K4	2	K1\&K2	1	K2	2	1
	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
Questio n Pattern II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	$\%$ of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
					Short An	swers	Section C	Sectio
S.No	COs	K - Level	No. of Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	(Either / or Choice)	(Open Choice)
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\%$
K1	5	4			9	7.5	17
K2	5	6			11	9.17	
K3			25	20	45	37.5	37
K4		25	30	55	45.83	46	
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers) Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type) Answer All Questions				
				($5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K3		
17) b	CO 2	K3		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K4		
19) b	CO4	K4		
20) a	CO5	K5		
20) b	CO5	K5		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				($3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO2	K3		
23	CO3	K3		
24	CO4	K4		
25	CO5	K5		

(For those who joined in 2021-2022 and after)

Course Name	ORDINARY DIFFERENTIAL EQUATIONS					
Course Code	21PMTC13			L	P	C
Category	Core			6		4
Nature of course: EMPLOYABILITY			SKILL ORIENTED	ENTREPRENEURSHIP		
COURSE OBJECTIVES:						
- To produce knowledge on ODEs. - To familiarize with power series solution, special functions. - To learn about existence and uniqueness of solutions. - To solve homogenous and non-homogenous equations. - To solve standard type of OD equations.						
Unit: I					18	
Second order homogeneous equation, Initial Value Problem, Linear Dependence and Independence, A formula for Wronskian, Non-homogeneous equation of order two.						
Unit: II					18	
Homogeneous equation of order n, Initial value problems, Annihilator method to solve nonhomogeneous equation, algebra of constant coefficient operators.						
Initial value problem for the homogeneous equation, Solution of the Homogeneous equation, the Wronskian and linear independence, Reduction of the order of a homogeneous equation, The non-homogeneous equation, Homogeneous equation with analytic coefficients, The Legendre equation.						
Unit: IV					18	
The Euler equation, Second order equation with Regular Singular points - an example, Second order equation with Regular Singular points - the general case, A convergence proof, The exceptional cases, The Bessel equation, The Bessel equation (continued) .						
Unit: V					18	
Equation with Variable Separated, Exact equation, The method of Successive Approximations, The Lipschitz Condition, Convergence of the Successive Approximation, Non local existence of solution, Approximation to and uniqueness of solutions.						
				Total Lecture Hours 90		
Books for Study: E.A.Coddington, An Introduction to Ordinary Differential Equation, PHI Learning Private Limited, New Delhi, 2010. Unit I - Chapter 2 : Section 1 to 6 Unit II - Chapter 2: Section 7 to 12 Unit III - Chapter 3: Section 1 to 8 Unit IV - Chapter 4: Section 1 to 8 Unit V - Chapter 5: Section 1 to 8						
Books for References: 1. M.Rama Mohan Rao, Ordinary Differential Equations Theory and Applications,						

East West Press Publications, New Delhi, 1980.
2. Purna Chandra Biswal, Ordinary Differential Equations, PHILearning Publications, New Delhi, 2012.
3. SG Deo, Ordinary Differential Equations, Tata Mc Graw Hill Publications, New Delhi, 2010.

Web Resources

https://nptel.ac.in/courses/111/107/111107111/
https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/ https://www.youtube.com/watch?v=CogfMjKUGc0
COURSE OUTCOMES \quad K Level

On the successful completion of the course, the students will be able to

CO1:	Analyze the existence and uniqueness of solutions of ordinary differential equations	K4
CO2:	Solve homogenous equation and non-homogenous equation with constant co-efficient	K3
CO3:	Develop the concepts of ordinary differential equation for homogeneous and non- homogenous equations.	K3
CO4:	Demonstrate the understanding of power series and special functions	K2
CO5:	Compute the solution by iterative procedure for exact equation.	K3

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	1	-	3	1
CO 2	2	-	2	2	2	2
CO 3	2	2	2	-	3	1
CO 4	2	-	-	-	1	2
CO 5	3	-	2	1	2	2

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Second order homogeneous equation, Initial Value Problem, Linear Dependence and Independence, A formula for Wronskian, Non- homogeneous equation of order two.	$\mathbf{1 8}$	 Talk
II	Homogeneous equation of order n, Initial value problems, Annihilator method to solve non, homogeneous equation, algebra of constant coefficient operators.	$\mathbf{1 8}$	 Talk
III	Initial value problem for the homogeneous equation, Solution of the Homogeneous equation, the Wronskian and linear independence, Reduction of the order of a homogeneous equation, The non-homogeneous equation, Homogeneous equation with analytic coefficients, The Legendre equation.	$\mathbf{1 8}$	 Talk
IV	The Euler equation, Second order equation with Regular Singular points - an example, Second order equation with Regular Singular points - the general case, A convergence proof, The exceptional cases, The Bessel equation, The Bessel equation (continued).	$\mathbf{1 8}$	
Talk			
V	Equation with Variable Separated, Exact equation, The method of Successive Approximations, The Lipschitz Condition, Convergence of the Successive Approximation, Non local existence of solution, Approximation to and uniqueness of solutions.	$\mathbf{1 8}$	 Talk

Course Designed by: Dr.M.Saravanan and Mrs. R.Sumathi

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\frac{\text { Section A }}{\text { MCQs }}$		Section BShort Answers		Section C Either or Choice	Section D Open Choice
			$\begin{gathered} \hline \text { MC } \\ \hline \text { No. of. } \\ \text { Questions } \end{gathered}$	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
$\begin{gathered} \text { CI } \\ \text { AI } \end{gathered}$	CO1	Upto K2	2	K1\&K2	1	K1	2	1
	CO2	Upto K3	2	K1\&K2	2	K2	2	1
$\begin{gathered} \text { CI } \\ \text { AII } \end{gathered}$	CO3	Upto K4	2	K1\&K2	1	K2	2	1
	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K - Level	MOQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K} \text { - }$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\& K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\%$
K1	5	4			9	7.5	17
K2	5	6			11	9.17	
K3			25	20	45	37.5	37
K4		25	30	55	45.83	46	
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
($5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
($5 \times 5=25$ marks)

Q.No	CO	K Level	
16) a	CO1	K4	
16) b	CO1	K4	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K2	
19) b	CO4	K2	
20) a	CO5	K3	
20) b	CO5	K3	

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K3	
23	CO3	K3	
24	CO4	K2	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	GRAPH THEORY AND ITS ALGORITHMS					
Course Code	21PMTC14				P	C
Category	Core					4
Nature of course: EMPLOYABILITY			SKILL ORIENTED	ENTREPRENEURSHIP		
Course objectives:						
- To understand the fundamental concepts in graph theory. - To apply graph theory in different fields - To improve the different types of proof writing skills. - To learn to model problems using graphs - To solve the problems algorithmically.						
Unit: I	(18					
The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees, Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and Bonds, Cut vertices						
Unit: II					18	
Euler tours, Hamiltonian cycles, The travelling salesman problem, Matchings, Matchings and Coverings in Bipartite graphs						
Unit: III					18	
Edge Chromatic Number, Vizing's Theorem, Chromatic number, Brook's theorem.						
Unit: IV					18	
Plane and Planar graphs, Dual Graphs ,Euler's formula ,Bridges ,Kuratowski's Theorem, Directed Graphs, Directed Paths, Directed Cycles, Flows, Cuts, The Max-Flow Min -Cut theorem.						
Algorithms : connectedness and components - spanning tree - cut vertices and separability directed circuits - shortest path algorithm - planarity testing - isomorphism						
				Total Lecture Hours		
Books for Study: 1. J.A.Bondy and U.S.R.Murty, Graph Theory with Applications. North Holland Publications, New york, 1976. Unit I - Chapter 1 : Section 1.3 to 1.7 and 1.9 Chapter 2: Section 2.1 to 2.3 Unit II - Chapter 4: Section 4.1, 4.2 and 4.4 Chapter 5: Section 5.1 to 5.2 Unit III - Chapter 6 : Section 6.1, 6.2 Chapter 8 : Section 8.1, 8.2 Unit IV - Chapter 9 : Section 9.1 to 9.5 Chapter 10 : Section 10.1 to 10.3 2. Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, 1979. Unit V - Chapter 11 : Section 11.4 to 11.7						
Books for Ref 1. John Cla ScientificP	rences: and Derek Allan blications, Singapore, 1991		A first look	Graph Theo		

2. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
3. S.K.Yadav, Elements of Graph Theory, Ane Books Pvt. Ltd,New Delhi, 2010

Web Resources

https://nptel.ac.in/courses/111/106/111106102/
https://nptel.ac.in/courses/111/106/111106050/
https://www.math.kit.edu/iag6/lehre/graphtheo2015w/media/lecture_notes.pdf
Course Outcomes
On the successful completion of the course, the students will be able to

CO1:	Understand the definition of different types of graphs and Sperner's lemma.	K2
CO2:	Make use of graph theory concepts in travelling salesman problem, Matching and covering.	K3
CO3:	Categorize chromatic number, edge chromatic number with theorems.	K4
CO4:	Develop the different types of proof writing skills for planar graphs and directed graphs	K5
CO5:	Apply various types of algorithms in graph.	K3

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	1	-	-	2
CO 2	2	2	2	1	2	1
CO 3	2	1	1	1	2	-
CO 4	3	2	1	1	1	1
CO 5	3	2	3	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	The Incidence and Adjacency Matrices, Sub graphs, Vertex degrees, Paths and Connection, Cycles, Sperner's lemma, Trees, Cut edges and Bonds, Cut vertices	18	PPT, Chalk
Talk, quiz			

Course Designed by: Dr.V.Ramachandran and Dr.A.Hamari Choudhi

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	Sectio		Section B		Section C Either or Choice	Section D Open Choice
			MCQs		Short An	wers		
			No. of. Questions	K - Level	No. of. Questions	K Level		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K - Level	MOQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Question S	K - Level	No. of Question	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidated \%
K1	5	4			9	7.5	
K2	5	6			11	9.17	17
K3			25	20	45	37.5	37
K4			25	30	55	45.83	46
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
($5 \times 2=10$ marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
($5 \times 5=25$ marks)

Q.No	CO	K Level
16) a	CO1	K2
16) b	CO1	K2
17) a	CO 2	K3
17) b	CO2	K3
18) a	CO3	K4
18) b	CO3	K4
19) a	CO4	K4
19) b	CO4	K4
20) a	CO5	K3
20) b	CO5	K3

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K4	
24	CO4	K5	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	CLASSICAL MECHANICS					
Course Code	21PMTC15			L	P	C
Category	Core			6		4
Nature of course: EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP		
Course objectives:						
\star To recall the * To underst * To derive * To apply Problems. * To underst	basic concepts of motion nd D' Alembert's Principl he Lagrange's Equations fr the concept of the Equatio nd the Kepler's law and In		particle. Lagrangian's Formu Hamilton's Principle. of Motion and th e-Square Law of Force	Equivalent one-d	ns	
Unit: I						
Mechanics of a Particle, Mechanics of a System of Particles, Constraints.						
Unit: II						
D'Alembert 's principle and Lagrange's equations, Velocity - dependent potentials and the dissipation function, Hamilton's principle, Some techniques of the calculus of variations. Unit: III						
Derivation of Lagrange's equations from Hamilton's principle, Extension of Hamilton's principle to non-holonomic systems, Advantages of a variational principle formulation, Conservation theorems and Symmetry properties.						
Unit: IV					18	
Reduction to the equivalent one - body problem. The equations of motion and first integrals, The equivalent one-dimensional problem and Classification of orbits, The virial theorem						
Unit: V					18	
The Differential equation for the orbit and integrable power - law potentials, Conditions for closed orbits (Bertrand's theorem), The Kepler problem : Inverse square law of force, The motion in time in the Kepler problem, The Laplace - Runge- Lenz vector.						
				tal Lecture Hou	90	
Books for Study:						
H.Goldstein, Classical Mechanics, Second Edition, Addison Wesley, Newyork, 1980.						
Unit I	Chapter 1 :	ecti	on 1.1 to 1.3			
	Chapter 1:		on 1.4, 1.5 \& Chapter	Section 2.1, 2.2		
Unit II	Chapter 2 : Section	. 3	o 2.6			
Unit IV	Chapter 3 : Section					
Unit V	Chapter 3 : Section		o 3.9			
1. Madhumangal, A Course on Classical Mechanics, Narosa Publishing Private Ltd, New Delhi, 2009. 2. B.D.Gupta, Satya Prakash, Classical Mechanics, $6^{\text {th }}$ Edition, Kedar Nath Ram Nath Publications, Mearut, 1987-1988 3. R.Douglas Gregory, Classical Mechanics,Cambridge University Press.						
Web Resources						

http://staff.um.edu.mt/jmus1/diffeq1.pdf https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-notes/ http://math.huji.ac.il/~razk/Teaching/LectureNotes/LectureNotesMechanics.pdf			
COURSE OUTCOMES	K Level		
On the successful completion of the course, the students will be able to			
CO1:	Demonstrate the understanding of the fundamental concepts in dynamics of system of particle.	K2	
CO2:	Derive D'Alembert 's principle, Lagrange's equations and Hamilton's principle.	K4	
CO3:	Represent the complicated mechanical systems using the Lagrangian and Hamiltonian principle.	K2	
CO4:	Explain the concepts of one -dimensional problem and Classification of orbits.	K3	
CO5:	Derive Bertrand's theorem, The Kepler problem, the Laplace - Runge- Lenz vector.	K4	

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	2	1	1	-
CO 2	3	3	3	1	2	2
CO 3	3	2	3	1	1	1
CO 4	3	2	2	1	2	1
CO 5	3	3	3	2	2	2

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Mechanics of a Particle, Mechanics of a System of Particles, Constraints.	18	 Talk
II	D'Alembert 's principle and Lagrange's equations, Velocity - dependent potentials and the dissipation function, Hamilton's principle, Some techniques of the calculus of variations	18	 Talk
III	Derivation of Lagrange's equations from Hamilton's principle, Extension of Hamilton's principle to non-holonomic systems, Advantages of a variational principle formulation, Conservation theorems and Symmetry properties.	18	 Talk
IV	Reduction to the equivalent one - body problem. The equations of motion and first integrals, The equivalent one -dimensional problem and classification of orbits, The virial theorem	18	 Talk
V	The differential equation for the orbit and integrable power - law potentials, Conditions for closed orbits (Bertrand's theorem), The Kepler problem : Inverse square law of force, The motion in time in the Kepler problem, The Laplace - Runge- Lenz vector.	18	 Talk

Course Designed by: Dr.S.Andal and Dr.R.Bhavani

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\frac{\text { Section A }}{\text { MCQs }}$		Section B		Section C Either or Choice	Section D Open Choice
					Short Answers			
			No. of. Questions	K - Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
$\begin{gathered} \text { CI } \\ \text { AI } \end{gathered}$	CO1	Upto K2	2	K1\& K2	1	K1	2	1
	CO2	Upto K3	2	K1\& K2	2	K2	2	1
$\begin{array}{\|c\|} \hline \text { CI } \\ \text { AII } \\ \hline \end{array}$	CO 3	Upto K4	2	K1\& K2	1	K2	2	1
	CO4	Upto K4 No. of Questions to be asked	2	K1\& K2	2	K2	2	1
Question Pattern CIA I \& II			4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	KLevel	MOQs		Short Answers		Section C (Either/ or Choice)	Section D (Open Choice)
			No. of Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\%$
K1	5	4			9	7.5	17
K2	5	6			11	9.17	
K3			25	20	45	37.5	37
K4		25	30	55	45.83	46	
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers) Answer All Questions				
				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)Answer All Questions				
				($5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K4		
17) b	CO 2	K4		
18) a	CO3	K2		
18) b	CO3	K2		
19) a	CO4	K3		
19) b	CO4	K3		
20) a	CO5	K4		
20) b	CO5	K4		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				($3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO2	K4		
23	CO3	K2		
24	CO4	K3		
25	CO5	K4		

(For those who joined in 2021-2022 and after)

Course outcomes:		K Level
On the successful completion of the course, the students will be able to	K2	
CO1:	Explain the properties of Inner Product Spaces.	K3
CO2:	Use linear transformation for characteristic roots and vectors	K2
CO3:	Represent Canonical forms, Triangular form, Nilpotent transformations	K3
CO4:	Determine the Trace and transpose, determinants	K5
CO5:	Evaluate the normal transformation	

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	1	2	1	1
CO 2	3	2	2	1	1	2
CO 3	3	2	1	2	1	1
CO 4	3	3	2	1	2	2
CO 5	3	2	2	1	1	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Elementary Basic Concepts - Dual Spaces - Inner Product Spaces.	18	Chalk \&Talk
II	The Algebra of linear transformations, Characteristic roots	18	Chalk \&Talk
III	Trace and Transpose, Determinants.	18	Chalk \&Talk
IV	Trace and Transpose, Determinants.	18	Chalk \&Talk
V	Hermitian, Unitary and Normal transformations.	18	Chalk \&Talk

Course Designed by: Dr.A.Hamari Choudhi and Dr.V.Ramachandran

			ng Outcome Formative Mapping -	Based Ed Examinati K Levels	cation \& As on - Blue Pri ith Course	$\begin{aligned} & \text { sessmen } \\ & \text { nt } \\ & \text { Sutcome } \end{aligned}$	$\begin{aligned} & \text { (LOBE) } \\ & s(\text { COs }) \end{aligned}$	
			Sectio	A	Section			
Inte	Cos	K Level	MC		Short An	wers	Either or	Section D
rnal			No. of. Questions	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		Choice
CI C	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\& K2	1	K2	2	1
AII C	CO4	Upto K4	2	K1\&K2	2	K2	2	1
		No. of Questions to be asked	4		3		4	2
$\begin{aligned} & \text { Questio } \\ & \mathbf{n} \end{aligned}$		No. of Questions to be answered	4		3		2	1
Patten I		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { I }}{\text { CIA }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K Level	No. of Question	$\begin{gathered} \mathbf{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\%$	
K1	5	4			9	7.5	$\mathbf{1 7}$	
K2	5	6			11	9.17		
K3			25	20	45	37.5	$\mathbf{3 7}$	
K4								
Marks	10	10	50	50	120	100	$\mathbf{4 0 0}$	
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)				
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO 2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				($5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K3		
17) b	CO 2	K3		
18) a	CO3	K2		
18) b	CO3	K2		
19) a	CO 4	K3		
19) b	CO 4	K3		
20) a	CO5	K4		
20) b	CO5	K4		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				($3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO 2	K3		
23	CO3	K2		
24	CO4	K3		
25	CO5	K5		

(For those who joined in 2021-2022 and after)

| Unit: V | 18 |
| :--- | :--- | :--- |

Green's function, Heat Conduction Problem - Heat Conduction -Infinite Rod Case- Heat Conduction Finite Rod Case - Duhamel's Principle - Wave Equation -Heat Conduction Equation | Total Lecture Hours | 90 |
| :--- | :--- |

Books for Study:

T.Amarnath, An Elementary Course in Partial Differential Equation, Narosa Publishing Company, Chennai, 1997.

Unit I - Chapter 1: Section 1.1 to 1.8 Unit II - Chapter $1:$ Section 1.9 to 1.11
Unit III - Chapter 2: Section 2.1 to 2.3 (2.3.1 to 2.3.3and 2.3.5)
Unit IV - Chapter 2 : Section 2.4.1 to 2.4.10
Unit V - Chapter 2 : Section 2.4 (2.4.11 to 2.4.13)
Section 2.5 (2.5.1 and 2.5.2)
Section 2.6 (2.6.1and 2.6.2)

Books for References:

1. E.T. Copson, Partial differential equations, S. Chand and Company Ltd., New Delhi, 1984.
2. Jeffrey Raich, Partial differential equations, Springer Publisher, Newyork, 1991.
3. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill Book Company,

New Delhi, 1985.
Web Resources
https://www.iist.ac.in/sites/default/files/people/IN08026/Canonical form.pdf. https://nptel.ac.in/courses/111/107/111107111/
https://nptel.ac.in/courses/122/107/122107037/
COURSE OUTCOMES
On the successful completion of the course, the students will be able to

CO1:	Solve the Linear first order partial differential equations using various methods.	K3
CO2:	Analyze the Semi-linear, Quasi-linear \& Non-linear first order partial differential equations.	K4
CO3:	Classify the second order partial differential equations	K4
CO4:	Apply the concepts of partial differential equations in solving boundary value problems.	K3
CO5:	Determine the solutions for homogeneous and non-homogeneous partial differential equations.	K3

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	1	1	3	1
CO 2	3	2	1	1	2	-
CO 3	3	2	1	-	2	1
CO 4	3	2	1	-	2	-
CO 5	3	2	1	1	2	-

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	P.D.E -Curves and Surfaces - Genesis of First Order P.D.E - Classification of Integrals - Linear Equation of the first Order - Partial Differential Equation -Compatible Systems - Charpit's Method - Jacobi's Method.	18	 Talk
II	Integral Surfaces Through a Given Curve -Quasi-Linear Equation -Non- Linear First Order P.D.E.	18	 Talk
III	Second Order P.D.E.: Genesis of Second Order P.D.E - Classification of Second Order P.D.E - One- Dimensional Wave Equation - Vibration of an Infinite String -Vibration of a Semi - infinite String - Vibration of a String of Finite Length (Method of Separation of Variables).	18	 Talk
IV	Laplace's Equation Boundary Value Problems- Maximum and Minimum Principle- The Cauchy Problem - The Dirichlet Problem for the Upper Half Plane - The Neumann Problem for the Upper Half Plane - The Dirichlet Interior Problem for a Circle - The Dirichlet Exterior Problem for a Circle - The Neumann Problem for Circle - The Dirichlet Problem for a Rectangle - Harnack's Theorem.	18	 Talk
V	Green's function, Heat Conduction Problem - Heat Conduction - Infinite Rod Case- Heat Conduction Finite Rod Case - Duhamel's Principle - Wave Equation -Heat Conduction Equation	18	 Talk

Course Designed by: Mrs.R.Sumathi and Dr.M.Saravanan

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{gathered} \hline \text { Section A } \\ \text { MCQs } \\ \hline \end{gathered}$		Section B		Section C Either or Choice	$\begin{aligned} & \text { Section D } \\ & \text { Open } \\ & \text { Choice } \end{aligned}$
					Short Answers			
			No. of. Questions	K - Level	No. of. Questions	K Level		
	CO1	Upto K2	2	K1\&K2	1	K1	2	1
	CO2	Upto K3	2	K1\&K2	2	K2	2	1
$\begin{gathered} \hline \mathbf{C I} \\ \text { AII } \\ \hline \end{gathered}$	CO3	Upto K4	2	K1\&K2	1	K2	2	1
	CO4	Upto K4	2	K1\&K2	2	K2	2	1
$\begin{aligned} & \text { Questi } \\ & \text { on } \\ & \text { Patter } \\ & \text { n } \\ & \text { CIA I } \\ & \& \text { II } \end{aligned}$	No. of Questions to be asked		4		3		4	2
		of Questions be answered	4		3		2	1
		arks for each question	1		2		5	10
		al Marks for ach section	4		6		10	20

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K -Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K - Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	I	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	of (Marks without choice)	Consolidated \%
K1	5	4			9	7.5	$\mathbf{1 7}$
K2	5	6			11	9.17	
K3			25	20	45	37.5	$\mathbf{3 7}$
K4			25	30	55	45.83	$\mathbf{4 6}$
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB:							

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
($5 \times 2=10$ marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
($5 \times 5=25$ marks)

Q.No	CO	K Level	
16) a	CO1	K3	
16) b	CO1	K 3	
17) a	CO2	K 4	
17) b	CO 2	K 4	
18) a	CO 3	K 4	
18) b	CO 3	K 4	
19) a	CO 4	K 3	
19) b	CO 4	K 3	
20) a	CO	K 3	
20) b	CO5	K 3	

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions ($\mathbf{x} \mathbf{x 1 0 = 3 0}$ marks)

Q.No	CO	K Level	Questions
21	CO1	K3	
22	CO2	K4	
23	CO3	K4	
24	CO4	K3	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	NUMERICAL ANALYSIS			
Course Code	21PMTC23	L	P	C
Category	Core	6	-	4
Nature of course: EMPLOYABILITY	\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP	
Course Objectives:				
- To develop Numerical computational skills.				
- To practice Numerical computational applications.				
- To introduce difference equations and recurrence equations.				
- To demonstrate understanding and implementation of numerical solution of algorithms based				
for employability				
- To find the errors in the approximation				
Unit: I				

Bisection method - Iteration method (approximation method) based on first degree equation, second degree equation, General Iteration Methods .
Unit: II 18
Direct methods: forward substitution method, back substitution method, Cramer rule, Gauss elimination method, Gauss Jordan method - triangulation method - LU decomposition- Cholesky method - Partition method.
Unit: III
Iterative methods - Jacobi iteration methods, Gauss-Seidel iteration methods, Similarity transformation - Eigen values - Eigen vectors -Jacobi method for symmetric matrices.

| Unit: IV | 18 |
| :--- | :--- | :--- |

Lagrange's and Newton Interpolation, Finite Difference Operators, Interpolating Polynomials using Finite Differences, Hermite Interpolation.

Unit: V		18
Numerical Differentiation, Partial Differentiation, Numerical Integration, Methods based on		
Interpolation, Composite Integration methods.		

Total Lecture Hours	90

Books for Study:

M.K.Jain, S.R.K.Iyengar, R.K.Jain, Numerical Methods for scientific and Engineering computation - 4th edition, New age international Pvt limited, New Delhi, 2009.

Unit I - Chapter 2 : Section 2.1-2.4 and 2.6
Unit II - Chapter 3 : Section 3.1, 3.2
Unit III - Chapter 3 : Section 3.4, 3.5 and 3.7
Unit IV - Chapter 4 : Section 4.1 - 4.5
Unit V - Chapter 5 : Section 5.1, 5.2, 5.5-5.7, 5.9.

Books for References:

1. G.Shankar Rao, Numerical Analysis, New Age International publishers, New Delhi, 1997.
2. Rainer Kress, Numerical Analysis, Springer international Edition, New Delhi, 2010.
3. S.R.K.Iyengar ,R.K.Jain ,Numerical Methods, , New age international Pvt limited, New Delhi, 2008

Web Resources

http://www.ece.mcmaster.ca/~xwu/part6.pdf http://www.cis.upenn.edu/~cis515/cis515-12-sl2.pdf https://wiki.math.ntnu.no/_media/tma4215/2012h/note.pdf		
COURSE OUTCOMES	K Level	
On the successful completion of the course, the students will be able to		
CO1:	Demonstrate the understanding of direct methods and iterative methods for equations	K2
CO2:	Apply proper methods for solving transcendental, algebraic and system of equations	K3
CO3:	Evaluate interpolation and extrapolation using tabular values	K5
CO4:	Associate tabular values with integration and differentiation	K2
CO5:	Use iterative methods for PDE	K3

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	3	2	3	2
CO 2	3	2	3	2	2	2
CO 3	2	2	2	2	3	2
CO 4	2	3	2	-	2	2
CO 5	2	2	-	-	2	-

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Bisection method - Iteration method (approximation method) based on first degree equation, second degree equation, General Iteration Methods .	18	 Talk
II	Direct methods: forward substitution method, back substitution method, Cramer rule, Gauss elimination method, Gauss Jordan method - triangulation method - LU decomposition- Cholesky method - Partition method.	18	 Talk
III	Iterative methods - Jacobi iteration methods, Gauss-Seidel iteration methods, Similarity transformation - Eigen values - Eigen vectors - Jacobi method for symmetric matrices.	18	 Talk
IV	Lagrange's and Newton Interpolation, Finite Difference Operators, Interpolating Polynomials using Finite Differences, Hermite Interpolation.	18	 Talk
V	Numerical Differntiation, Partial Differentiation, Numerical Integration, Methods based on Interpolation, Composite Integration methods.	18	 Talk

Course Designed by: Dr.M.Saravanan and Dr.A.Arivuchelvam

Learning Outcome Based Education \& Assessment (LOBE)

Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \text { MCQs } \\ \hline \end{gathered}$		Section BShort Answers		Section C Either or Choice	Section D Open Choice
			No. of. Questions	K - Level	No. of. Questions	K Level		
CI CO1	CO1	1 Upto K2	2	K1\&K2	1	K1	2	1
AI CO	CO 2	2 Upto K3	2	K1\&K2	2	K2	2	1
CI C	CO 3	3 Upto K4	2	K1\&K2	1	K2	2	1
AII C	CO 4	4 Upto K4	2	K1\&K2	2	K2	2	1
$\begin{array}{\|c\|} \hline \text { Questio } \\ n \\ \text { Pattern } \\ \text { CIA I } \\ \text { \& II } \end{array}$	No. of Questionsto be asked		4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \mathbf{I} \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	(Marks without choice)	Consolidated $\%$	
K1	5	4			9	7.5	17	
K2	5	6			11	9.17		
K3			25	20	45	37.5	37	
K4								
Marks	10	10	50	50	55	45.83	46	
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)

Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Questions

Section C (Either/Or Type)
Answer All Questions
($5 \times 5=25$ marks)

Q.No	CO	K Level	
16$) \mathrm{a}$	CO 1	K 2	
16$) \mathrm{b}$	CO 1	K 2	
17$) \mathrm{a}$	CO 2	K 3	
17$) \mathrm{b}$	CO 2	K 3	
18$) \mathrm{a}$	CO 3	K 4	
18$) \mathrm{b}$	CO 3	K 4	
19) a	CO 4	K 2	
19$) \mathrm{b}$	CO 4	K 2	
20) a	CO 5	K 3	
20) b	CO 5	K 3	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K5	
24	CO4	K2	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	FUZZY ALGEBRA AND ITS APPLICATIONS					
Course Code	21PMTC24			L	P	C
Category	Core			6		4
Nature of course: EMPLOYABILITY		\checkmark	SKILL ORIENTED	ENTREPRENEURSHIP		
Course Objectives:						
- To familiarize the concept of crisp set and its properties - To learn the basics of fuzzy sets and its operations - To differentiate crisp logic, multi-valued logic and fuzzy logic - To use inference theory in fuzzy logic - To learn the application in real life						
Unit: I					8	
Fuzzy sets: Basic types- Basic concepts - Additional properties of α - cuts - Representation of fuzzy sets - Extension principle for fuzzy sets - Types of operations - Fuzzy complements						
Unit: II					18	
Fuzzy numbers - Linguistic variables - Arithmetic operation on intervals - Arithmetic operation on fuzzy numbers						
Unit: III					18	
Fuzzy relation: Crisp versus Fuzzy relation - projection and cyclinderic extensions- Binary fuzzy relation on a single set - fuzzy equivalence relations - Fuzzy compatibility relation						
Unit: IV						
Fuzzy logic: Classical logic - An over view - multi valued logic - Fuzzy propositions -Fuzzy quantifiers - Linguistic hedges - Inference from conditional fuzzy propositions - Inference from conditional and quantified propositions - Inference from quantified propositions						
Unit: V					18	
Applications : Applications to Civil Engineering -Computer Engineering - Reliability theory Robotics - Medicine - Economics.						
				tal Lecture Hou		
Books for References: 1. H.J.Zimmermann, Fuzzy Set Theory and its Applications, Fourth Edition, Springer Publishers, New Delhi, 2006.						

2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition, Willey, 2010.
3. Michal Baczynski and Balasubramaniam Jayaram, Fuzzy Implications, Springer Verlag, Heidelberg, 2008

Web Resources
https://www.thesisscientist.com/docs/Study\%20Notes/66860129-5a91-459d-810f-

https://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-spring-2003/lecture-notes/lecture4.pdf
https://www.iitk.ac.in/eeold/archive/courses/2013/intel-info/d1pdf3.pdf
https://nptel.ac.in/courses/106105173/2
https://www.cse.iitb.ac.in/~cs621-2011/lectures_2009/cs621-lect38-fuzzy-logic-2009-11-11.ppt COURSE OUTCOMES K Level
On the successful completion of the course, the students will be able to

CO1:	Interpret fuzzy set theory, representation, operation and extension principle	K2

CO2:	Identify fuzzy numbers and its linguistic variables	K2

CO3: \quad Validate fuzzy relation, projections and its equivalence. \quad K5

CO4:	Analyse multi valued logic and fuzzy logic with inference theory	K3

CO5:	Apply fuzziness in real valued problems	K3

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	-	1	2	-
CO 2	2	2	-	-	2	-
CO 3	2	1	1	2	2	1
CO 4	2	1	1	2	2	1
CO 5	2	1	1	1	-	2

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	Fuzzy sets: Basic types- Basic concepts - Additional properties of $\alpha-$ cuts - Representation of fuzzy sets - Extension principle for fuzzy sets - Types of operations - Fuzzy complements	$\mathbf{1 8}$	 Talk
II	Fuzzy numbers - Linguistic variables - Arithmetic operation on intervals - Arithmetic operation on fuzzy numbers	$\mathbf{1 8}$	 Talk
III	Fuzzy relation: Crisp versus Fuzzy relation - projection and cyclinderic extensions- Binary fuzzy relation on a single set - fuzzy equivalence relations - Fuzzy compatibility relation	$\mathbf{1 8}$	 Talk
IV	Fuzzy logic: Classical logic - An over view - multi valued logic - Fuzzy propositions -Fuzzy quantifiers - Linguistic hedges - Inference from conditional fuzzy propositions - Inference from conditional and quantified propositions - Inference from quantified propositions	$\mathbf{1 8}$	 Talk
V	Applications : Applications to Civil Engineering -Computer Engineering - Reliability theory - Robotics - Medicine - Economics.	$\mathbf{1 8}$	 Talk

Course Designed by: Dr.M.Saravanan and Dr.P.Chitra Devi

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	Secti	A	Section			
			MC		Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	K Level	Choice	Choice
$\begin{gathered} \text { CI } \\ \text { AI } \end{gathered}$	CO1	1 Upto K2	2	K1\&K2	1	K1	2	1
	CO2	2 Upto K3	2	K1\&K2	2	K2	2	1
$\begin{gathered} \hline \text { CI } \\ \text { AII } \\ \hline \end{gathered}$	CO3	3 Upto K4	2	K1\&K2	1	K2	2	1
	$\mathrm{CO4}$	4 Upto K4	2	K1\&K2	2	K2	2	1
Questio n Pattern II		No. of Questions to be asked	- 4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K - Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Question s	K Level	No. of Question	K - Level		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given K level)

Distribution of Marks with K Level								
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	(Marks (ithout choice)	Consolidated \%	
K1	5	4			9	7.5	$\mathbf{1 7}$	
K2	5	6			11	9.17		
K3			25	20	45	37.5	$\mathbf{3 7}$	
K4								
Marks	10	10	50	50	120	100	$\mathbf{4 6 0}$	
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
($5 \times 2=10$ marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
($5 \times 5=25$ marks)

Q.No	CO	K Level
16) a	CO1	K2
16) b	CO1	K2
17) a	CO 2	K2
17) b	CO2	K2
18) a	CO3	K4
18) b	CO3	K4
19) a	CO4	K3
19) b	CO4	K3
20) a	CO5	K3
20) b	CO5	K3

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions ($\mathbf{x} \mathbf{x 1 0 = 3 0}$ marks)

Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K2	
23	CO3	K5	
24	CO4	K3	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

CO1:	Understand the concepts of Mathematics along with analytical ability	K2
CO2:	Develop the mathematical problem solving skill	K3
CO3:	Evaluate the problems on data interpretation	K5
CO4:	Identify the time related problems and solving	K4
CO5:	Illustrate appropriate methods for solving Permutation and Combination	K2

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
$\mathbf{C O ~ 1 ~}$	3	2	3	3	3	2
CO 2	3	2	3	3	3	3
CO 3	3	2	3	3	3	2
CO 4	3	3	2	3	3	2
CO 5	2	3	2	3	3	2

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	COURSE NAME	Hours	Pedagogy
I	H.C.F. and L.C.M. of numbers - Simplifications.	18	 Talk
II	Percentage - Profit and loss - Ratio and proportion.	18	 Talk
III	Time and work - Time and distance - Problems on Trains.	18	 Talk
IV	Simple interest - Compound interest - Permutation and ombination.	18	 Talk
V	Data interpretation: Tabulation - Bar Graphs - Pie charts.	18	 Talk

Course Designed by: Mrs.S.Ragavi and Mrs.S.Andal

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \end{gathered}$		Section B		Section C Either or Choice	Section D Open Choice
					Short Answers			
			No. of. Questions	K - Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
$\begin{array}{r} \text { CI } \\ \text { AI } \\ \hline \end{array}$	CO1	1 Upto K2	2	K1\&K2	1	K1	2	1
	CO2	2 Upto K3	2	K1\&K2	2	K2	2	1
$\begin{gathered} \hline \text { CI } \\ \text { AII } \\ \hline \end{gathered}$	CO3	3 Upto K4	2	K1\&K2	1	K2	2	1
	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
Questio n Pattern II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K - Level	No. of Questio n	K - Level		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K1\&K1)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level

K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidated \%
K1	5	4			9	7.5	
K2	5	6			11	9.17	17
K3			25	20	45	37.5	37
K4			25	30	55	45.83	46
Marks	10	10	50	50	120	100	100

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers) Answer All Questions Q.				
				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type) Answer All Questions Q.				
				($5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K3		
17) b	CO2	K3		
18) a	CO3	K4		
18) b	CO3	K4		
19) a	CO4	K4		
19) b	CO4	K4		
20) a	CO5	K2		
20) b	CO5	K2		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				(3x10=30 marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO2	K3		
23	CO3	K5		
24	CO4	K4		
25	CO5	K2		

(For those who joined in 2021-2022 and after)

$1 \mathrm{tV5} \mathrm{hB}$		
3.https://www.youtube.com/watch?v=UjaD2eVYnQc\&list=PL1iySp9JVsLltIFByt1e5Aq5uF1t V5 hB\&index=2		
Course Outcomes		K Level
On the successful completion of the course, the students will be able to		
C01:	Explain the notion of field theory.	K4
CO2:	Analyze the relationship between the ring, field and Galois theory.	K4
CO3:	Develop the proof of solvable group for radicals.	K3
CO4:	Explain the finite division rings	K4
C05:	Classify the different types of lattices	K4

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	1	1	1
CO 2	3	2	3	1	1	1
CO 3	3	3	3	1	2	1
CO 4	3	3	3	2	2	1
CO 5	3	3	3	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Fields, Extension fields, Roots of polynomials	18	 Talk
II	More about roots, The elements of Galois theory.	18	 Talk, PPT
III	Solvability by Radicals, Galois groups over the rationals	18	 Talk
IV	Finite fields, Wedderburn's Theorem on finite division rings	18	 Talk, PPT
V	Lattices: Lattices and posets, lattices as posets. Sub lattices; direct products, distributive lattices, modular and geometric lattices, Boolean lattices.	18	 Talk, PPT

Course Designed by: Dr. A. Hamari Choudhi, Head \& Associate Professor \&
Dr. V. Ramachandran, Assistant Professor

			ng Outcome Formative Mapping	Based Ed Examinat K Levels	cation \& A n - Blue Pri ith Course		$\begin{aligned} & \text { (LOBE) } \\ & (\mathrm{COs}) \end{aligned}$	
			Sectio		Section			
Inte	Cos	K Level	MC		Short An	wers		Open
rnal			$\begin{gathered} \hline \text { No. of. } \\ \text { Questions } \end{gathered}$	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	Choice	Choice
CI	C01	1 Upto K4	2	K1\&K2	1	K1	2	1
AI	CO2	2 Upto K4	2	K1\&K2	2	K2	2	1
CI	C03	3 Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
esti		No. of Questions to be asked	4		3		4	2
$\stackrel{\text { on }}{\text { Patter }}$		No. of Questions to be answered	4		3		2	1
$\stackrel{\mathrm{n}}{\text { CIA I }}$		Marks for each question	1		2		5	10
\& II		Total Marks for each section	4		6		10	10

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K - Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	K - Level		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K2\&K2)	1(K4)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	(Marks without choice)	Consolidated \%
K1	5	4			9	7.5	$\mathbf{3 4}$
K2	5	6	20		31	25.9	
K3			30	10	40	33.3	$\mathbf{3 3}$
K4			40	40	33.3	$\mathbf{3 3}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO 2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type) Answer All Questions $\text { (} 5 \times 5=25 \text { marks })$				

Q.No	CO	K Level	
16$) \mathrm{a}$	CO 1	K 2	
16$) \mathrm{b}$	CO 1	K 2	
17$) \mathrm{a}$	CO 2	K 3	
17$) \mathrm{b}$	CO 2	K 3	
18$) \mathrm{a}$	CO 3	K 3	
18$) \mathrm{b}$	CO 3	K 3	
19$) \mathrm{a}$	CO 4	K 3	
19$) \mathrm{b}$	CO 4	K 3	
20$) \mathrm{a}$	CO 5	K 2	
20$) \mathrm{b}$	CO 5	K 2	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions
(3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	

G16mPcoEKMuWT\&index=2		
COURSE OUTCOMES	K Level	
On the successful completion of the course , the students will be able to	K4	
CO1:	Explain the concept of complex function and power series	K4
CO2:	Analyze the properties of Analytical Function	K4
CO3:	Analyze the Cauchy's theorem for different closed curves	K3
CO4:	Construct arguments effectively in proof of theorems in complex analysis	K3
CO5:	Develop the series of complex function using Jensen's and Poisson formula	

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	2	2	1
CO 2	3	3	3	2	1	1
CO 3	3	2	3	2	2	1
CO 4	3	2	2	2	1	$\mathbf{1}$
CO 5	3	2	2	2	1	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Introduction to the concept of Analytic Function - Residues - Harmonic Elementary theory of Power Series.	18	 Talk, PPT
II	The Exponential and Trigonometric Function - Conformality - Linear Transformation	18	 Talk, PPT
III	Fundamental Theorems - Cauchy Integral Formula - Local properties of Analytical Function.	18	 Talk
IV	The General form of Cauchy's Theorem - The Calculus of Functions.	18	 Talk, PPT
V	Power Series Expansions - Partial Fractions and Factorization - Entire Functions - The Riemann Zeta Function .	18	 Talk, PPT

Course Designed by:

Dr. R. Bhavani, Assistant Professor \& Mrs. S. Ragavi, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B		Section C Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	K - Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K4	2	K1\&K2	1	K1	2	1
AI	CO 2	Upto K4	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K3	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10

Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K -Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	K - Level		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K2\&K2)	1(K4)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
5	C05	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

Distribution of Marks with K Level							
K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either/ or Choice)	Section D (Open Choice)	Total Marks	\% of Marks without choice)	Consolidated $\%$
K1	5	4			9	7.5	33
K2	5	6	20		31	25.8	
K3			30	20	50	41.7	42
K4			30	30	25	25	
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels.							

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions

Q.No	CO	K Level	
16$) \mathrm{a}$	CO 1	K 2	
16$) \mathrm{b}$	CO 1	K 2	
17$) \mathrm{a}$	CO 2	K 3	
17$) \mathrm{b}$	CO 2	K 3	
18$) \mathrm{a}$	CO 3	K 3	
18$) \mathrm{b}$	CO 3	K 3	
19$) \mathrm{a}$	CO 4	K 3	
19$) \mathrm{b}$	CO 4	K 3	
20$) \mathrm{a}$	CO 5	K 2	
20$) \mathrm{b}$	CO 5	K 2	

NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels
Section D (Open Choice)
Answer Any Three questions
(3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K4	
24	CO4	K3	
25	CO5	K3	

(For those who joined in 2021-2022 and after)

Course Name	TOPOLOGY				
Course Code	21PMTC33			P	C
Category	Core		6		4
Nature of course:	e: EMPLOYABILITY	SKILL ORIENTED	ENTREPRENURSHIP		
COURSE OBJECTIVES:					
- To familiarize the basic concepts of Topology. - To learn the various aspects of Topological spaces. - To study the properties of topological spaces - To enrich knowledge in metric topology, connected, compact and normal spaces. - To understand the concept of axioms.					
Unit: I				18	
Topological Spaces - Basis for a Topology - The Order Topology - The Product Topology on XxY - The Subspace Topology - Closed sets and limit points - Continuous functions - The Product Topology.					
Unit: II				18	
The Metric Topology - Connected Spaces - Connected Subspaces of the Real Line.					
Unit: III				18	
Compact Spaces - Compact Subspaces of the real line - Limit Point Compactness - Local Compactness.					
Countability Axioms - The Separation Axioms - Normal Spaces.					
Unit: V The Urysohn Lem				18	
	The Urysohn Lemma - The Urysohnmetrization Theorem - Tietze Extension Theorem				
		Total Lecture Hours		90	
```Books for Study: James R.Mukres, "Topology" (Second Edition), Prentice -Hall of India Private Ltd, January 1987, New Delhi. Unit I- Chapter 2 : Sections 12 to 19 Unit II - Chapter 2 : Sections 20 and 21\& Chapter 3 : Sections23 and 24 Unit III - Chapter 3 : Sections 26 to 29 Unit IV - Chapter 4 : Sections 30 to 32 Unit V - Chapter 4 : Sections 33 to 35```					
Books for References:   1. Gupta. K.P, Topology, First Edition, Pragati Prakashan Educational, 1974,Meerut-250001   2. James Dugundji, Topology, Universal book stall, Reprint 1990, New Delhi   3. Chandrasekhara Rao, "Topology", Narosa Publishing House, 2009, NewDelhi.					
Web Resources					
1. http://www.uio.no/studier/emner/matnat/math/MAT4500/h13/topology.pdf   2. http://nptel.ac.in/courses/111106054/Topology \%20complete\%20course.pdf					


3.	http://home.iitk.ac.in/~chavan/topology mth304.pdf	
4.	https://www.youtube.com/watch?v=XHKCrs8YaSo\&list=PLbMVogVj5nJRR7zYZifY   opb52zioScx1d	
COURSE OUTCOMES	K Level	
On the successful completion of the course, the students will be able to	K4	
CO1:	Compare basis and sub basis in topological spaces	
CO2:	Apply metric space in a topological space	
CO3:	Analyze metrization and compactness of spaces	
CO4:	Explain the countability axioms and separation axioms and separability	
CO5:	Develop the logical arguments related to continuous functions on topological spaces.	

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	1	2	1
CO 2	3	2	3	2	1	1
CO 3	3	2	2	1	1	1
CO 4	3	2	2	1	1	1
CO 5	3	2	2	1	1	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Topological Spaces - Basis for a Topology - The Order   Topology -The Product Topology on XxY - The   Subspace Topology - Closed sets and limit points -   Continuous functions - The Product Topology.	$\mathbf{1 8}$	  Talk, PPT
II	The Metric Topology - Connected Spaces - Connected   Subspaces of the Real Line.	$\mathbf{1 8}$	  Talk, PPT
III	Compact Spaces - Compact Subspaces of the real line - Limit   Point Compactness - Local Compactness.	$\mathbf{1 8}$	  Talk, PPT
IV	Countability Axioms - The Separation Axioms - Normal Spaces.	$\mathbf{1 8}$	  Talk, PPT
V	The Urysohn Lemma - The Urysohn Metrization Theorem -   Tietze Extension Theorem	$\mathbf{1 8}$	  Talk, PPT

## Course Designed by:

Dr. A. Arivu Chelvam, Assistant Professor \& Dr. P. Chitra Devi, Assistant Professor

## Learning Outcome Based Education \& Assessment (LOBE)

Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte   rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \text { MCQs } \\ \hline \end{gathered}$		Section BShort Answers		Section C   Either or Choice	Section D Open Choice
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
$\begin{aligned} & \hline \text { CI } \\ & \text { AI } \end{aligned}$	CO1	1 Upto K4	2	K1\&K2	1	K1	2	1
	CO 2	2 Upto K3	2	K1\&K2	2	K2	2	1
CI	CO 3	Upto K4Upto K4	2	K1\&K2	1	K2	2	1
	CO4		2	K1\&K2	2	K2	2	1
Questio   n   Pattern      II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D (Open   Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K -   Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K2\&K2)	1(K4)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\mathbf{\%}$
K1	5	4			9	7.5	$\mathbf{4 2}$
K2	5	6	30		41	34.2	
K3			20	20	40	33.3	$\mathbf{3 3}$
K4			30	30	25	$\mathbf{2 5}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
( $5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level
16) a	CO1	K2
16) b	CO1	K2
17) a	CO 2	K2
17) b	CO2	K2
18) a	CO3	K3
18) b	CO3	K3
19) a	CO4	K3
19) b	CO4	K3
20) a	CO5	K2
20) b	CO5	K2

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K3	
23	CO3	K4	
24	CO4	K4	
25	CO5	K3	


2. Harvey M. Wagner, "Principles of Operations Research", Second Edition, Prentice Hall of Pvt Ltd, 1998, NewDelhi.
3. Prem Kumar Gupta and D.S.Hira, "Operations Research", S.Chand Publications, 2009, New Delhi.

## Web Resources

1. https://nptel.ac.in/courses/111/105/111105100/
2. https://nptel.ac.in/courses/111/104/111104071/
3. http://apmonitor.com/me575/

COURSE OUTCOMES	
On the successful completion of the course, the students will be able to	Kevel
CO1:	Identify various decision- making tools.
CO2:	Analyze various models in inventory system.
CO3:	Apply suitable method in game theory.
CO4:	Explain Poisson Queuing Models
CO5:	Classify the constrained and unconstrained Problems

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Network definitions- minimal spanning tree algorithm-Shortest route   problem-maximal flow model - CPM and PERT.	18	  Talk
II	Recursive nature of computations in DP - Forward and Backward   recursion - Selected DP applications. General inventory models -   Static Economic Order Quantity(EOQ) models	18	  Talk
III	Decision making under certainty-Analytic Hierarchy Process(AHP)-   Decision making under risk- decision under uncertainty-Game   theory.	18	  Talk
IV	Queuing systems - Elements of Queuing model - Role of   Exponential Distribution - Pure Birth and Death Models-   Generalized Poisson Queuing Models - Specialized Poisson Queues.	18	  Talk,PPT
V	Unconstrained Problems - Necessary and Sufficient Conditions-   Newton - Raphson Method - Constrained Problems - Equality   Constraints- Inequality Constraints- Karush-Kuhn-Tucker Conditions	18	  Talk

## Course Designed by:

Dr. P. Chitra Devi, Assistant Professor \& Mrs. R. Sumathi Assistant Professor

		Learni   Articulation	g Outcome Formative Mapping -	Based Ed Examinat K Levels	cation \& A n - Blue Pr ith Course	sessmen   int   Outcom	$\begin{aligned} & \text { (LOBE) } \\ & \text { (COs) } \end{aligned}$	
			Secti	A	Sectio			
Inte	Cos	K Level	MC		Short An	swers		
rnal			No. of. Questions	$\begin{gathered} \mathrm{K} \text { - } \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		Open Choice
CI	C01	1 Upto K3	2	K1\&K2	1	K1	2	1
AI	CO2	2 Upto K4	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
esti		No. of Questions to be asked	4		3		4	2
$\begin{aligned} & \text { on } \\ & \text { Patter } \end{aligned}$		No. of Questions to be answered	4		3		2	1
$\stackrel{\mathrm{n}}{\text { CIA }}$		Marks for each question	1		2		5	10
\& II		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
K   Level  		Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K -   Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\mathbf{\%}$
K1	5	4			9	7.5	$\mathbf{3 3}$
K2	5	6	20		31	25.7	
K3			30	20	50	41.8	$\mathbf{4 2}$
K4			30	30	25	$\mathbf{2 5}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	
Ker			

Section B (Short Answers)
Answer All Questions
( $5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level
16) a	CO1	K2
16) b	CO1	K2
17) a	CO 2	K3
17) b	CO2	K3
18) a	CO3	K3
18) b	CO3	K3
19) a	CO4	K3
19) b	CO4	K3
20) a	CO5	K2
20) b	CO5	K2

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions ( $\mathbf{x} \times 10=\mathbf{3 0}$ marks)

Q.No	CO	K Level	Questions
21	CO1	K3	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	


2. https://www.studocu.com/en-gb/document/teesside-university/methods-for-non-linear-mathematics/lecture-notes-course-math1133-nonlinear-differential-equations/135452
3. https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/lecture-31-non-linear-autonomous-systems/
COURSE OUTCOMES
On the successful completion of the course, the students will be able to

CO1:	Understand the dynamics of basic population models	K2
CO2:	Find approximate solutions of nonlinear equations using averaging and   perturbation methods	K3
CO3:	Master the concepts of stability in different perspectives	K4
CO4:	Have an idea on qualitative properties of solutions of linear and nonlinear systems	K2
CO5:	Improve their problem solving capabilities	K3

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	1
CO 3	3	3	3	1	1	-
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	The general phase plane - Some population models - Linear   approximation at equilibrium points - Linear systems in matrix form.	18	  Talk
II	An energy balance method for limit cycles - Amplitude and   frequency estimates - Slowly varying amplitudes; Nearly periodic   solutions - Periodic solutions: Harmonic balance - Equivalent linear   equation by harmonic balance - Accuracy of a period estimate.	18	  Talk
III	Outline of the direct method - Forced oscillations far from resonance   Forced oscillations near resonance with weak excitation - Amplitude   equation for undamped pendulum - Amplitude perturbation for the   pendulum equation - Lindstedt's method- Forced oscillation of a self   -excited equation - The Perturbation method and Fourier series.	18	  Talk
IV	Structure of solutions of the general linear system - Constant   coefficient system - Periodic coefficients - Floquet theory -   Wronskian.	18	  Talk
V	Poincare stability - Solutions, paths and norms - Liapunov stability-   Stability of linear systems - Comparison theorem for the zero   solutions of nearly-linear systems	18	  Talk

## Course Designed by:

Dr. M. Saravanan, Assistant Professor \& Mrs. S. Ragavi, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte   rnal	Cos	K Level	Section AMCQs		Section B		Section C   Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO 3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A   (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D (Open Choice)	Total   Marks	$\%$ of (Marks without choice)	Consolidate of \%
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D   (Open   Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K2\&K2)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K4\&K4)	1(K3)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$
K1	5	4			9	7.5	17
K2	5	6			11	9.17	
K3			25	20	45	37.5	37
K4			25	30	55	45.83	46
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
( $5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16) a	CO1	K2	
16) b	CO1	K 2	
17) a	CO 2	K 3	
17) b	CO 2	K 3	
18) a	CO 3	K 3	
18) b	CO 3	K 3	
19) a	CO 4	K 4	
19) b	CO 4	K 4	
20) a	CO	K 2	
20) b	CO5	K 2	

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K4	
24	CO4	K2	
25	CO5	K3	



1. Irwin Miller, Mathematical Statistics, Pearson Publisher, 2004.
2. David Freeman, Statistics, Viva Book Publisher, 2010.
3. R.S.N.Pillai \& Bagavathy, Statistics Theory and Practice, S.Chand Publications, $7^{\text {th }}$ Revised Edition ,2008.

## Web Resources

1. http://users.encs.concordia.ca/~doedel/courses/comp-233/slides.pdf
2. https://www.mrecacademics.com/DepartmentStudyMaterials/20210624-80B09\ PROBABILITY \%20AND \%20STATISTICS.pdf
3. https://www.brainkart.com/subject/Probability-and-Statistics 395/

COURSE OUTCOMES	K Level
On the successful completion of the course, the students will be able to	


CO1:	Select the concepts of Probability theory and Mathematical   Statistics.	K3
CO2:	Apply properties of Random variables Moments, Characteristic function,   Binomial distribution, Poisson distribution, Normal distribution, and Stochastic   Convergence.	K3
CO3:	Solve today's complex world problems by applying the concepts   obtained in the course	K3
CO4:	Analyse mean, variance, moments for various distributions using Characteristic   function, Probability Generating function, One point distribution and Two point   distribution	K4
CO5:	Derive various distributions and prove the theorems on Stochastic Convergence	K4

CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Set theory, Probability set function, Conditional probability and   Independence, Random variables of the discrete type, Random   Variables of the continuous type, Properties of the distribution   function, Expectation of a Random variable, Some special   expectations, Chebyshev's inequality.	18	  Talk, PPT
II	Distributions of random variables, Conditional distributions and   expectations, The correlation coefficient, Independent random   variables, Extension to several random variables.	18	  Talk
III	The Binomial and Related distributions, The Poisson distribution,   The Gamma and Chi-square distribution, The Normal distribution,   The Bivariate normal distribution.	18	  Talk
IV	Sampling theory, Transformations of variables of the discrete type,   Transformations of variables of the continuous type, The Beta, t, F   distributions, Extensions of the change of variable technique, The   moment generating function technique, Some Specific   distributions - The distributions of $\bar{X}$ and $\frac{n s^{2}}{\sigma^{2}}$, Expectation of   functions of Random Variables.	18	
Talk, PPT			

## Course Designed by:

Dr. R. Bhavani, Assistant Professor \& Mrs. R. Sumathi, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte   rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \text { MCQs } \\ \hline \end{gathered}$		Section		Section C   Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K3	2	K1\&K2	1	K1	2	1
AI	CO 2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K -   Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	33	
K2	5	6	20		31	25.8		
K3			30	30	60	50	50	
K4								
Marks	10	10	50	50	120	100	100	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format
Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level
1	CO1	K1
2	CO1	K2
3	CO2	K1
4	CO2	K2
5	CO3	K1
6	CO3	K2
7	CO4	K1
8	CO4	K2
9	CO5	K1
10	CO5	K2

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16$)$ a	CO 1	K 2	
16$) \mathrm{b}$	CO 1	K 2	
17$) \mathrm{a}$	CO 2	K 2	
17$) \mathrm{b}$	CO 2	K 2	
18$) \mathrm{a}$	CO 3	K 3	
18$) \mathrm{b}$	CO 3	K 3	
19) a	CO 4	K 3	
19) b	CO 4	K 3	
20) a	CO 5	K 3	
20) b	CO 5	K 3	

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions
( $\mathbf{3 x 1 0}=\mathbf{3 0}$ marks)

Q.No	CO	K Level	
21	CO1	K3	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	


Course Name	INTEGRAL EQUATIO				
ourse Code	21PMTE34		L		C
ate	Elective				6
Nature of course: ${ }^{\text {EMPLOYABILITY }}$		KILL ORIENTED ENTREPRENURSHIP	ENTREPRENURSHIP		
COURSE OBJECTIVES:					
- To familiarize the key concept of popular and useful transformations   - To solve ordinary differential equations with different forms of initial and boundary conditions.   - To understand the relationship between integral and differential equations.   - To familiarize Fredholm theory   - To apply integral equation in various transformations					
Unit: I					
Regularity conditions - Special kinds of Kernels - Eigen values and Eigen functions - Convolution Integral - The Inner or Scalar Product of Two Functions - Reduction to a System of Algebraic Equations - Fredholm Alternatives - An Approximate Method					
Unit: II					
Method of Successive Approximations - Iterative Scheme - Examples - Volterra Integral Equation - Examples - Some Results about the Resolvent Kernel.					
Unit: III					
Classical Fredholm Theory - The Method of Solution of Fredholm - Fredholm's first theorem examples - Fredholm's second theorem - Fredholm's third theorem.					
Unit: IV					
Applications of ordinary differential equations - initial value problems - boundary value problems - examples - Dirac delta function - Green's function approach - examples.					
Unit: V					
Integral transformation methods - introduction - Fourier transform - Laplace transform application to Volterra integral equations with Convolution type kernels - examples.					
			al Lecture Hou		
Books for Study:   Linear Integral Equations: Theory \& Technique (Second Ed.) by Ram P. Kanwal, Springer   Science\& Business Media, 2013.   Unit 1: Chapter 1 full, chapter 2.1 to 2.5   Unit 2: Chapter 3 full   Unit 3: Chapter 4 full   Unit 4: Chapter 5.1 to 5.6   Unit 5: Chapter 9.1 to 9.5 .					
Books for References:   1) Raishinghania M.D. Integral equation \& Boundary value problem, S. Chand publishing, 2007.   2) Jerri, A. Introduction to integral equations with applications, John Wiley \& Sons, 1999.   3) Hildebrand, F.B. Method of applied Mathematics, Courier corporation, 2012					
Web Resources					
1.https://nptel.ac.in/courses/111/107/111107103/   2. https://www.youtube.com/watch?v=WPIBrzjI1KI\&list=PLq-Gm0yRYwTiPq4ypE6cP-1UqSHO5pia\&index $=3$					


3. http://www.mcs.st-and.ac.uk/~rac/MT5802/Integral\%20equations.pdf		
COURSE OUTCOMES	K Level	
On the successful completion of the course , the students will be able to	K4	
CO1:	Explain various types of kernels	K3
CO2:	Solve linear Volterra and Fredholm integral equations using appropriate methods	K4
CO3:	Formulate complex problems of ordinary and partial differential equations with   techniques of Integral transform	K3
CO4:	Apply integrals equation in transforms	K4
CO5:	Determine a wide range of differential and integral equations by Fourier transforms	

## CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Regularity conditions - Special kinds of Kernels - Eigen values and   Eigen functions - convolution integral - the inner or scalar product of   two functions - Reduction to a system of algebraic equations -   Fredholm alternatives - An approximate method	18	  Talk
II	Method of Successive approximations - iterative scheme - examples -   Volterra integral equation - examples - Some results about the   resolvent Kernel.	18	  Talk
III	Classical Fredholm theory - the method of solution of Fredholm -   Fredholm's first theorem - examples - Fredholm's second theorem -   Fredholm's third theorem.	18	  Talk
IV	Applications of ordinary differential equations - initial value problems   boundary value problems - examples - Dirac delta function -   Green's function approach - examples.	18	  Talk
V	Integral transformation methods - introduction - Fourier transform -   Laplace transform - application to Volterra integral equations with   Convolution type kernels - examples.	18	  Talk

## Course Designed by:

Dr. M. Saravanan, Assistant Professor \& Dr. S. Andal, Assistant Professor

## Learning Outcome Based Education \& Assessment (LOBE)

Articulation Mapping - K Levels with Course Outcomes (COs)								


\| Distribution of Marks with K Level CIA I \& CIA II								
K Level		Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D (Open   Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { I }}{\text { CIA }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K2\&K2)	1(K4)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
5	C05	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	33	
K2	5	6	20		31	25.8		
K3			30	20	50	41.7	42	
K4								
Marks	10	10	50	50	120	100	100	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	C05	K2		
Section B (Short Answers)				
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO2	K3		
17) b	CO2	K3		
18) a	CO3	K3		
18) b	CO 3	K3		
19) a	CO4	K3		
19) b	CO4	K3		
20) a	CO5	K2		
20) b	CO5	K2		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				(3x10=30 marks)
Q.No	CO	K Level	Questions	
21	CO1	K4		
22	CO 2	K3		
23	CO3	K4		
24	CO4	K3		
25	CO5	K4		


Course Name	CRYPTOGRAPHY				
Course Code	21PMTE35		L	$\mathbf{P}$	
Category	Elective		6		6
Nature of course:	EMPLOYABILITY	SKILL ORIENTED	ENTREPRENEURSHIP		
COURSE OBJECTIVES:					
To learn about Mathematics of Crypotogrphy   To get the Key ciphers   To understand the need for the modern stream ciphers   To know about Data Encryption Standard   To know about Advanced Encryption Standards					
Unit: I			18		
Security goals-Cryptographic attacks -Mathematics of Cryptography: Integer arithmetic-Modular arithmetic-Matrices-Linear congruence.					
Traditional symmetric-Key ciphers: Introduction-Substitution ciphers-Transposition ciphers- Stream and block ciphers					
Unit: III			- 18		
Mathematics of symmetric - Key cryptography: Algebraic structures -GF( $2 n$ )Fields .Introduction to modern symmetric - Key ciphers: Modern block ciphers - Modern stream ciphers					
Unit: IV			hers 18		
Data Encryption Standard (DES): Introduction - DES structure - DES analysis -Security of DES Multiple DES (Conventional Encryption Algorithms) - Examples of block ciphers influenced by DES					
Unit: V			18		
Advanced Encryption Standard (AES) Transformations-Key expansion- The AES Ciphers-Examples- Analysis of AES.					
Books for References:   1.Atul Kahate,2014, Cryptography and Network Security, Third Edition, McGraw Hill   Education(India) Private Limited, New Delhi.   2.Bruce Schneier, 2012, Applied Cryptography: Protocols, Algorithms and Source code in C,   $2^{\text {nd }}$ Edition, Wiley India, New Delhi.   3.Stallings,2013,Cryptography and Network Security,: Principles and Practice, Sixth Edition, Pearson Education,   New Delhi, India.					
Web Resources					
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf					


http://www.cse.iitd.ac.in/~shweta/notes/Lec1.pdf	K Level	
COURSE OUTCOMES	K2	
On the successful completion of the course, the students will be able to	K2	
CO1	Demonstrate the understanding the fundamentals of cryptography	K4
CO2	Demonstrate standard cryptographic   Algorithms used to analyze confidentiality, integrity and authenticity.	K4
CO33	List the security issues in the network, key distribution and management   schemes	K4
CO4	Explain in detail about Data encryption standard(DES)Structure	
CO5	Analyze the Advanced Encryption standard(AES)	

## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Security goals-Cryptographic attacks-Services and   mechanism Techniques. Mathematics of Cryptography: Integer   arithmetic-Modular arithmetic-Matrices-Linear congruence.	18	  Talk
II	Traditional symmetric-Key ciphers: Introduction Substitution   ciphers-Transposition ciphers- Stream   and block ciphers	18	  Talk
III	Mathematics of symmetric - Key cryptography: Algebraic   structures -   GF( 2n)Fields Introduction to modern symmetric - Key   ciphers: Modern block ciphers - Modern stream ciphers	18	  Talk
IV	Data Encryption Standard (DES): DES structure -   DES analysis -Security of DES - Multiple DES   (Conventional Encryption Algorithms) - Examples of   block ciphers influenced by DES	18	  Talk
V	Advanced Encryption Standard(AES) Transformations-   Key expansion- The AES Ciphers- Examples- Analysis of   AES.	18	  Talk

## Course Designed by:

Dr. A. Arivu Chelvam, Assistant Professor \& Dr. V. Ramachandran Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	Section AMCQs		Section B		Section C   Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K2	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A   (Multiple Choice Questions)	Section B   (Short   Answer   Questions)	Section C (Either Or Choice)	Section   D (Open   Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K -Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D   (Open   Choice)
			No. of Questions	K -   Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2	1	K1	2(K2\&K2)	1(K2)
2	CO2	Upto K2	2	K1\&K2	1	K1	2(K2\&K2)	1(K2)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	17	
K2	5	6			11	9.17		
K3			25	20	45	37.5	37	
K4								
Marks	10	10	50	50	55	45.83	46	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)				
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K2		
17) b	CO2	K2		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K3		
19) b	CO4	K3		
20) a	CO5	K3		
20) b	CO5	K3		
NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels				
Section D (Open Choice)				
Answer Any Three questions				( $3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO2	K2		
23	CO3	K4		
24	CO4	K4		
25	CO5	K4		

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF MATHEMATICS
(For those who joined in 2021-2022 and after)

Course Name M	MATHEMATICAL MODELLING				
Course Code 21	21PMTE36				C
Category El	Elective				
ature of cou			ENTREPRENURSH		
COURSE OBJECTIVES:					
- To understand the need for mathematical modelling   - To know the modelling in First order Ordinary Differential Equations   - To apply the modelling in Second order Ordinary Differential Equations   - To know Models for Blood Flows using Fluid Dynamics   - To apply Models for Optimal Control of Water Pollution					
Unit: I					
Mathematical Modeling: Need, Techniques, Classifications and Simple Illustrations: Simple Situations Requiring Mathematical Modeling - The Technique of Mathematical Modeling Classification of Mathematical Models - Some Characteristics of Mathematical model   Mathematical Modeling Through Ordinary Differential Equations of First Order Mathematical Modeling Through Differential Equations - Linear Growth and Decay Models - Non-Linear Growth and Decay Models - Compartment Models					
Unit: II				18	
Mathematical Modeling Through Systems of Ordinary Differential Equations of First Order Mathematical Modeling in Population Dynamics - Mathematical Modeling of Epidemics Through Systems of Ordinary Differential Equations of First Order - Compartment Models Through Systems of Ordinary Differential Equations - Mathematical Modeling in Economics Through Systems of Ordinary Differential Equations of First Order					
Unit: III					
Mathematical Modeling Through Systems of Ordinary Differential Equations of First Order Mathematical Models in Medicine, Arms Race, Battles and International Trade in Terms of Systems of Ordinary Differential Equations   Mathematical Modeling Through Ordinary Differential Equations of Second Order Mathematical Modeling of Planetary Motions - Mathematical Modeling of Circular Motion and Motion of Satellites					
Unit: IV				18	
Some Basic Concepts of Fluid Dynamics - Basic Concepts about Blood, Cardiovascular System and Blood Flows - Steady Non-Newtonian Fluid Flows in Circular Tubes - Basic Equations for Fluid Flow - Flow of Power-law Fluid in Circular Tube - Flow of Herschel-Bulkley Fluid in Circular Tube - Flow of Casson Fluid in Circular Tube - Flow of Immiscible Power-law Fluids in a Circular Tube - Blood Flow through Artery with Mild Stenosis					
Unit: V				18	
Water Quality Management Models - Water Quality Management Model 1 - Water Quality Management Model 2 - Water Quality Management Model 3 - Water Quality Management Model 4 - Other Models for Water Quality Management - Other Optimal Pollution Control Models Optimal Air Pollution Control Models - Control Models for Solid Waste Disposal Noise Pollution Control Model					



## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Mathematical Modeling: Need, Techniques, Classifications and Simple Illustrations: Simple Situations Requiring Mathematical Modeling - The Technique of Mathematical Modeling - Classification of Mathematical Models - Some Characteristics of Mathematical model   Mathematical Modeling Through Ordinary Differential Equations of First Order Mathematical Modeling Through Differential Equations Linear Growth and Decay Models - Non-Linear Growth and Decay Models - Compartment Models	18	Chalk \& Talk
II	Mathematical Modeling Through Systems of Ordinary Differential Equations of First Order Mathematical Modeling in Population Dynamics - Mathematical Modeling of Epidemics Through Systems of Ordinary Differential Equations of First Order - Compartment Models Through Systems of Ordinary Differential Equations Mathematical Modeling in Economics Through Systems of Ordinary Differential Equations of First Order	18	Chalk \& Talk
III	Mathematical Modeling Through Systems of Ordinary Differential Equations of First Order Mathematical Models in Medicine, Arms Race, Battles and International Trade in Terms of Systems of Ordinary Differential Equations   Mathematical Modeling Through Ordinary Differential Equations of Second Order Mathematical Modeling of Planetary Motions Mathematical Modeling of Circular Motion and Motion of Satellites	18	Chalk \& Talk
IV	Models for Blood Flows Some Basic Concepts of Fluid Dynamics Basic Concepts about Blood,Cardiovascular System and Blood Flows - Steady Non-Newtonian Fluid Flows in Circular Tubes - Basic Equations for Fluid Flow - Flow of Power-law Fluid in Circular Tube - Flow ofHerschel-Bulkley Fluid in Circular Tube - Flow of Casson Fluid in Circular Tube - Flow of Immiscible Power-law Fluids in a Circular Tube - Blood Flow through Artery with Mild Stenosis	18	Chalk \& Talk
V	Models for Optimal Control of Water Pollution Water Quality Management Models - Water Quality Management Model 1 - Water Quality Management Model 2 - Water Quality Management Model 3 Water Quality Management Model 4 - Other Models for Water Quality Management - Other Optimal Pollution Control Models Optimal Air Pollution Control Models - Control Models for Solid Waste Disposal Noise Pollution Control Model	18	Chalk \& Talk

Course Designed by: Dr. V. Ramachandran Assistant Professor \&
Dr. A. Hamari Choudhi, Head \& Associate Professor

		Learni   Articulation	ng Outcome Formative Mapping -	Based Educ Examination K Levels wit	ation \& Ass - Blue Print Course 0	$\begin{aligned} & \text { essment } \\ & \text { to } \\ & \text { utcomes } \end{aligned}$	$\begin{aligned} & (\mathrm{LOBE}) \\ & (\mathrm{COs}) \end{aligned}$	
			Secti	n A	Section		Section C	Section
Inte	Cos	$K$ Level	MC		Short An	wers	Either or	D
			No. of. Questions	K - Level	No. of. Questions	$\begin{gathered} \text { K - } \\ \text { Level } \end{gathered}$		Open
CI	CO1	1 Upto K3	2	K1\&K2	1	K1	2	1
AI	CO2	2 Upto K4	2	K1\&K2	2	K2	2	1
CI	CO3	3 Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
$\begin{aligned} & \text { Patt } \\ & \text { CIA } \end{aligned}$		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { I }}{\text { CIA }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K - Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D   (Open   Choice)
			No. of Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K3	2	K1\&K2		K1	2(K2\&K2)	1(K3)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	of   (Marks   without   choice)	Consolidated   \%
K1	5	4			9	7.5	33
K2	5	6	20		31	25.8	
K3			30	30	30	25	25
K4				20	20	16.7	17
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions) Answer All Questions				(10x1=10 marks)
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO 2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K3		
17) b	CO 2	K3		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K3		
19) b	CO4	K3		
20) a	CO5	K2		
20) b	CO5	K2		
NB: Higher level of performance of the students is to be assessed by attempting higher level of K levels				
Section D (Open Choice)				
Answer Any Three questions				(3x10=30 marks)
Q.No	CO	K Level	Questions	
21	CO1	K3		
22	CO2	K4		
23	CO3	K3		
24	CO4	K4		
25	CO5	K3		


(For those who joined in 2021-2022 and after)

Course Name	MEASURE THEORY AND INTEGRATION						
Course Code	21PMTC41			P	C		
Category	Core		6		4		
Nature of course	se: EMPLOYABILITY	SKILL ORIENTED	ENTREPRENURSHIP				
COURSE OBJECTIVES:							
- To introduce the concepts of measures.   - To explain measurable sets and functions.   - To learn Riemann and Lebesgue integration.   - To analyse the four derivatives and functions   - To use Lebesgue theorem in differentiation and integration.							
Unit: I				18			
Measure on the Real line - Lebesgue Outer Measure - Measurable sets-Regularity.							
Unit: II				18			
Measurable Functions - Borel and Lebesgue Measurability.							
Unit: III				18			
Integration of Non-Negative Functions - The General Integral - Integration of Series.				18			
Unit: IV							
Riemann and Lebesgue integrals - The Four Derivatives - Continuous Non - Differentiable Functions.   Unit: V							
Functions of Bounded Variations - Lebesgue Differentiation Theorem - Differentiation and Integration - The Lebesgue Set							
		Total Lecture Hours		\|90			
Books for Study:   De Barra. G, Measure Theory and Integration, New Age International Pvt Ltd, Chennai, Reprint,2010.   Unit I - Chapter 2 Sections 2.1 to2.3   Unit II - Chapter 2 Sections $2.4 \& 2.5$   Unit III - Chapter 3 Sections 3.1 to3.3      Chapter4 Sections $4.1 \& 4.2$   Unit V - Chapter 4 Sections 4.3 to 4.6							
Books for References:   1. Royden, H.L., Real Analysis, Pretice-Hall of Indian Pvt. Ltd, 2008, NewDelhi.   2. Jain, P.K and Gupta. P.K, Lebesgue Measure and Integration, New Age International Pvt .Ltd, Reprint 2010,Chennai.   3. Malik. A. K \&S.K.Gupta, "Measure Theory and Intregration", I.K International Publishing House Pvt , Ltd, Reprint 2017, New Delhi.							
Web Resources							
1. http://m	ath.ucsd.edu/~driver/240-00	ecture Notes/measu	ep.pdf				


2.	https://nptel.ac.in/courses/111/101/111101005/	
3.	https://nptel.ac.in/courses/111/101/111101100/\#	
4.	https://www.youtube.com/playlist?list=PLo4jXE-LdDTOq8ZyA8F8reSOHei3F6RFX	
COURSE OUTCOMES	K Level	
On the successful completion of the course , the students will be able to	K4	
CO1:	Explain the concepts of Lebesgue integral.	K4
CO2:	Analyze the geometrical meaning of measurable functions and integrations.	K3
CO3:	Apply the techniques of measure theory to evaluate integrals	K4
CO4:	Compare Riemann with other integrals.	K3
CO5:	Identify four derivatives and Lebesgue differentiation theorem.	

## CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	$\mathbf{3}$	1	3	3	2	-
CO 2	3	1	2	2	2	1
CO 3	3	1	3	3	2	1
CO 4	3	1	3	3	2	-
CO 5	3	1	3	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Measure on the Real line - Lebesgue Outer Measure -   Measurable sets-Regularity.	18	  Talk, PPT
II	Measurable functions - Borel and Lebesgue Measurability.	18	  Talk
III	Integration of non-negative functions - The general integral -   Integration of series.	18	  Talk, PPT
IV	Riemann and Lebesgue integrals - The four derivatives -   Continuous non - differentiable functions.	18	  Talk
V	Functions of bounded variations - Lebesgue differentiation   theorem - Differentiation and Integration - The Lebesgue set	18	  Talk

## Course Designed by:

Dr. R. Bhavani Assistant Professor \& Dr. S. Andal, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Internal	Cos	K Level	Section AMCQs		Section B		Section C   Either or Choice	Section D Open Choice
					Short Answers			
			No. of. Questions	K - Level	No. of. Questions	K -   Level		
CI	CO1	Upto K4	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K4	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II	No. ofQuestions tobe asked		4		3		4	2
		No. of stions to answered	4		3		2	1
		s for each uestion	1		2		5	10
		al Marks reach ection	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section   C   (Either / Or Choice)	Section   D (Open   Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { IIA }}{\text { CI }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D   (Open   Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$
K1	5	4			9	7.5	33
K2	5	6	20		31	25.8	
K3			30	20	50	41.7	42
K4			30	30	25	25	
Marks	10	10	50	50	120	100	100
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
( $5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level
16) a	CO1	K3
16) b	CO1	K3
17) a	CO 2	K3
17) b	CO2	K3
18) a	CO3	K2
18) b	CO3	K2
19) a	CO4	K3
19) b	CO4	K3
20) a	CO5	K2
20) b	CO5	K2

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K4	
23	CO3	K3	
24	CO4	K4	
25	CO5	K3	



1. Limaye. B.V, Functional Analysis, New age International PVT. Ltd, 2007, NewDelhi.
2. PawanK.Jain \& OM.P.Ahuja, Functional Analysis, New Age International (P) Limited, NewDelhi.
3. Thamban Nair. M, "Functional Analysis- A First course, PHI Learning Private Limited, 2002, NewDelhi.

## Web Resources

1. https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf
2. https://nptel.ac.in/courses/111/106/111106147/https://www.youtube.com/watch?v=Qzc azcGZUFO\&list=PLmx4utxjUQD4x,JkiHY4pp720LyeCZyEKW
3. https://ocw.mit.edu/courses/mathematics/18-102-introduction-to-functional-analysis-spring-2009/lecture-notes/

COURSE OUTCOMES		K Level
On the successful completion of the course, the students will be able to		
CO1:	Explain the concepts of Normed Spaces, Banach Spaces, Compactness and   Dimensions	K4
CO2:	List the operators and its properties.	K4
CO3:	Analyze the Orthogonal complements, ortho-normal sets and sequences	K4
CO4:	Make use of the bounded linear functional, various operators and Hahn-   Banach Theorem	K3
CO5:	Analyze Uniform boundedness, open mapping, closed graph theorem, Strong   and weak convergence	K4

## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	2	2	3	2	2
CO 2	3	2	2	3	2	2
CO 3	2	2	2	2	1	1
CO 4	2	2	2	3	1	1
CO 5	3	2	2	3	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Normed Spaces, Banach Spaces - Further properties of no med spaces   - finite dimensional normed spaces and Subspaces - Compactness and   Finite Dimension - Linear operators	18	  Talk
II	Bounded and Continuous linear operators-Linear functionals - linear   operators and functional on finite dimensional spaces -normed spaces   of operators and dual spaces - Inner product space, Hilbert space -   Further properties of inner product spaces	18	  Talk,   PPT
III	Orthogonal complements and direct sums - Orthonormal sets and   sequences -series related to orthonormal sets and sequences - Total   orthonormal sets and sequences- representation of functionals on   Hilbert spaces.	18	  Talk
IV	Hilbert Adjoint operator - Self adjoint operators, unitary and   normal operators - Zorn's Lemma - Hahn-Banach Theorem-   Hahn-Banach theorem for complex vector spaces and normed   spaces - Bounded Linear Functional on C[a, b] and its   Applications.	18	  Talk,   PPT
V	Adjoint operator - Reflexive spaces - Uniform boundedness theorem -   Strong and weak convergence - Convergence of sequences of   operators and functional - Open mapping theorem - Closed graph   theorem.	18	  Talk

## Course Designed by:

Dr. V. Ramachandran, Assistant Professor \& Dr. A. Hamari Choudhi, Head \& Associate Professor

Formative Examination - Blue PrintArticulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{aligned} & \text { Section A } \\ & \text { MCQs } \\ & \hline \end{aligned}$		Section		Section C Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K4	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K4	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K3	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A   (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K -   Level	No. of Question	K Level		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
2	CO2	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	34	
K2	5	6	20		31	25.9		
K3			30	10	40	33.3	33	
K4								
Marks	10	10	50	50	120	100	100	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)				
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K3		
16) b	CO1	K3		
17) a	CO 2	K3		
17) b	CO2	K3		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K2		
19) b	CO4	K2		
20) a	CO5	K2		
20) b	CO5	K2		
NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels				
Section D (Open Choice)				
Answer Any Three questions				( $3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K4		
22	CO2	K4		
23	CO3	K4		
24	CO4	K3		
25	CO5	K4		


Course Name	PROJECT	L			
Course Code	21PMTPR1	P	C		
Category	Project		6	-	4
Nature of course:	EMPLOYABILITY	SKILL ORIENTED	ENTREPRENURSHIP		

## Course Description

The Project is conducted by the following Course Pattern.

## Internal

$\left.\begin{array}{l}\text { Presentation } \\ \text { Submission } \\ \text { External }\end{array}\right\} \mathbf{4 0}$
$\left.\begin{array}{l}\text { Project Report } \\ \text { Viva Voce }\end{array}\right\} \mathbf{6 0}$
Total $\mathbf{- 1 0 0}$

COURSE OUTCOMES		
On the successful completion of the course , the students will be able to	K3	
CO1:	Apply the skill of presentation and communication techniques	K4
CO2:	Motive as an individual or in a team in development of projects.	K4
CO3:	Analyze the available resources and to select most appropriate one	K3
CO4:	Make use of the fundamentals of Mathematics to search the related literature   survey	K5
CO5:	Evaluate the real life problems by using Mathematics and its Application.	

## Course Designed by:

Dr. R. Bhavani Assistant Professor \& Dr. A. Hamari Choudhi, Head \& Associate Professor

## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	3	3	3	1	3
CO 2	1	2	2	1	2	1
CO 3	2	2	3	3	2	1
CO 4	3	2	3	2	1	2
CO 5	3	3	3	3	3	3

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

Course Name	NUMBER THEORY				
Course Code	21PMTE41		L	P	C
Category	Elective		6		6
Nature of course:	e: EMPLOYABILITY	SKILL ORIENTED	ENTREPRENURSHIP		
COURSE OBJECTIVES:					
- To know the basic concepts in number theory.   - To learn number theoretical functions.   - To study Euclid's and division algorithm.   - To familiarize about primitive roots.   - To understand the fundamental theorem in number theory.					
Unit: I				18	
Well ordering principle, induction, binomial coefficients, Greatest integer function Divisibility: Notion of divisibility, G. C. D , Euclid's Algorithm, L.C.M, Representations of integers					
Unit: II				18	
Primes: Definition, Prime counting function, Prime number theorem ,Test of Primality, Sieve of Eratosthenes, Canonical factorization, Fundamental theorem of Arithmetic.					
Unit: III				18	
Congruences : Congruences and Equivalence relations, Linear Congruence, Linear Diophantine equations, Chinese Remainder Theorem, Polynomial Congruences, Modular Arithmetic, Fermat's Theorem, Wilson's Theorem, Pythagorean equation.					
				18	
Arithmetic functions: Sigma, Tau functions, Dirichlet product, Dirichlet inverse, Mobius function, Euler's function, Euler's theorem					
Unit: V				18	
Primitive roots: Definition, properties, Existence-Quadratic Congruences: Quadratic Residues, Legendre symbols, Gauss lemma, Law of quadratic reciprocity .					
		Total Lecture Hours		90	
Books for Study:   Neville Robbins, Beginning of Number Theory, Second Edition, Narosa publications, New Delhi, 2006.   Unit I- Chapters :1,2   Unit II - Chapter: 3   Unit III - Chapter : 4   Unit IV - Chapter : 5   Unit V - Chapter 6: sections 1,2\& 3 only.   Chapter 7: sections 1,2 and 3 only.					
Books for References:   1. Ivan Niven, Introduction to Theory of numbers, Wiley Eastern,2009.   2. Tom M. Apostal, Introduction to Analytic Number Theory, Springer InternationalEdition,					

3. Martin Erichson \& Anthony Vazzana, " Introduction to Number Theory",Saurabh printers Private Ltd,2010.

## Web Resources

1. http://www2.math.uu.se/~lal/kompendier/Talteori.pdf
2. https://nptel.ac.in/courses/111/101/111101137/
3. https://nptel.ac.in/courses/111/103/111103020/
COURSE OUTCOMES $\quad$ K Level

On the successful completion of the course, the students will be able to
CO1: Explain the numbering concepts. K4
CO2: $\quad$ Apply the concepts of prime numbers and principles to solve problems $\quad$ K3

CO3: | Solve the system of linear congruencies with different module using the |
| :--- | :--- | :--- |
| Chinese Reminder Theorem |$\quad$ K3

CO4: Categorize the various arithmetic functions $\quad$ K4
CO5: Examine the quadratic residues and quadratic non-residues using congruences.
CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$-Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Well ordering principle, induction, binomial coefficients,Greatest   integer function - Divisibility :Notion of divisibility, G. C. D,   Euclids Algorithm, L.C.M, Representations of integers	18	  Talk
II	Primes: Definition, Prime counting function, Prime number   theorem,Test of Primality, Sieve of Eratosthenes, Canonical   factorization, Fundamental theorem of Arithmetic.	18	  Talk
III	Congruences : Congruences and Equivalence relations, Linear   Congruence, Linear Diophantine equations, Chinese Remainder   Theorem, Polynomial Congruences, Modular Arithmetic,   Fermat's Theorem, Wilson’s Theorem, Pythagoreanequation.	18	  Talk
IV	Arithmetic functions: Sigma, Tau functions, Dirichlet product,   Dirichlet inverse, Mobius function, Euler's function, Euler's theorem	18	  Talk
V	Primitive roots: Definition, properties, Existence-Quadratic   Congruences: Quadratic Residues, Legendre symbols, Gauss   lemma, Law of quadratic reciprocity.	18	  Talk

## Course Designed by:

Dr. R. Bhavani Assistant Professor \& Dr. S. Andal, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B		Section C   Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	K - Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K4	2	K1\&K2	1	K1	2	1
AI	CO 2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO 3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K4	2	K1\&K2		K1	2(K3\&K3)	1(K4)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   (Marks   without   choice)	Consolidated   \%
K1	5	4			9	7.5	$\mathbf{4 2}$
K2	5	6	30		41	34.2	
K3			20	20	40	33.3	$\mathbf{3 3}$
K4				30	30	25	$\mathbf{2 5}$
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB:							

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels.

Summative Examinations - Question Paper - Format
Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level
1	CO1	K1
2	CO1	K2
3	CO2	K1
4	CO2	K2
5	CO3	K1
6	CO3	K2
7	CO4	K1
8	CO4	K2
9	CO5	K1
10	CO5	K2

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16$)$ a	CO 1	K 3	
16$) \mathrm{b}$	CO 1	K 3	
17$) \mathrm{a}$	CO 2	K 2	
17$) \mathrm{b}$	CO 2	K 2	
18$) \mathrm{a}$	CO 3	K 2	
18$) \mathrm{b}$	CO 3	K 2	
19) a	CO 4	K 3	
19) b	CO 4	K 3	
20) a	CO 5	K 2	
20) b	CO 5	K 2	

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions
( $\mathbf{3 x 1 0}=\mathbf{3 0}$ marks)

Q.No	CO	K Level	Questions
21	CO1	K4	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	


usamo/Applied \% 20Combinatorics\% 20(6th \%20Edition) \%20by \%20Alan \%20Tucker\%20 Wiley\%20(2012).pdf
2. http://cseweb.ucsd.edu/~gill/AlgCombSite/Resources/CCSRefP1.pdf

3. https://en.wikipedia.org/w/index.php?title=Special:WhatLinksHere\&target=Algorithm | COURSE OUTCOMES | K Level |
| :--- | :--- |

On the successful completion of the course , the students will be able to

CO1:	Understand the rules of Sum and Product of Permutations and Combinations.	K2
CO2:	Discuss distributions of Distinct Objects into Non-distinct Cells and Partitions of   Integers.	K3
CO3:	Identify Solutions by the technique of Generating Functions and Recurrence Relations   with Two Indices.	K3
CO4:	Make use of the concepts of Permutations with Restrictions on Relative Positions and   the Rook Polynomials.	K3
CO5:	Analyze equivanlence classes of functions in Polya's Theory	K4

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$-Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Permutations and Combinations Introduction - The rules of Sum   and Product - Permutations - Combinations - Distributions of   Distinct Objects - Distributions of Non distinct Objects	18	  Talk
II	Generating Functions Introduction - Generating Functions for   Combinations - Enumerators for Permutations - Distributions of   Distinct Objects into Non distinct Cells - Partitions of Integers -   Elementary relations	18	  Talk,   PPT
III	Recurrence Relation Introduction - Linear Recurrence relations with   Constant Coefficients - Solution by the technique of Generating Functions   -Recurrence Relations with Two Indices	18	  Talk
IV	The Principle of Inclusion and Exclusion Introduction - The   Principle of Inclusion and Exclusion - The General Formula -   Derangements - Permutations with Restrictions on Relative   Positions - The Rook Polynomials	18	  Talk,   PPT
V	Theory of Counting Introduction - Equivalence Classes under a   Permutation Group - Equivalence Classes of Functions -Weights and   Inventories of Functions - Polya's Fundamental Theorem - Generalization   of Polya's Theorem	18	  Talk

## Course Designed by:

Dr. M. Saravanan Assistant Professor \& Dr. A. Arivu Chelvam, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte rnal	Cos	K Level	Section AMCQs		Section BShort Answers		Section C   Either or Choice	Section D Open Choice
			No. of. Questions	K Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K3	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D (Open   Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \hline \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	2
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K2	2	K1\&K2		K1	2(K2\&K2)	1(K2)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\mathbf{\%}$
K1	5	4			9	7.5	$\mathbf{2 5}$
K2	5	6		10	21	17.5	
K3			20	20	40	33.3	$\mathbf{3 3}$
K4		30	20	50	41.7	$\mathbf{4 2}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level	
1	CO1	K1	
2	CO1	K2	
3	CO2	K1	
4	CO2	K2	
5	CO3	K1	
6	CO3	K2	
7	CO4	K1	
8	CO4	K2	
9	CO5	K1	
10	CO5	K2	

Section B (Short Answers)
Answer All Questions
( $5 \times 2=10$ marks)

Q.No	CO	K Level
11	CO1	K1
12	CO2	K1
13	CO3	K2
14	CO4	K2
15	CO5	K2

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16) a	CO1	K2	
16) b	CO1	K2	
17) a	CO2	K3	
17) b	CO2	K3	
18) a	CO3	K3	
18) b	CO3	K3	
19) a	CO4	K3	
19) b	CO4	K3	
20) a	CO5	K3	
20) b	CO5	K3	

Questions

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	Questions
21	CO1	K2	
22	CO2	K3	
23	CO3	K3	
24	CO4	K3	
25	CO5	K4	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMIENT OF MATHEMATICS
(For those who joined in 2021-2022 and after)

Course Name	DIFFERENTIAL GEOMETRY					
Course Code	21PMTE43			L	P	C
Category	Elective			6		6
Nature of course:		EMPLOYABILITY	SKILL ORIENTED	ENTREPRENURSHIP		
COURSE OBJECTIVES:						
- To study the classical theory of curves and surfaces.   - To learn the fundamental existence theorem of space curve.   - To know the local intrinsic and local non-intrinsic properties of surfaces.   - To deal with the fundamental equations of surface theory.   - To learn the applications of Differential Geometry.						
Unit: I					18	
Representation of space curves - Unique parametric representation of a space curve - Arc length Tangent and osculating plane - Principal normal and binormal - Curvature and Torsion - Behavior of a curve near one of its points - The curvature and torsion of a curve as the intersection of two surfaces - Contact between curves and surfaces - Osculating circle and osculating sphere - Locus of centres of spherical curvature - Tangent surfaces, involutes and evolutes - Bertrand Curves Spherical indicatrix - Intrinsic equations of space curves - Fundamental existence theorem for space curves - Helices.						
Unit: II						
Definition of a surface - Nature of points on a surface - Representation of a surface - Curves on surfaces - Tangent plane and surface normal - The general surfaces of revolution - Helicoids Metricon a surface - The First Fundamental form - Direction coefficients on a surface - Families of curves -Orthogonal trajectories - Double family of curves - Isometric correspondence Intrinsic properties						
Geodesic and their differential equations - Canonical geodesic equations - Geodesics on surfaces of revolution - Normal property of geodesics - Differential equations of geodesics using normal property - Existence theorems - Geodesic parallels - Geodesic polar coordinates - Geodesic curvature - Gauss-Bonnet Theorem - Gaussian curvature - Surfaces of constant curvature.						
Unit: IV						
The second fundamental form - Classification of points on a surface - Principal curvatures - Lines of curvature - The Dupin indicatrix- Developable surfaces - Developables associated with space curves -Developables associated with curves on surfaces - Minimal surfaces - Ruled surfaces.						
Unit: V   Tensor notations - Gauss equations - Weingarten equations - Mainardi-Codazzi equations Parallel surfaces.						
				tal Lecture Hours 90		
Books for Study:   Somasundaram. D., Reprint 2019, Differential Geometry, Narosa Publishing House, Chennai.   Unit I- Chapters :1(1.1-1.18)   Unit II - Chapter: 2(2.1-2.15)   Unit III - Chapter : 3(3.1-3.13)						


$\begin{aligned} & \text { Unit IV - Chapter : 4(4.1-4.11) } \\ & \text { Unit V - Chapter } 5(5.1-5.6) \end{aligned}$		
Books for References:   1. Mittal and Agarwal, 2014, Differential Geometry, Krishna Prakasan Media (P) Ltd., India.   2. Thierry Aubin, 2001, Differential Geometry, American Mathematical Society, Providence,US.   3. Willmore. T.J., 2018, An introduction to Differential Geometry, Oxford University Press, New Delhi.		
Web Resources		
1.https://books.google.gm/books?id=dbIAAQAAQBAJ\&printsec=copyright\&source=gbs_pu b_info_r   2.https://picfs.com/1aqi82   3.https://en.wikipedia.org/wiki/Differential geometry\#:~:text=Differential\% 20geometry \% 20i s\%20a\%20mathematical,linear\% 20algebra\%20and\%20multilinear\%20algebra.		
COUR	SE OUTCOMES	K Level
On the successful completion of the course, the students will be able to		
C01:	Demonstrate the Understanding the concept of space curves.	K2
CO2:	Identify metric on a surface, direction coefficients on a surface and nature of points on the surface.	3
CO3:	Analyze Geodesic and their differential equations	K4
CO4:	List topological aspects of surfaces.	K4
C05:	Analyse the Weingarton Equations, Gaussian equations, Mainardi-Codazzi equations	K

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$-Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
	Representation of space curves - Unique parametric representation of   a space curve - Arc length - Tangent and osculating plane - Principal   normal and binormal - Curvature and Torsion - Behavior of a curve   near one of its points - The curvature and torsion of a curve as the   intersection of two surfaces - Contact between curves and surfaces -   Osculating circle and osculating sphere - Locus of centres of   spherical curvature - Tangent surfaces, involutes and evolutes -   Bertrand Curves - Spherical indicatrix - Intrinsic equations of space   curves - Fundamental existence theorem for space curves - Helices.	18	  Talk
II	Definition of a surface - Nature of points on a surface -   Representation of a surface - Curves on surfaces - Tangent plane and   surface normal - The general surfaces of revolution - Helicoids -   Metric on a surface - The First Fundamental form - Direction   coefficients on a surface - Families of curves - Orthogonal   trajectories - Double family of curves - Isometric correspondence -   Intrinsic properties	18	  Talk
III	Geodesic and their differential equations - Canonical geodesic   equations - Geodesics on surfaces of revolution - Normal property of   geodesics - Differential equations of geodesics using normal property   - Existence theorems - Geodesic parallels - Geodesic polar   coordinates - Geodesic curvature - Gauss-Bonnet Theorem -   Gaussian curvature - Surfaces of constant curvature.	18	  Talk
	The second fundamental form - Classification of points on a surface   - Principal curvatures - Lines of curvature - The Dupin indicatrix-   Developable surfaces - Developables associated with space curves -   Developables associated with curves on surfaces - Minimal surfaces   - Ruled surfaces	18	  Talk
V	Tensor notations - Gauss equations - Weingarten equations -   Mainardi-Codazzi equations - Parallel surfaces.	18	  Talk

## Course Designed by:

Dr. A. Arivu Chelvam Assistant Professor \& Mrs. S. Ragavi, Assistant Professor

Articulation			Formative Examination - Blue Print Mapping - K Levels with Course Outcomes (COs)					
Inte rnal	Cos	K Level	$\begin{gathered} \text { Section A } \\ \text { MCQs } \\ \hline \end{gathered}$		Section BShort Answers		Section C Either or Choice	Section D Open Choice
			No. of. Questions	K Level	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K2	2	K1\&K2	1	K1	2	1
AI	CO2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K4	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\&K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A   (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section D (Open Choice)	Total   Marks	\% of (Marks without choice)	Consolidate of $\%$
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \text { I } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

| Summative Examination - Blue Print Articulation Mapping - K Level with Course |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outcomes (COs) |  |  |  |  |  |  |  | \left\lvert\, \(\left.$$
\begin{array}{c}\text { Short Answers }\end{array}
$$ \begin{array}{c}Section C <br>

(Either / or <br>
Choice)\end{array} $$
\begin{array}{c}\text { Section D } \\
\text { (Open } \\
\text { Choice) }\end{array}
$$\right.\right]\)
(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	$\mathbf{1 7}$	
K2	5	6	20		31	9.17		
K3			30	30	60	37.5	$\mathbf{3 7}$	
K4								
Marks	10	10	50	50	120	100	$\mathbf{4 0 0}$	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)				
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO 2	K1		
4	CO2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K2		
16) b	CO1	K2		
17) a	CO 2	K3		
17) b	CO2	K3		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K3		
19) b	CO4	K3		
20) a	CO5	K3		
20) b	CO5	K3		
NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels				
Section D (Open Choice)				
Answer Any Three questions				( $3 \times 10=30$ marks)
Q.No	CO	K Level	Questions	
21	CO1	K2		
22	CO2	K3		
23	CO3	K4		
24	CO4	K4		
25	CO5	K4		

(For those who joined in 2021-2022 and after)


Web Resources		
1. https://nptel.ac.in/courses/110/101/110101141/		
2. https://nptel.ac.in/courses/111/103/111103022/		
3. https://web.ma.utexas.edu/users/gordanz/notes/introduction_to_stochastic_processes.p df		
COURSE OUTCOMES		K Level
On the successful completion of the course , the students will be able to		
C01:	Classify simple stochastic process models in the time domain.	K4
CO2:	Apply the generalization of Poisson process	K3
CO3:	Compare Markov and Erlang process	K4
CO4:	Identify the qualitative and quantitative analysis of Stochastic process model.	K3
C05:	Explain models for real life problems.	K4

CO \& PO Mapping:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; 1 - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	Stochastic Processes: Some notions - Specification of Stochastic   processes - Stationary process - Markov Chains - Definitions and   examples - Higher Transition Probabilities	18	  Talk
II	Markov Chains : - Generalization of Independent Bernoulli trails-   Sequence of chain - Dependent Trails - Classification of states and   chains- Determination of higher transition probabilities - Stability of a   Markov System	18	  Talk
III	Graph Theoretic Approach- Markov Chain with Denumerable   Number of States- Reducible Chains - Markov Chains with   Continuous State Space	18	  Talk
IV	Markov Processes with Discrete State Space : Poisson Processes   and their extensions - Poisson process and related distribution -   Generalization of Poisson Process - Birth and Death Process-   Markov Processes with Discrete State space ( Continuous Time   Markov Chains)	18	  Talk,   PPT
V	Stochastic Processes in Queuing - Queuing system - General concepts   - the queuing model M/M/1 - Steady state Behaviour - Transient   Behaviour of M/M/1 Model - Non Markovian models - Transient   Behaviour of M/M/1 Model - Birth and Death Processes in Queueing   Theory	18	  Talk

## Course Designed by:

Dr. P. Chitra Devi Assistant Professor \& Mrs. R. Sumathi, Assistant Professor

$\begin{gathered} \hline \text { Learning Outcome Based Education \& Assessment (LOBE) } \\ \text { Formative Examination - Blue Print } \\ \text { Articulation Mapping - K Levels with Course Outcomes (COs) } \\ \hline \end{gathered}$							
Inte rnal	K Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section BShort Answers		Section C Either or Choice	Section D   Open   Choice
		No. of. Questions	K -   Level	No. of. Question   s	K Level		
CI C	- Upto K4	2	K1\&K2	1	K1	2	1
AI C	2 Upto K3	2	K1\&K2	2	K2	2	1
CI CO3	3	2	K1\&K2	1	K2	2	1
AII $\mathbf{C}$	4 Upto K3	2	K1\&K2	2	K2	2	1
Questio   n Pattern CIA I \& II	No. of Questions to be asked	4		3		4	2
	No. of Questions to be answered	4		3		2	1
	Marks for each question	1		2		5	10
	Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
K Level		Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D   (Open   Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { I }}{\text { CIA }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
	K1	2	2			4	8	20
	K2	2	4			6	12	20
CIA	K3			10	10	20	40	40
II	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with CourseOutcomes (COs)								
S.No	COs	K Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	K -   Level	No. of Question	K -   Level		
1	CO1	Upto K4	2	K1\&K2	1	K1	2(K3\&K3)	1(K4)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
3	CO3	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K2\&K2)	1(K3)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K2\&K2)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30

(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level							
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\mathbf{\%}$
K1	5	4			9	7.5	$\mathbf{4 2}$
K2	5	6	30		41	34.2	
K3			20	20	40	33.3	$\mathbf{3 3}$
K4			30	30	25	$\mathbf{2 5}$	
Marks	10	10	50	50	120	100	$\mathbf{1 0 0}$
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.							

## Summative Examinations - Question Paper - Format

Section A (Multiple Choice Questions)				
Q.No	CO	K Level	Questions	
1	CO1	K1		
2	CO1	K2		
3	CO2	K1		
4	CO 2	K2		
5	CO3	K1		
6	CO3	K2		
7	CO4	K1		
8	CO4	K2		
9	CO5	K1		
10	CO5	K2		
Section B (Short Answers)				
Answer All Questions				(5x2=10 marks)
Q.No	CO	K Level	Questions	
11	CO1	K1		
12	CO2	K1		
13	CO3	K2		
14	CO4	K2		
15	CO5	K2		
Section C (Either/Or Type)				
Answer All Questions				( $5 \times 5=25$ marks)
Q.No	CO	K Level	Questions	
16) a	CO1	K3		
16) b	CO1	K3		
17) a	CO 2	K2		
17) b	CO 2	K2		
18) a	CO3	K3		
18) b	CO3	K3		
19) a	CO4	K2		
19) b	CO4	K2		
20) a	CO5	K2		
20) b	CO5	K2		
NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels				
Section D (Open Choice)				
Answer Any Three questions				(3x10=30 marks)
Q.No	CO	K Level	Questions	
21	CO1	K4		
22	CO2	K3		
23	CO3	K4		
24	CO4	K3		
25	CO5	K4		


Course Name	FLUID DYNAMICS					
Course Code	21PMTE45			L	P	C
Category	Elective			6		6
Nature of course:		EMPLOYBILITY	SKILL ORIENTED	ENTREPRENURSH		
COURSE OBJECTIVES:						
To learn the physical properties of fluids   To relate the principles of continuity, momentum and energy as applied to fluid motions.   To know the concept on the Kinematics of fluid motions,   To understand three dimensional flows.   To know the two dimensional flows						
Unit: I						
General orthogonal curvilinear coordinates-Arc length in Orthogonal coordinates-Gradient in orthogonal coordinates-Divergence in orthogonal coordinates-Laplacian in orthogonal coordinates - Curl of a vector function in orthogonal coordinates -worked examples -Some cartesian tensor notation.						
Unit: II						
Real fluids and Ideal fluids - Velocity of a fluid at apoint -Streamlines and Path lines, steady and unsteady flows - The velocity potential - The vorticity vector -Local and particle rates of change The equation of continuity - worked examples - Acceleration of a fluid-Conditions at a rigid boundary.						
Unit: III						
Pressure at a point in a fluid at rest - Pressure at a point in a moving fluid - Conditions at a boundary of two in viscid Immiscible fluids - Euler"sequations of motion - Bernoulli"s equation worked examples - discussion of the case ofsteady motion under conservative body forces- some flows involving axial symmetry - Some special two-dimensional flows-Impulsive motion.						
Unit: IV						
Some Three-Dimensional flows: Introduction- Sources, Sinks and doublets-Images in rigid infinite plane-Images in solid spheres-Axi-Symmetric flows, Stoke's Stream function.						
Unit: V					18	
Meaning of Two-Dimensional Flow - Use of Cylindrical Polar coordinates - The stream functionThe complex potential for Two-Dimensional Irrotational, In compressible flow-Complex velocity potentials for standard two dimensional flows-Some worked examples -Two-Dimensional image systems-The Milne-Thomson circle theorem.						
				al Lecture Hou		
Books for Study:   Frank Chorlton, 2004, Textbook of Fluid Dynamics, CBS Publishers and Distributors Pvt. Ltd.   New Delhi   Unit I-Chapter 1(Section 1.19to 1.20)   Unit II - Chapter2(Section2.1 to 2.10)   Unit III -Chapter3(Section 3.1to3.7, 3.9to 3.11)   Unit IV -Chapter4(Section4.1 to4.5)						

## Unit V - Chapter5(Section5.1 to5.8)

## Books for References:

1.Goyal J.K. and Gupta K.P.,1998,Fluid Dynamics, Seventh Edition, Pragati Prakashan Publications, Meerat.
2. Paterson A.R.,1977,A First Course in Fluid Dynamics, Cambridge University Press, India (Pvt)Ltd.
3. Raisinghania M.D.,2006, Fluid Dynamics, S. Chand \& Company Ltd, New Delhi.

## Web Resources

1. http://www3.dicca.unige.it/rrepetto/linked-files/fluid-dynamics-lecture-notes.pdf
2. $\mathrm{https}: / / \mathrm{www} . i a r e . a c . i n /$ sites/default/files/AERO_FLUID_DYNAMICS_LECTURE_NOTES.pdf
3. http://mdudde.net/pdf/study_material_DDE/M.Sc.MAthematics/Fluid_Dynamics_final.pdf COURSE OUTCOMES K Level
On the successful completion of the course, the students will be able to

CO1:	Find the gradient, divergence, curl of orthogonal coordinates	K3
CO2:	Identify the Euler's equations of motion and equations of continuity	K3
CO3:	Solve the equations of motion of a fluid when it is at rest and in motion	K3
CO4:	Analyze two dimensional and three dimensional flows	K4
CO5:	Examine Two-Dimensional flow using cylindrical Polar coordinates	K4

## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
I	General orthogonal curvilinear coordinates-Arc length in Orthogonal   coordinates-Gradient in orthogonal coordinates-Divergence in   orthogonal coordinates-Laplacian in orthogonal coordinates - Curl of   a vector function in orthogonal coordinates - worked examples -   Some cartesian tensor notation.	18	  Talk
II	Real fluids and Ideal fluids - Velocity of a fluid at a point -   Streamlines and Path lines, steady and unsteady flows - The velocity   potential - The vorticity vector -Local and particle rates of change -   The equation of continuity - worked examples - Acceleration of a   fluid-Conditions at a rigid boundary.	18	  Talk
III	Pressure at a point in a fluid at rest - Pressure at a point in a moving   fluid - Conditions at a boundary of two in viscid Immiscible fluids -   Euler's equations of motion - Bernoulli's equation - worked   examples - discussion of the case of steady motion under   conservative body forces- some flows involving axial symmetry -   Some special two-dimensional flows-Impulsive motion.	18	
Talk			

## Course Designed by:

Dr. P. Chitra Devi Assistant Professor \& Dr. S. Andal, Assistant Professor

Learning Outcome Based Education \& Assessment (LOBE) Formative Examination - Blue Print   Articulation Mapping - K Levels with Course Outcomes (COs)								
Inte   rnal	Cos	K Level	Section AMCQs		Section		Section C   Either or Choice	Section D Open Choice
					Short An	wers		
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	Upto K3	2	K1\&K2		K1	2	1
AI	CO 2	Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	Upto K4	2	K1\& K2	2	K2	2	1
Question Pattern CIA I \& II		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	$\underset{\text { Level }}{\text { K }}$	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section   C   (Either / Or Choice)	Section   D (Open   Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\underset{\text { I }}{\text { CIA }}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{gathered} \text { CIA } \\ \text { II } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K -Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	K -   Level		
1	CO1	Upto K3	2	K1\&K2	1	K1	2(K2\&K2)	1(K3)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
5	C05	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30
(Figures in parenthesis denotes, questions should be asked with the given K level)								

(Figures in parenthesis denotes, questions should be asked with the given $K$ level)

Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	\% of   Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5		
K2	5	6			11	9.17		
K3			25	20	45	37.5	$\mathbf{3 7}$	
K4								
Marks	10	10	50	30	55	45.83	$\mathbf{4 6}$	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format
Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level
1	CO1	K1
2	CO1	K2
3	CO2	K1
4	CO2	K2
5	CO3	K1
6	CO3	K2
7	CO4	K1
8	CO4	K2
9	CO5	K1
10	CO5	K2

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16$)$ a	CO 1	K 2	
16$) \mathrm{b}$	CO 1	K 2	
17$) \mathrm{a}$	CO 2	K 3	
17) b	CO 2	K 3	
18$) \mathrm{a}$	CO 3	K 3	
18$) \mathrm{b}$	CO 3	K 3	
19) a	CO 4	K 3	
19) b	CO 4	K 3	
20) a	CO 5	K 3	
20) b	CO 5	K 3	

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions
( $\mathbf{3 x 1 0}=\mathbf{3 0}$ marks)

Q.No	CO	K Level	
21	CO1	K3	
22	CO2	K3	
23	CO3	K3	
24	CO4	K4	
25	CO5	K4	

MANNAR THIRUMALAI NAICKER COLLEGE (AUTONOMOUS) DEPARTMENT OF MATHEMATICS
(For those who joined in 2021-2022 and after)


1. https://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/lecture-notes/
2. https://www.tutorialsduniya.com/notes/multivariate-calculus-notes/
3. https://www.math.nyu.edu/~cerfon/calculusIII.html

COURSE OUTCOMES	K Level	
On the successful completion of the course, the students will be able to	K3	
CO1:	Apply derivatives of functions of two or more variables	K3
CO2:	Solve the gradient and directional derivatives for a function at a given point.	K3
CO3:	Find the total differential of a function of several variables	K3
CO4:	Solve a function of two or more variables, organizing work into main steps   carefully justifying determination of critical points.	K4
CO5:	Analyse multiple integrals either by using iterated integrals or approximation   methods.	

## CO \& PO Mappings:

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	3	1	1	1
CO 2	3	3	2	2	1	-
CO 3	3	3	3	1	1	1
CO 4	3	3	2	2	1	-
CO 5	3	3	2	2	2	1

*3 - Advanced Application; 2 - Intermediate Development; $\mathbf{1}$ - Introductory Level

## LESSON PLAN

UNIT	SUBJECT NAME	Hours	Pedagogy
	Sequences in R R - Subsequences and Cauchy sequences - Closure,   boundary and interior Continuity - Composition of continuous   functions - Characterizations of continuity - Continuity and   boundedness - Continuity and monotonicity - Continuity and   convexity - Continuity and Intermediate value property - Uniform   continuity-- Limits and continuity.	18	  Talk
II	Partial and Directional Derivatives - Partial derivatives - Directional   derivatives - Higher-order partial derivatives - Problems	18	  Talk
III	Differentiability - Differentiability and directives - Implicit   differentiation - Taylor's theorem and Chain rule - Functions of three   variables - Problems	18	  Talk
IV	Absolute extrema - Constrained extrema -Local extrema and saddle   points - Linear and quadratic approximations	18	  Talk
V	Double integrals on rectangles - Basic inequality and criterion for   integrability - Domain additivity on rectangles - Integrability of   monotonic and continuous functions - Algebraic and order properties   - Fundamental theorem of calculus - Fubini's theorem on rectangles.	18	  Talk

## Course Designed by:

Mrs. S. Ragavi, Assistant Professor \& Dr. M. Saravanan, Assistant Professor

$\begin{aligned} & \hline \text { Learning Outcome Based Education \& Assessment (LOBE) } \\ & \text { Formative Examination - Blue Print } \\ & \text { Articulation Mapping - K Levels with Course Outcomes (COs) } \\ & \hline \end{aligned}$								
Inte rnal	Cos	K Level	$\begin{gathered} \hline \text { Section A } \\ \hline \text { MCQs } \\ \hline \end{gathered}$		Section B		Section C   Either or Choice	Section D Open Choice
					Short Answers			
			No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$	No. of. Questions	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
CI	CO1	1 Upto K3	2	K1\&K2	1	K1	2	1
AI	CO2	2 Upto K3	2	K1\&K2	2	K2	2	1
CI	CO3	3 Upto K3	2	K1\&K2	1	K2	2	1
AII	CO4	4 Upto K4	2	K1\&K2	2	K2	2	1
		No. of Questions to be asked	4		3		4	2
		No. of Questions to be answered	4		3		2	1
$\begin{aligned} & \text { Pat } \\ & \text { CIA } \end{aligned}$		Marks for each question	1		2		5	10
		Total Marks for each section	4		6		10	10


Distribution of Marks with K Level CIA I \& CIA II								
	K   Level	Section A (Multiple Choice Questions)	Section B (Short Answer Questions)	Section C (Either / Or Choice)	Section   D (Open Choice)	Total Marks	\% of (Marks without choice)	Consolidate of \%
$\begin{gathered} \text { CIA } \\ \text { I } \end{gathered}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100
$\begin{array}{\|c\|c\|} \hline \text { CIA } \\ \text { II } \end{array}$	K1	2	2			4	8	20
	K2	2	4			6	12	
	K3			10	10	20	40	40
	K4			10	10	20	40	40
	Marks	4	6	20	20	50	100	100

K1- Remembering and recalling facts with specific answers
K2- Basic understanding of facts and stating main ideas with general answers
K3- Application oriented- Solving Problems
K4- Examining, analyzing, presentation and make inferences with evidences
CO5 will be allotted for individual Assignment which carries five marks as part of CIA component.

Summative Examination - Blue Print Articulation Mapping - K Level with Course Outcomes (COs)								
S.No	COs	K -Level	MCQs		Short Answers		Section C (Either / or Choice)	Section D (Open Choice)
			No. of Questions	$\mathbf{K}-$ Level	No. of Question	$\begin{gathered} \mathrm{K}- \\ \text { Level } \end{gathered}$		
1	CO1	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
2	CO2	Upto K3	2	K1\&K2	1	K1	2(K3\&K3)	1(K3)
3	CO3	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
4	CO4	Upto K3	2	K1\&K2	1	K2	2(K3\&K3)	1(K3)
5	CO5	Upto K4	2	K1\&K2	1	K2	2(K3\&K3)	1(K4)
No. of Questions to be Asked			10		5		10	5
No. of Questions to be answered			10		5		5	3
Marks for each question			1		2		5	10
Total Marks for each section			10		10		25	30


Distribution of Marks with K Level								
K   Level	Section A   (Multiple   Choice   Questions)	Section B   (Short   Answer   Questions)	Section C   (Either/ or   Choice)	Section D   (Open   Choice)	Total   Marks	of   (Marks   without   choice)	Consolidated   $\%$	
K1	5	4			9	7.5	$\mathbf{1 7}$	
K2	5	6			11	9.17		
K3								
K4		25	20	45	37.5	$\mathbf{3 7}$		
Marks	10	10	50	50	55	45.83	$\mathbf{4 6}$	
NB: Higher level of performance of the students is to be assessed by attempting higher level   of K levels.								

Summative Examinations - Question Paper - Format
Section A (Multiple Choice Questions)
Answer All Questions
(10x1=10 marks)

Q.No	CO	K Level
1	CO1	K1
2	CO1	K2
3	CO2	K1
4	CO2	K2
5	CO3	K1
6	CO3	K2
7	CO4	K1
8	CO4	K2
9	CO5	K1
10	CO5	K2

Section B (Short Answers)
Answer All Questions
(5x2=10 marks)

Q.No	CO	K Level	
11	CO1	K1	
12	CO2	K1	
13	CO3	K2	
14	CO4	K2	
15	CO5	K2	

Section C (Either/Or Type)
Answer All Questions
( $5 \times 5=25$ marks)

Q.No	CO	K Level	
16$) \mathrm{a}$	CO 1	K 3	
16$) \mathrm{b}$	CO 1	K 3	
17$) \mathrm{a}$	CO 2	K 3	
17$) \mathrm{b}$	CO 2	K 3	
18$) \mathrm{a}$	CO 3	K 3	
18$) \mathrm{b}$	CO 3	K 3	
19) a	CO 4	K 3	
19) b	CO 4	K 3	
20) a	CO 5	K 3	
20) b	CO 5	K 3	

NB: Higher level of performance of the students is to be assessed by attempting higher level of $K$ levels
Section D (Open Choice)
Answer Any Three questions (3x10=30 marks)

Q.No	CO	K Level	
21	CO1	K3	
22	CO 2	K 3	
23	CO 3	K 3	
24	CO 4	K 3	
25	CO5	K4	

